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SUMMARY

We consider the problem of small sample inference for the generalised extreme value distribution. In

particular, we show the existence of approximate and exact ancillary statistics for this distribution and

that small sample likelihood based inference is greatly improved by conditioning on these statistics. Ig-

noring the ancillary statistics in inference can have severe consequences in some standard applications of

extreme value theory. We illustrate this via simulation and by analysis of two data sets, one based on

sea-levels and the other on insurance claims.

Keywords: ancillary statistic, asymptotic ancillarity, conditional inference, estimator performance, gen-

eralised extreme value distribution, maximum likelihood estimation.

1 Introduction

The motivation for this study arose from an examination of small sample inference for extreme value

distributions. For small samples, a long-standing but unresolved question is how best to estimate the

parameters of the generalised extreme value (GEV) distribution which has distribution function

G(z;�; �; �) = exp

(
�
�
1 + �

�
z � �

�

��
�1

+

)
(1.1)

where [y]+ = maxfy; 0g, and �; �(> 0); and � are location, scale and shape parameters respectively. The

case � = 0 is interpreted as the limit of (??) as �!0, and the cases Fr�echet, Gumbel and (negative)

Weibull correspond to � > 0, � = 0, and � < 0 respectively. The value of the parameter � in model (??) is

dominant in determining tail behaviour; � < 0 corresponds to a distribution with an upper bound, while

increasingly large positive values correspond to an increasingly heavy upper tail. The GEV arises as the

limiting distribution of the re-scaled maximum of a sequence of random variables, and is commonly used

in environmental and �nancial applications.

There have been a variety of proposed methods for estimation in this family and a corresponding collection

of studies to investigate the relative performance of estimators, (see Hosking et al, 1985 and Coles and

Dixon, 1997). The methods considered in these studies include maximum likelihood, method of moments,

probability weighted moments and quantiles methods. For other similar non-regular distributions, such

as the (negative) Weibull, a special case of the GEV, a variety of methods have been considered, including

corrected maximum likelihood, (Cheng and Iles, 1987) and grouped likelihood methods. For this type of

non-regular problem, the optimality properties of maximum likelihood fail to hold (see Cox and Hinkley,

1974), and small sample inference based on the maximum likelihood estimator (MLE) can be poor. Thus

a debate arises about which, estimation method, if any, is optimal.

1MJD, Department of Statistics, University of Newcastle-upon-Tyne, Newcastle; AWL and PKM Department
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In this paper, we examine the use of conditional inference for the GEV for �nite sample sizes. In partic-

ular, we show that there exists ancillary statistics and �nd that previous conclusions about the relative

performance of various estimators are misleading because they have been obtained using inappropriate

unconditional inference.

A common feature of this type of non-regular problem is that, as the maximum likelihood estimate is not

su�cient for � = (�; �; �), it does not capture all the information for inference about �. In these cases,

conditional methods can be viewed as a way of recovering the information that is contained within the

data, but not in the MLE. In cases where the MLE is not su�cient for �, suppose that the information

\lost" in the MLE is contained in another statistic, A. Further if A has a distribution which is independent

of the parameter �, then it is said to be ancillary for �, and unconditional inference based solely on the

MLE can be misleading and inappropriate (Cox and Hinkley, 1974).

The existence and/or form of an ancillary for a given problem is not usually obvious, and much research

into conditional inference has concentrated on developing methods for obtaining ancillary statistics in a

given class of problems. There has been very little consideration of conditional inference for end point

problems. We address this here for the case of the GEV.

In Section 2, we show that there exist both exact and approximate ancillary statistics for the GEV, and

demonstrate that standard (unconditional) inference may give misleading results. We also demonstrate

the role of ancillary statistics as measures of goodness-of-�t. In Section 3 we show by simulation that

the proposed ancillary statistics are informative about inference on the parameters of interest, and com-

pare the performance of alternative estimators in the conditional framework. We show that conditional

inference may lead to improved estimation, and so a�ects the choice of estimation procedure in practical

situations. We demonstrate the practical importance of conditioning in Section 4 using UK sea-level and

an insurance claims data examples.

2 Conditional inference for the GEV

In this section we review briey standard unconditional inference for the GEV and describe how condi-

tional inference may be implemented.

2.1 Distribution of maximum likelihood estimate

Smith (1985) investigated the asymptotic properties of the maximum likelihood estimator (MLE) for

models with density

f(x; �; �; �) = (x� �)�1�1 g(x� �;�) for x > �

where g is such that g(y;�) ! c(�) > 0 as y ! 0, and � and � are unknown parameters. The GEV

distribution is a special case of this. For � > �1=2 the maximum likelihood estimate has standard

asymptotic �rst order properties, in particular it is asymptotically normal, unbiased and e�cient. For

�1 < � < �1=2 it is super e�cient, and for � < �1, maximum likelihood estimates do not exist. By

de�ning a modi�ed maximum likelihood estimator Cheng and Iles (1987) extended standard asymptotic

regularity and e�ciency to the region � 2 (�1;1).

Simulation experiments indicate that for small sample sizes there can be problems in using the MLE,

even when the true � lies in the region � 2 (�1=2;1). This is because the product of densities can be

very sensitive to certain data con�gurations. We return to this issue later.
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2.2 A simpli�ed model

In the following we motivate our more general �ndings by considering inference for the following simpli�ed

GEV model with �xed location and scale parameters, � = 0; � = 1 and unknown � > �1. We observe

z1; : : : ; zn independent identically distributed observations from GEV (0; 1; �) and wish to estimate �.

De�ne m = minfzi; i 2 1; : : : ; ng and M = maxfzi; i 2 1; : : : ; ng. If m < 0 and M > 0 then the log-

likelihood function will have support only on the interval � 2 (�1=M;�1=m) because the term (1 + �zi)

in the likelihood

l(fz1; : : : ; zng; �) =
nY

i=1

n
[1 + �zi]

�(1+)
+ G(zi; 0; 1; �)

o

must be non-negative. Thus the support for the likelihood function is data dependent and is determined

by the largest and smallest observation. This data dependence of the support of the likelihood is in fact

true in general no matter what the sign of m and M . As an example, consider the sample of size 20 given

in Appendix A, generated from GEV (0; 1; 0:4). The log-likelihood function is plotted in the top panel

of Figure ??. For this data m = �1:259 and M = 4:260. The support of the likelihood thus lies on the

interval (�0:23; 0:79), indicated by the dotted lines in Figure ??. We infer from this that the true � must

also lie in this region.
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Figure 1: Log-likelihood function for GEV

In contrast, the bottom panel in Figure ?? shows the unconditional distribution of the maximum likelihood

estimate for n = 20 and � = 0:4 as an histogram, constructed by simulation. It is clear that inference

based on this unconditional distribution will be misleading. In particular we know from the data set that

the true � lies in the interval (�0:23; 0:79). This follows since parameter values outside this region are
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logically inconsistent with the data as they lie outside the possible support of the likelihood. Unconditional

inference completely fails to incorporate this important point.

Bayesian methods provide an additional inferential perspective here, as any prior will give a posterior

that is zero outside the interval (�0:23; 0:79).

2.3 Conditional Inference

There is a large amount of literature which connects ideas of conditioning on ancillary statistics and the

shape of the likelihood function. This goes back to Fisher's (1925) example of the line/circle model where

he argues that inference should be conditional on the information contained in the observed Hessian. In

general the argument is that when the maximum likelihood estimate is not su�cient it is important to

recover as much information as possible, and that often this information is found in the observed Hessian.

Amari (1985) showed that asymptotically the statistic which contains the next highest amount of infor-

mation after the maximum likelihood estimate can be characterised geometrically. Further, he showed

that given a choice of ancillary statistics, as in the multinomial example of Basu (1964), then the statistic

which contains the largest amount of information should be chosen. Marriott and Vos (1996) directly

connect this information criterion with the behaviour of the shape of the likelihood function. Similar

ideas are explored by Efron and Hinkley (1978) where they argue that the observed information matrix is

preferable to the expected since it better approximates the variance of the conditional distribution of the

maximum likelihood estimate. Further they show that a function of the observed information matrix is

an asymptotic ancillary, and so in general it is possible to recover the information that the Hessian con-

tains by conditioning. The relationship between the conditional distribution of the maximum likelihood

estimate and the likelihood function is also a key part of Barndor�-Nielsen's very powerful p�-formula

which has been shown to have wide applicability in many classes of families, see Barndor�-Neilsen (1988)

and Barndor�-Neilsen and Cox (1994). Reparameterising the parameter space according to the shape of

the log-likelihood function, using so called directed likelihood, has been shown to be a very e�ective tool in

classical and Bayesian analysis, see Sweeting (1996) and the references therein. In particular, quantities

based on directed likelihood are automatically conditional on any second order ancillary. Good references

for conditional inference and the role of ancillary statistics is Reid (1995?) and Cox and Hinkley (1974).

In the example of Section 2.2 there are in fact a number of exact ancillary statistics which give direct

information about the shape and support of the likelihood function. For example, suppose we wished to

conduct inference conditionally on the fact that the observed log-likelihood function had no upper end

point, i.e. that its support is of the form (�a;1). It is easy to see that this happens if and only if m,

the minimum observed data point, is positive. The probability of this event happening is given by

Pr(m > 0; �) = Pr(z > 0; �)n = f1�G(0; 0; 1; �)gn = f1� exp(�1)gn

which is independent of �. Hence the sign of m is an exact ancillary statistic. The conditionality principle,

Cox and Hinkley (1974), indicates that we should therefore conduct inference conditionally on this fact.

Alternatively it is clear that the proportion of negative observations within the sample is also an exact

ancillary statistic. While these ancillary statistics have only academic interest since there is no direct

extension to the unrestricted case of � and � unknown, they do motivate the proposed ancillary in the

next section.
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2.4 A class of approximate ancillaries

We return now to the general case of inference in the GEV distribution when all three parameters �; �

and � are unknown. The above exact ancillaries do not extend to this family in an immediate way.

Therefore we look for a class of approximate or asymptotic ancillary statistics in order to capture the

information in the shape of the likelihood function. As noted in Section 2.3, asymptotic ancillaries

are frequently constructed from the higher derivatives of the likelihood function around the maximum

likelihood estimate. However as Figure ?? and simulation experiments show, the GEV log-likelihood

function is frequently not well approximated by polynomial families due to its compact support. In

particular it is often very far from being approximately parabolic, and so the information given by the

Hessian is not the appropriate information for inference.

Informal analysis of the simulated samples reveals that the position or con�guration of the points relative

to �̂, the MLE of �, contains information about the shape of the likelihood function. This suggests that

if the data are transformed onto a common scale, then the position of the observed points will provide

the basis for an informative ancillary statistic. Speci�cally our interest will be the region of support of

the likelihood function.

Denoting the order statistics by Z(r) : r = 1; : : : ; n, we examine the r-dimensional statistic

fF (z(r); �̂; �̂; �̂); r = 1; : : : ; ng;

i.e. the order statistics transformed through the �tted GEV distribution. Transforming the data points

z by their true distribution function F (z;�; �; �) will give the order statistics of a U(0; 1) distribution,

which is clearly independent of �; � and �. Hence we might expect fF (z(r); �̂; �̂; �̂); r = 1; : : : ; ng to be

approximately independent of �; � and � and hence approximately ancillary.

Theorem 1 De�ne

Wr = F (z(r); �̂; �̂; �̂);

r = 1; : : : ; n, where z(r) is the rth smallest order statistic. Then the statistic (W1;Wn) is a second order

ancillary statistic for the parameters (�; �; �).

Proof: See Appendix B.

:

Lemma 2 shows that information not contained in the maximum likelihood estimate can be recovered, at

least partially, by using the information contained in the approximate ancillary statistic (W1;Wn).

Lemma 2 The statistic (W1;Wn) together with the maximum likelihood estimate determines the support

of the likelihood function.

Proof: The log-likelihood is given by

nX
i=1

f� log(�)� (1 + 1=�) log[1 + �(
zi � �

�
)]� [1 + �(

zi � �

�
)]�1 g

which has support over those (�; �; �) for which for each i = 1; : : : ; n

�(
zi � �

�
) > �1:
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The solution space to these linear constraints is completely determined bym = min(zi) andM = max(zi),

i = 1; : : : ; n. Clearly, m and M can be determined by the statistic (�̂; �̂; �̂;W1;Wn) since

m = F�1(W (1); �̂; �̂; �̂);M = F�1(W (n); �̂; �̂; �̂):

QED

These two results show that by recording (W1;Wn) together with the maximum likelihood estimate

the support of the likelihood function may be determined. By conditioning on these approximately

ancillary statistics it may be possible to recover this information in inference. In Section 3 we investigate

conditioning for sample sizes typical of practical applications.

2.5 Goodness of �t

An alternative use of fW1; : : : ;Wng is to construct measures of goodness of �t. The Moran goodness of �t

statistic, (Cox and Hinkley, 1974), compares the �tted and empirical probability distribution functions,

and in particular it uses a summary statistic to investigate how close the (W1; : : : ;Wn) is to the order

statistics of a uniform distribution. Our method which focuses on (W1;Wn), has a similar interpretation

and assesses how well the estimated distribution �ts in the tails. Hence Wn being abnormally small,

for example, would indicate that the �tted model has a much heavier tail than would be expected.

Conditional inference is able to exploit this information.

The main reason that standard asymptotic normality results break down for the GEV, according to

Cheng and Iles (1987), is that the likelihood, constructed as the product of densities, can be misleading

as a measure of the probability of observing an event. In particular since the density function can have

a very large maximum for some parameter values, observations near this maximum can dominate the

�tting process. There is therefore information in the statistic

(W1; : : : ;Wn)

regarding the uniformity of �t on all the observations, especially those in the tail. It is this information

which we exploit by conditioning.

2.6 The ancillary a.

The previous section notes that W1 measures the goodness of �t in the lower tail, and Wn in the upper.

In order to have reliable inference we require a good �t in both tails. We therefore concentrate, by using

Theorem 3, on a single statistic which captures both properties.

Theorem 3 The statistic

a = maxfW1; 1�Wng;
is second order ancillary.

Proof: See Appendix B.

:
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We note that W1 being abnormally large, or Wn small, indicates a poor �t in one of the tails. Hence if

a is abnormally large we can infer a poor �t in one or both tails.

3 Simulation study

In this section we use simulation to evaluate the properties of the proposed asymptotic ancillary for

sample sizes which we regard as typical and important for practical extreme value analysis.

3.1 Estimation

For some samples, especially when n is small (less than 15) and j�j > 0:5, the standard maximum

likelihood estimate does not exist because the likelihood sometimes tends to in�nity as the boundary of

support of the likelihood approaches the largest (or smallest) observation. In this case a singularity occurs

which may lead to poor estimation for other parameters. The poor performance of maximum likelihood

in non-regular situations such as this is well known. See Smith (1985) and Cheng and Illes (1987).

Cheng and Illes (1987) suggest that this problem may be solved by allowing for the inherent discreteness

of real data that occurs due to �nite accuracy recording. They maximise the product

nY
i=1

[G(zi + h; �)�G(zi � h; �)]

rather than the usual product of densities. Here h is a small number determined by the accuracy of the

recorded data. Harter and Moore (1966), Cheng and Iles (1987) and Smith (1985 and 1990) suggest that

when the usual MLE is not obtainable, the maximum (or minimum as appropriate) observation may be

used as an estimate of the endpoint of the distribution, � say. The other parameters are then found by

maximum likelihood estimation based on the remaining observations.

To ensure robust numerical procedures we adopt a similar approach to that of the above authors. Max-

imisations are achieved using a quasi-Newton optimisation routine (A fortran algorithm, NAG(1997)

E04JAF).

3.2 Ancillarity

Before describing the simulation results, we note that since � and � simply correspond to location and

scale transformations in the data, our main interest is in the e�ect of conditioning on estimation of the

shape parameter �. We hence have � = 0 and � = 1 in all simulations. For each simulated sample of size

n, we obtain an estimate �̂ of � as described above and the corresponding ancillary W = (W1;Wn) given

by

Wr = F (z(r); �̂; �̂; �̂); r = 1; n:

From this we calculate

a = maxfW1; 1�Wng:
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3.2.1 Asymptotic ancillarity of a

We now examine the approximate independence of the distribution of a on � for various values of n and

�. Figure 2 illustrates the distribution of a for parameter values � = �0:4; 0:0; 0:4; 0:8 and for n = 10. We

illustrate with a kernel density plot and boxplots. There is some small dependence on � at this sample

size. However Figure 3 shows the same information for sample size 20. Even at this small sample size we

see that the asymptotic approximation is a good one.
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Figure 2: The dependence of a on �: Sample size 10

3.3 The e�ects of conditioning on a.

We now see, again in a simulation study, exactly what is the e�ect of conditioning on the ancillary

statistic a. Recall that the previous theory predicts that we would expect a good �t if a is not too large.

Further we would predict that maximum likelihood estimation will be reliable when we have this good �t.

Conversely when there is a poor �t in the tails the reliability of the estimate should be open to question.

This view is consistent with the traditional view of an ancillary in that it measures the quality of the

estimate, in particular the size of the standard error.

Figure 4 shows, for sample size n = 15 and � = 0:4, the relationship between a and �̂. The top panel is

a scatterplot of �̂ and a. The vertical line corresponds to the � = 0:4, its true value, and the horizontal

line corresponds to a = 0:06 which we are using as the conditioning threshold.

Below a = 0:06 we see that the estimates of � lie in the range (�0:5; 1:3) however above this value the
variation of �̂ is much larger and includes values well above and well below the true value. This point is

further illustrated in the lower panel where we show density plots of the unconditional distribution of �̂

and its distribution conditional on a < 0:06 (the dot-dashed line) and on a > 0:06 (the dotted line). The

vertical line is again � = 0:4 the true value.
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Figure 4: The e�ect of conditioning: Sample size 15

We immediately see that the previous predictions are con�rmed. If a is small enough and we condition

on the ancillary we have much tighter con�dence intervals and we exclude the very heavy tailed, or very

short tailed estimates. Indeed for the large a values we have a bimodal density function for the conditional
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distribution.

3.4 Discussion of study

As has already been noted, there is a long standing question in extreme value applications about which

method, if any, is optimal for estimating the GEV parameters from data. Although Smith (1985) proved

that maximum likelihood is asymptotically optimal in the usual sense when � > �0:5, Hosking et al

(1985) showed by simulation that, for small samples and when the shape parameter is close to zero,

maximum likelihood performs very poorly in terms of mean bias and mean squared error. They also

suggested that of the alternatives, the method of probability weighted moments was the best competitor.

Coles and Dixon (1998) extended this study, and found that underlying the superior performance of the

PWM estimator is the assumption that � < 1. While this may be plausible in much practical work it

does place the comparison of the PWM and maximum likelihood estimation on a di�erent footing. In

particular the distribution of the maximum likelihood estimate has support which includes values � > 1.

The simulations suggest that comparisons based on unconditional inference are misleading. Note that,

for example in Figure 4 it is seen that values of � > 1 rarely occur conditionally on a < 0:6. As noted

by Coles and Dixon (1997), which method is optimal depends on speci�c features of the analysis such as

the loss function and the prior beliefs about the value of �. It is important to realise that the very large

estimated values which can occur with large a can be very important in applications. We discuss this

issue in more detail in Section 4.3. Practical issues are considered in the next section.

4 Applications

Before considering the application of our methods to speci�c data sets, we outline the motivation behind

using, and the existing implementation of, the GEV in applications. The underlying result of extreme

value theory is the extremal types theorem. In summary, the extremal types theorem tells us that the

distribution of the maximum of a sequence of random variables, subject to suitable, broad conditions,

will be (approximately) a member of the GEV family. The approximation will generally improve as the

number of variables from which the maximum is taken is increased. (See Leadbetter et al or Ries at

al?? for details). This theory can be directly applied by �tting the GEV to a data set consisting of

observations that are derived by taking the maximum of a sequence of values over a suitably long period.

Having obtained a suitable data set, the next step is to estimate the GEV parameters. A brief review of

current applications suggests that the main competitors are maximum likelihood and probability weighted

moments. Thus a pragmatic approach is to initially apply each of these methods and compare the results.

If the estimates do not agree, it is not clear how one should proceed. The current advice would seem

to be that unless the MLE is preferred for other reasons, the PWM estimates are preferable due to the

heavy tails of the MLE estimator noted in Section ?.

This (unconditional inference) approach, and the application of our conditioning ideas, are now illustrated

using 3 data sets, two UK maximum sea-level data sets and one insurance claims data set.
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4.1 Sea-level data

The �rst two data sets consists of annual maximum sea-level data from North Shields and Rye, two UK

coastal sites. Details of these data are given in Gra� (1981) and Coles and Tawn (1990). For illustration,

we ignore the possibility of jointly modelling the data from neighbouring sites, and at each site, the aim

of the analysis is to provide estimates of high quantiles of the �tted distribution in order to assess the

required design height of a sea-wall. In the oceanographic literature these are usually referred to as return

levels. In particular, we will concentrate on estimating the 100 year return level which corresponds to

the 0.01 upper quantile of the distribution of the annual maximum sea-level. Figure ?? shows these data

plotted against time: there are 35 and 17 data points at North Shields and Rye respectively. Antnee
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Figure 5: Plot and histograms of sea-level and insurance data sets. (a). |{, and - - - - are annual

maximum sea-levels from North shields and Rye respectively. (b) and (c): histograms of annual maximum

sea-levels from North shields and Rye respectively. (d) Histogram of the insurance data.

can you check in the book, and see if it is dollars or what?

4.2 Insurance data

This data set contains 3-yearly maxima insurance claims globally from 1963 to 1992, standardised to

account for ination. The data are obtained from Embrechts, Klupperberg and Mikosch (1997) who

consider various extreme value analyses of them. The motivation for analysis of these data is to aid the

setting of premiums for reinsurance companies. As with the sea-level application, it is the high quantiles

of the �tted annual maximum distribution that are of interest. Figure ??d shows an histogram of these

data. Note that the data are heavily skewed to the right.
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4.3 Data analyses

Table ?? summarises the results from �tting the GEV to the three data sets using both ML and PWM

estimation.

Data set MLE (ẑ0:01) PWM (~z0:01) Ancillary Unconditional Conditional

North Shields 4.90m 3.87m 0.07 3.87m 3.87m

Rye 5.08m 5.32m 0.020 5.32m 5.08m

Insurance data $5.61million $2.58million 0.04 3.87 5.61

Table 1: GEV �ts at the three data sites. The second and third column ẑp, and ~zp represent

the 0.01 upper quantile of the GEV �tted by MLE and PWM respectively. The Unconditioanl

columns shows the concluions that would be drawn based on the MLE unless the PWM has a

substantially lower � value, in which case the PWM is used. The conditional column uses the

MLE unless the ancillary is above 0.06.

For North Sheilds it is clear from the ancillary value that the MLE is likely to be heavily biased, and that

we should use the PWM value of 3.87m as opposed to the value 4.9m. In fact this is supported by the

spatial analyses, using additional information from neighbouring sites, of Dixon Tawn and Vassie (1998).

Although the �nal conclusion is the same as in the unconditional procedure, we have now identi�ed the

MLE as being poor.

For Rye, the MLE and PWM estimates of � are 0.11 and -0.10 respectively. In this case, may well go

for PWM, due to heavy positive bias of MLE. In fact using simulation, we can produce the sampling

distribution of each estimator both unconditionally, and conditionally on the ancillary observed. The

results are summarised in Table ??.

Statistic MLE uncon PWM uncon MLE Cond on a = 0:02 PWM Cond on a = 0:02

RMB 0.16 0.04 -0.03 0.07

Table 2:

These results suggest the use of the MLE in this case. Thus the conditioning has provided a di�erent

estimate, in this case, 30cm lower than previously.

Of these three data examples, it is the insurance data that best illustrates the importance of our con-

ditioning. The ancillary value of 0.04 tells us that we expect no large biases in the MLE. In fact, in

cases where the true � is close to or greater than 1, Dixon and Coles (1998) have shown that the PWM

substantially underestimates � and hence high quantiles of the �tted GEV. Thus it is likely that previ-

ous conclusions, under the unconditional framework, underestimate the claim quantile by $2.3m. Our

conditioning has corrected this problem.
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4.4 Applications discussion

There are then two issues outstanding for applications. Firstly what value of a indicates reliability for a

given sample size? Secondly what should the procedure be when the ancillary implies that the maximum

likelihood estimate may be unreliable?

The �rst of these issues is complicated by the question of what the e�ect of a large bias in the estimation

would have on the application in question. We have concentrated in this paper on the error measured on

the scale of �. In fact for many applications this scale can seriously underestimate the e�ects of a poor

estimate. For example it may well be that return values are of primary interest. In which case the large

estimates of � observed in our simulation study with large a correspond to very heavy tails and extremely

large return values. In this case the results of conditioning are even more important.

Inspection of Figure 4 indicates that there is perhaps a qualitative change in behaviour at the value

a = 0:06. Extensive simulations and inspections of similar plots indicates that similar changes occur for

the following values of a at the sample sizes.

Critical Value Sample Size Proportion above threshold

0.09 10 0.2

0.06 15 0.2

0.06 20 0.1

0.06 50 � 0.01

We also include in the above table the proportion of samples which have fallen above the threshold. As

would be expected as the sample size increases di�erences between conditional and unconditional inference

disappear, as almost all samples will fall below the threshold. The threshold in our simulations (0:06) is

fairly robust to changes in sample size, hence might be a sensible bench mark to use in applications.

The second question is of course harder to answer. If we observed a value of the ancillary which indicates

that there may be high bias in the estimate we can of course resort to other estimation methods, as

discussed above. The main message we think that this analysis has given is that the maximum likelihood

estimate in this case should not be taken at its face value, and more detailed modelling an analysis must

be required.

Acknowledgements

The authors would like to thank T. Sweeting, M. Crowder, A. Kimber and J. Tawn for helpful advice

while preparing this paper.

Appendix A

The data set used in Section 2.2 is:

f-1.25883676, -0.61013271, -0.53189307, -0.47713044, -0.28058898, -0.22787223, -0.16460202, -0.13072007,
0.01507085, 0.07008835, 0.07998088, 0.75858182, 1.59335496, 1.62750011, 1.95151275, 2.32614352, 2.95821996,

3.27915414, 3.86269522, 4.26005164. g
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Appendix B

Proof of second order ancillarity

Let the CDF for x be F (x), let the log-likelihood function be `(�; (x1; : : : ; xn)). Assume we have observed

data (x1; : : : ; xn), let �̂ be the maximum likelihood estimate for the full data, and let �̂[i] be the maximum

likelihood estimate for the dataset excluding the sample xi.

We use the following standard result

Lemma If the Fisher information is �nite and non-zero we have that

�̂ � �̂[i] = Op(
1

n
)

Proof. Elementary.

:

We want to investigate the statistic F^(xi) so consider the probability

Pr(F^(xi) < u) = Pr(F
[̂i]

(xi) +Op(
1

n
) < u)

= Pr(F
[̂i]

(xi) < u) +O(
1

n
) (4.1)

assuming the smoothness of the F (x; �) as both functions of x and � and using the lemma above.

Further, by conditioning we have

Pr(F
[̂i]

(xi) < u) =

Z
Pr(F

[̂i]
(xi) < uj�̂[i])p (�̂[i])d�̂[i] (4.2)

where p (�̂[i]) is the density of �̂[i] under �. Note that �̂[i] is a function of (x1; : : : ; xi�1; xi+1; : : : ; xn) and

hence is independent of xi.

Combining equations (??) and (??) we have

Pr(F^(x) < u) +Op(
1

n
) =

Z
Pr(xi < F�1

[̂i]
(u)j�̂[i])p (�̂[i])d�̂[i]

=

Z
F (F�1

[̂i]

(u))p (�̂[i])d�̂[i] (4.3)

Since Pr(x1 < yjy; �) = F (y) if x1 is independent of y.

Consider then the integrand

F (F�1

[̂i]
(u)) := F (G

[̂i]
(u));

say.

Expand G
[̂i]

(u) around � and using the fact that �̂[i] � � = Op(1=
p
n� 1). This gives

F [G
[̂i]

(u)] = F [G (u) + (�̂[i] � �)
@G

@�
(u) +O(

1

n
)]
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Taylor expanding F (x) now with respect to x around G (u) gives

F [G
[̂i]

(u)] = F [G (u)] + (�̂[i] � �)
@G

@�
(u)

@F

@x
[G (u)] +Op(

1

n
)

= u+ (�̂[i] � �)
@G

@�
(u)

@F

@x
[G (u)] +Op(

1

n
)

Now, substituting into the integral in equation (??) and again assuming the asymptotic unbiasedness of

�̂[i] gives

Pr(F^(x) < u) =

Z �
u+ (�̂[i] � �)

@G

@�
(u)

@F

@x
(G (u)) +Op(

1

n
)

�
p (�̂[i])d�̂[i] +Op(

1

n
)

= u+Op(
1

n
)

Hence this statistic is at least second order ancillary. :

To �nish the proof of Theorem 1 we note that to the correct order the statistics

F^(xi); F^(xj)

for i 6= j, are independent. Hence their joint distribution will be ancillary to the correct asymptotic

order.

It then follows by standard arguments that the distribution of the order statistics of any ntple will be

ancillary to the required order. This completes the proof of Theorem 1.

Theorem 3 follows immediately by standard properties of order statistics.
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