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Abstract

We develop a measure of time series predictability and apply it
to evaluate alternative parametric models' out-of-sample perfor-
mance. Predictability is a nonlinear statistic of a forecasting
model's relative expected losses at two di�erent forecast hori-
zons which allows 
exible choice of both the estimation and loss
function speci�cations. AR-GARCH models are �tted to daily
exchange rate returns, and bootstrap inference is used to assess
the data's predictability under mean squared error (MSE) loss.
We compute daily predictability point estimates and con�dence
intervals for the dollar exchange rate returns of the deutschemark,
pound sterling and the yen. By comparing the data's predictabil-
ity using the �tted models to that using a random walk under
MSE loss, we �nd that all three exchange rate returns are less
predictable using AR-GARCH. The results also suggest that the
pound's actual returns are relatively more predictable than the
other time series.
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1 Introduction

At what forecast horizon is one time series more predictable than another
using a given model? Alternatively, how much more (or less) predictable
is a given time series when modeled using an estimated model rather than
a random walk? These questions have attracted little attention despite the
importance attached to assessing the forecast accuracy of di�erent models.
Recently, researchers are acknowledging that data predictability cannot be
de�ned independently of the forecasting model used, as well as the loss func-
tion employed for forecast evaluation. However, conditional upon a particular
model and loss function speci�cation, data predictability can be assessed at
various horizons of interest.2 Therefore, the need arises for procedures esti-
mating predictability so that comparisons of it can be made across datasets,
as well as di�erent estimation procedures and forecast loss functions.

The k-step-ahead predictability of covariance-stationary time series was
de�ned by Granger and Newbold (1986) and Beran (1994) as a relative mea-
sure of forecast accuracy: it is the proportion of the unobservable uncondi-
tional variance explained by the mean squared error of a k-step ahead condi-
tional forecast. Diebold and Kilian (1997) generalized this notion and de�ned
relative predictability as inversely related to the ratio of the expected losses
of conditionally optimal linear forecasts at short and long forecast horizons.

In contrast to Granger and Newbold's absolute predictability de�nition,
the Diebold-Kilian measure has the advantage that the benchmark level of
forecast accuracy which is an input to the process is directly observable.
The choice of horizons is 
exible, with the long horizon corresponding to the
benchmark level of forecast accuracy. Moreover, the loss function used for
forecast evaluation can be quite general and determined by the application at
hand.3 Diebold-Kilian computed predictability con�dence intervals by �tting
AR models to U.S. macro data and evaluating expected losses according to
mean squared error loss. Because of the nonlinearity of the predictability

2See Diebold and Kilian (1997), Diebold (1998) and Rothemberg and Woodford (1996).
3The de�nition is also asymptotically valid for covariance nonstationary time series.
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statistic, bootstrap methods were used to obtain the con�dence intervals.4

This paper extends the Diebold-Kilian framework to evaluate the forecast-
ing performance of alternative parametric exchange rate models according to
MSE. We compute bias-corrected predictability con�dence intervals for daily
returns of the British pound, Japanese yen and German mark's exchange
rates against the US dollar. Our motivation for using the predictability
statistic is the failure of most parametric and nonparametric models of ex-
change rate returns to outperform the random walk at high frequencies.5

Because it is de�ned as a ratio, predictability is a relative statistic, circum-
venting the stylized failure of forecasting models by comparing the evolution
of their out-of-sample expected loss.

The (j; k)-step-ahead predictability P (L;
; j; k) of exchange rate returns
is computed by �xing the long forecast horizon k to one month-ahead (22
days) and varying the short forecast horizon j from 1 to 21 days. This is done
by means of the following procedures. First, an AR-GARCH model is �tted
to in-sample returns data (N � 22) using standard Box-Jenkins methodol-
ogy. The mean equation follows a simple autoregressive process, and the
conditional variance equation is modeled using a GARCH(1,1) speci�cation.
The chosen model for each exchange rate is then used to generate condi-
tionally optimal linear forecasts of the true data for the out-of-sample range:
1 � j � 21; k = 22. These are the "true forecasts" from the selected model.
By comparing the true forecasts to the last 22 out-of-sample observations we
compute the "true", or baseline, value of the predictability statistic. The lat-
ter is required for the construction of bias-corrected predictability con�dence
intervals.

4The bootstrap has the advantage of being nonparametric; moreover, bootstrap statis-

tics can be estimated consistently using least squares, provided the model residuals used

for resampling are iid. Detailed treatments of bootstrapping include Efron and Tibshirani,

(1986,1993), Hall (1992) and Hall and Horowitz (1996).
5On structural models's worse out-of-sample performance against a random walk using

MSE see Meese and Rogo� (1983) and Berkowitz and Giorgianni (1997). For time series

models see Brooks (1997), Diebold and Nason (1990) and Satchell and Timmermann

(1995).
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In the second procedure, we generate 500 bootstrap replications of the
true data, using block resampling with replacement from the "true" errors
from the �tted model. We then evaluate the predictability statistic for each
replication under MSE loss and compute the 95% bias-corrected (BC) con-
�dence intervals. After resampling b = 1; :::; B times, each resampled error
vector is used to generate a pseudo-data vector by applying it to the estimated
coe�cients for the true data. Estimation is carried out on each pseudo-data
vector, using the same lag structure as for the true data. Each of the result-
ing B pseudo-models can then be used to construct pseudo-forecasts of the
out-of-sample period of length 22. The value of bPb(j; k) for each bootstrap
replication is obtained by evaluating its pseudo-forecast vector against the
corresponding pseudo-data vector at all short (j) forecast horizons according
to MSE. Finally, we compute the bPb(j; k)'s for all B bootstrap replications
and obtain mean predictability point estimates and bias-corrected (BC) boot-
strap con�dence intervals.

There are two main �ndings. First, all 3 exchange rate returns are more
predictable under MSE loss when using a random walk than when using
the chosen AR-GARCH model for all intra-month forecast horizons. Such a
comparison is feasible because forecasting returns using a random walk under
MSE display a linearly declining predictability pattern. This can be directly
compared to that obtained when a di�erent model is used to forecast the
data, thus making the random walk a convenient benchmark of forecasting
models' out-of-sample performance.

Second, examining the variation of returns predictability with the forecast
horizon, we �nd that $/$ exchange rate returns have the higher predictability
across intra-month forecast horizons, while the DM/$ return has the lower
predictability. However, the 95% con�dence intervals for the predictability
of DM/$ and yen/$ returns are both narrower than that of $/$. Given
the explanatory power of the respective time series models, the economic
intuition for the relatively higher predictability of $/$ returns may have to
do with the historical "coupled" relationship between the pound and the
dollar.

The remainder of the paper is arranged as follows. In section 2 relative
predictability is de�ned and its key properties reviewed. The exchange rate
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data along with their statistical properties and estimated models are pre-
sented in section 3. Section 4 develops the bootstrap technique for comput-
ing relative predictability and discusses bias-corrected con�dence intervals.
Section 5 presents the results and their implications for daily exchange rate
forecasting under mean square error loss. Section 6 concludes.

2 A review of predictability measures

Granger and Newbold (1986) and Beran (1994) de�ne the predictability of
univariate covariance stationary processes under MSE loss by analogy to the
OLS formula for R2:

G(j; k) =
var(byt+j;t)

var(yt+j)
= 1�

var(et+j;t)

var(yt+j)
(1)

where byt+j;t is the optimal linear (conditional mean) j-step-ahead forecast
of yt and et+j;t = yt+j � byt+j;t is the associated forecast error. G(j; k) may
be thought of as an absolute predictability measure, to the extent that the
unconditional variance in the denominator is unobservable.

Diebold and Kilian (1997)|henceforth DK|extend this de�nition to co-
variance nonstationary and possibly multivariate time series processes under
general loss functions. In line with the intuition of Granger and Newbold,
the predictability of process yt is inversely related to the ratio of the condi-
tionally expected loss of an optimal short-run forecast, E(L(et+j;t)), to that
of an optimal long-run forecast, E(L(et+k;t)), where j < k. Intuitively, if
E(L(et+j;t)) < E(L(et+k;t)) then the process is more predictable at horizon j
relative to horizon k. In contrast, if E(L(et+j;t)) ' E(L(et+k;t)) the process
is almost equally predictable at horizon j relative to k; i.e. it is relatively
unpredictable. DK thus de�ne the predictability Pt(j; k; L;
) (j < k) of yt
to be:

Pt(L;
t; j; k) = 1�
Et(L(et+j;t))

Et(L(et+k;t))
(2)

where the information set 
t can be either univariate or multivariate and yt
can be either stationary or nonstationary. The choice of horizons j and k is

exible provided k <1.
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An equivalent form of (2) uses the ratio of the expected forecast losses
for period t made in periods t� j and t� k in the past:

Pt(L;
t; j; k) = 1�
Et�j(L(et;t�j))

Et�k(L(et;t�k))
(3)

Equation (3) relates the accuracy of a few steps ahead (j ) vs. more steps
ahead (k) forecasts of yt to the parameters in
uencing predictability. In the
context of univariate AR(1) processes, yt = �1yt�1 + ut, the j-step-ahead
predictability of a white noise process (�1 = 0) will be zero for all j, as short-
run and long-run forecasts are equal. In contrast, the relative predictability
of a random walk process (�1 = 1) is linearly declining in the short-run
forecast horizon: Pt(j; k) = 1� j=k: Relations (2)-(3) imply that the bounds
of the Pt statistic for any time series are Pt(L;
t; j; k) 2 (�1; 1], with larger
values indicating higher relative predictability. For covariance stationary
data, comparing predictability at two short term horizons j1 and j2 with
j1 < j2, the information set used for j2-steps-ahead forecasts is likely to be
poorer than that j1-steps-ahead, so we expect predictability to decline as we
compare forecasts further into the future.6

In this paper we focus on univariate information sets and quadratic (mean
squared error) loss.7 For univariate information set 
t under MSE loss we
may write Pt(L;
t; j; k) = Pt(j; k). Let N is the total number of observa-
tions, of which N � k are reserved for estimation and k for out-of-sample
forecast evaluation. The expected mean square error of j steps-ahead fore-
casts then is:

Et(L(et+j;t)) =MSEj =
1

j

N�k+jX
i=N�k+1

(yt+i � byt+i;t)
2 (4)

where the value of the time series at time t is yt, and the conditionally optimal
i-step ahead forecast of y made in period t is byt+i;t = Et(yt+i j 
t). Finally,

6For covariance stationary processes it can be shown that 0 < Pt(L;
; j; k) < 1, re-


ecting increased uncertainty over more distant forecasts. However, the predictability of

covariance nonstationary series can also be negative, re
ecting the fact that short-term

expected losses may exceed the long-term ones.
7In general, however, the loss function need not be restricted to the quadratic speci�ca-

tion. For the theory and applications of general|nonquadratic and/or asymmetric|loss

functions see Diebold and Mariano (1995) and Christo�ersen and Diebold (1996, 1997).
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the Wold representation of covariance stationary series yt is:

yt =
1X
i=0

ci"t�i ; c0 = 1

implying that the n step-ahead conditional forecast variance|the n-steps-
ahead MSE loss|is increasing in n:

@

@n
Et(byt;t+n � yt+n)

2 > 0 ,

as all covariance terms are zero because " is iid white noise. Therefore, �xing
the long horizon at k and increasing the short term j = n lowers relative
predictability Pt(j; k) under MSE, in line with the intuitive notion of forecast
uncertainty increasing over time for covariance stationary series.8

3 The data

The univariate information set 
t for computing Pt(L(�);
t; j; k) consists of
daily spot exchange rates for the British pound (GBP), German mark (DM)
and Japanese yen (JPY) against the US dollar for the period from January
1, 1988 to April 7, 1998. Transforming spots into log returns to account
for nonstationarity in the levels yields N =2,678 observations. Tables 1-3

present summary statistics for exchange rate returns and the properties of the
�tted models. Panels A summarize the distributional properties of returns.
All ADF tests indicate stationarity. The in-sample returns variance is much
larger than the mean, and their skewness is close to zero. Returns are strongly
leptokurtic, thus strongly rejecting normality. The Ljung-Box Qx statistic
is not signi�cant at 20 lags for JPY and DM, but it is signi�cant for GBP.
Panels B report the selected AR-GARCH model �tted to each returns time
series. For each model, the autoregressive lag order is determined using the
Akaike and Schwartz information criteria (AIC and SIC). SIC penalizes an
overspeci�ed lag structure, so it is less likely to overestimate the required lags
than the AIC. However, selecting a larger number of lags yields more variable
forecasts, i.e. ones which take more time to converge to the conditional mean.

8This is not true of any loss functional form. For example, under mean absolute

percentage error (MAPE) loss, increasing the short horizon need not imply a lower P (j; k).
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The chosen AR orders thus vary from 5 to 11. The explanatory power is
very low, peaking at just 0.01 for BP. A GARCH(1,1) speci�cation is always
preferred with no MA structure in the errors for GBP/$ and DM/$, and an
ARMA(1,1) structure for the errors of JPY/$ returns.

The standard set of diagnostics suggest that the errors from the GARCH
models are uncorrelated both in the levels and squares. However, there
is strong evidence of nonlinear dependence in daily exchange rate returns
working through the conditional mean and higher moments, hence the iid
requirement is rejected.9 This implies that estimation procedures have resid-
uals which are not iid, thus yielding inconsistent parameter estimates. The
issue of bootstrap resampling from the true errors using a block index thus
becomes important. As bootstrap replications are drawn with replacement
from an empirical distribution of true errors which in general are not iid,
we apply the �xed block resampling method of K�unsch (1989) so that the
bootstrap replicate blocks are asymptotically iid.

4 Predictability estimates and con�dence in-

tervals

Predictability estimation using the bootstrap is based on the following two
procedures:

I. Computing the baseline predictability statistic: we �t an AR-
GARCH model to in-sample returns observations (N � 22) using standard
Box-Jenkins methodology, and use the chosen model to generate condition-
ally optimal linear forecasts of the true data for the out-of-sample range:
1 � j � 21; k = 22. These "true forecasts" from the selected model are then
compared against the last 22 out-of-sample observations, and the "true", or
baseline, value of the predictability statistic is computed. This baseline value

9Hsieh (1989) and Brock, Hsieh and LeBaron (1993) document nonlinear dependence

in various daily exchange rates. Ding, Granger and Engle (1993), Granger and Ding

(1995,1996) and Mills (1996) show that power transformations of absolute returns display

much longer memory than actual returns for a variety of daily �nancial time series.
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is calculated for each of the 22 out-of-sample horizons, and is required for
the construction of bias-corrected predictability con�dence intervals.10

II. The bootstrap methodology follows the 5-step procedure of Freed-
man and Peters (1985):

(1) As described in section 2, we use constrained maximum likelihood
estimation to �t AR-GARCH models to all N observations, with the selected
order of the AR-GARCH models denoted as p(b�). The chosen models used
to compute the corresponding �tted values of yt for all t = p(b�) + 1; :::; N
are given by byt = � +

Pp
i=1 b�iyt�i + et. All observations are used in order

to construct pseudo-data vectors in the following steps based on N � p(b�)
errors.

(2) For each �tted model, the true in-sample error vector be ((N � p)� 1)
is the di�erence between the true vector y and its conditional �tted values:
be= y � by. The empirical distribution of be is then resampled B times with
replacement, yielding b = 1; :::; B bootstrap replicate error vectors eb. We
use B = 500 replications throughout. As discussed above, applying the block
resampling technique of K�unsch (1989) yields asymptotically iid bootstrap
replications. Each true residual vector is partitioned into 25 blocks and
resampling is with replacement from the block index. The intuition here
is that choosing a very large number of blocks would destroy any residual
autocorrelation existing in the true data, so a moderate number is better
suited.11

(3) Each bootstrap error vector is used to construct a pseudo-data vector
yb of dimension N � p using the true data coe�cients (b�) for each given
model. In this way we construct a total b = 1; :::; B pseudo-data vectors. The
components of each are given by ybt = � +

Pp
i=1
b�iy

b
t�i + ebt , t = p + 1; :::; N .

Each pseudo-data vector is evaluated recursively, with the �rst p observations
corresponding to the true returns data. These initial values should not a�ect
the pseudo-data distribution for large sample sizes.

10Efron and Tibshirani (1993).
11See K�unsch (1989) and Aczel and Josephy (1992). An extension to the paper involves

applying the stationary bootstrap of Politis and Romano (1994), which deals with error

autocorrelation using a variable block length.
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(4) From the total N � p pseudo-sample returns observations, N � k� p
are reserved for in-sample estimation, and the last k = 22 are used for out-
of-sample forecast evaluation. The estimation of step (1) is then repeated
for each pseudo-data vector (b = 1; :::; B), using the �rst (N � k � p) ob-
servations. The AR-GARCH coe�cient vector (�b) is estimated as ybt =
�b +

Pp
i=1 �

b
iy

b
t�i + e�bt , while the remaining k values are the "true" pseudo-

data for each bootstrap.12

(5) For each pseudo-data vector, we generate k = 22 pseudo-forecasts, i.e.
arti�cial predictions for the j = 1; :::; k out-of-sample horizons of interest.
The forecasts are given by y�bt+j = �b+

Pp
i=1 �

b
iy
�b
t+j�i+ e�bt+j, with e

�b
t+j = 0 for

all j, with all future errors set to their conditional expectation of zero.

The expected MSE loss at horizon j is then just:

MSEj =
1

j

N�pX
t=N�k�p+j

(ybt+j � y�bt+j;t)
2

Relative predictability bP (j; k) is obtained by computing 1 minus the ratio of
expected losses at di�erent horizons j and k for each pseudo-data vector and
averaging the outcome over all B bootstrap replications:

bP (j; k) = 1�
Et(L(e

b
t+j;t))

Et(L(ebt+k;t))
= 1�

MSEj

MSEk

(5)

Standard bootstrap percentile con�dence intervals for the predictability
statistic can be constructed directly from the percentiles of the bootstrap
distribution. However, they are not reported because they are very wide for
all three exchange rates. Normal or studentized con�dence intervals are also
not reported pending results on the asymptotic normality of bP .

Efron and Tibshirani's (1993) bias-corrected (BC ) con�dence intervals
adjust the endpoints of the bootstrap percentile con�dence intervals to cor-
rect for possible bias in the bootstrap statistics. This is done by comparing
them to the baseline value of predictability, which serves as a benchmark

12Because of computational constraints, the lag orders p used for each pseudo-data

estimation are assumed to be the same as for the true data.
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for P (j; k). Baseline predictability for 1 � j � 21 and k = 22 is computed
at stage I above by evaluating the forecasts against the true out-of-sample
data using MSE. Bias correction is then measured as the proportion of boot-
strap replications which are less than the baseline predictability estimate. In
contrast to t-percentile con�dence intervals, BC con�dence intervals correct
for the fact that the empirical distribution of the predictability statistic is
not symmetric around baseline predictability|in this way, they have better
e�ective coverage.13

5 Results and discussion

Figures 1-3 report 95% BC con�dence intervals of relative predictability. The
�gures also show the mean of the predictability statistic for all bootstrap
replications lying within the BC con�dence intervals. For each �tted model,
panels A and B compare the evolution of the respective exchange rate returns'
intra-month predictability|evaluated under MSE|to returns predictability
using a random walk. It was argued earlier that under MSE the latter is
linearly declining in the forecast horizon, so it is a useful benchmark for
comparing the out-of-sample performance of di�erent models used to forecast
a particular time series.

Comparing the intra-month evolution of relative predictability in Figures
1-3 suggests that bP (�) is higher for the $/$, intermediate for JPY/$ and
lowest for the DM/$ returns. All three BC con�dence intervals are very
wide|including negative values|and their upper (97.5%) bound exceeds
predictability under the random walk. However, the mean of all bootstrap
predictability statistics lying within the BC bounds lies signi�cantly below
the random walk.14 Thus, �tting AR-GARCH models we �nd that all 3
exchange rates are more predictable under a random walk than under the
chosen model for all intra-month forecast horizons.

13Efron and Tibshirani's (1993) accelerated con�dence intervals which use the jacknife

were not computed as they are very computationally intensive for our dataset.
14Median predictability|not shown|lies above the mean for all three exchange rates,

at about the level of the random walk. This is because the predictability statistic's distri-

bution is positively skewed, as it is unbounded below but bounded above by 1.
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Turning to discuss the evolution of the series' predictability as the forecast
horizon varies, the 95% BC con�dence intervals for the DM and yen/$ actual
returns are both narrower than that for the $/$. Figure 4 compares the mean
predictability, for all bootstrap replications lying within the BC bounds,
of all 3 exchange rate returns' predictability. Clearly, the $/$ exchange
rate return has the higher mean predictability across intra-month forecast
horizons, while the DM/$ actual return has the lower. The $/$'s return
predictability drops sharply until 4 days-ahead, and that of the yen/$ until 6
days-ahead. Thereafter, they decline relatively smoothly. In both cases, the
"threshold" level of predictability is about 0.2.

Finally, for illustration purposes, the above methodology was also em-
ployed to estimate the relative predictability of absolute exchange rate re-
turns under ARMA models and compare it to that under a random walk.
Figures 1-3 show that this is much greater than that of actual returns, and
the corresponding bias-corrected con�dence intervals narrower. This may
be due to the signi�cantly lower explanatory power of parametric models
for modeling actual as opposed to absolute returns. The smaller parameter
uncertainty for absolute returns thus results in a narrower range for the cor-
responding bootstrap predictability estimates. Absolute returns of the yen/$
exchange rate are found to have relatively higher predictability, suggesting
that the volatility of yen/$ returns has been more stable compared to other
exchange rates.

6 Conclusion

This paper developed the Diebold-Kilian (1997) measure of relative time se-
ries predictability and applied it to daily exchange rate returns for 3 curren-
cies. Because of the nonnormality of the predictability statistic, bootstrap
inference methods were used. AR-GARCH models were estimated for ex-
change rate returns, and forecasts evaluated according to MSE loss. It was
found that exchange rate returns are less predictable using the model than
using a random walk beyond 1-week forecast horizons for all 3 currencies.
Overall, the results con�rm the greater di�culty that parametric models have
in forecasting daily actual exchange rate returns. Against that background,
the predictability statistic allows for a concrete evaluation of the di�erence
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in alternative models' expected losses at di�erent forecast horizons.
The robustness of our results could be assessed by varying the in-sample

and out-of-sample periods, as well as by changing the size of the full dataset
itself. Researchers have often used very long data sets for model-�tting with-
out regard to their out-of-sample performance. However, the latter would
likely indicate a more selective approach, such as applying lower weights in
parameter estimation to distant data. Examples of models with very long
daily samples include Ding, Granger and Engle (1993), Hentschel (1995) and
Pesaran and Timmerman (1995). An exception is Satchell and Timmerman
(1995), who use a recursive sample of only the 1000 most recent data. We
speculate that an information-theoretic selection criterion may be available.
These extensions are the subject of current research.
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Table 1: GBP/US$ Returns
A. Summary statistics15

Mean 0.0000446
Standard Deviation 0.0062
Skewness 0.02780
Kurtosis 5.6367
Normality 810.24 (0.00)
ADF(5) -20.76c

Qx(20) 46.23 (0.001c)

B. Model speci�cation16

AR 7
MA 0
GARCH(p,q) (1,1) / GARCH-M
ARMA errors No
SIC -7.4408

R2 0.0119
Qx(20) 18.90 (0.53)
ARCH LM (20) 1.22 (0.22)

15N = 2; 678 observations. ADF(5) is a unit root test with 5 lags. Normality is the

Bera-Jarque test, asymptotically distributed �2(2). Qx(80) is the Ljung-Box statistic of

order 20. ARCH(5) is Engle's LM test for ARCH.
16The order p of the AR components was obtained using AIC and SIC. R2 is adjusted

R2. ARCH reports the F-statistics and P-values for the ARCH LM test of no linear

dependence in the squared errors.
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Table 2: DM/US$ Returns
A. Summary statistics17

Mean 0.0000577
Standard Deviation 0.0066
Skewness 0.0328
Kurtosis 5.0023
Normality 447.83
ADF(5) -21.84c

Qx(20) 22.21 (0.33)

B. Model speci�cation18

AR 11
MA 0
GARCH(p,q) (1,1)
ARMA errors No
SIC -7.2623

R2 0.004572
Qx(20) 22.33 (0.32)
ARCH LM (20) 1.53 (0.06a)

17N = 2678 observations. ADF(5) is a unit root test with 5 lags. Normality is the

Bera-Jarque test, asymptotically distributed �2(2). Qx(80) is the Ljung-Box statistic of

order 20. ARCH(5) is Engle's LM test for ARCH.
18The order of the AR components was obtained using AIC and SIC. R2 is adjusted R2.

ARCH reports the F-statistics and P-values for the ARCH LM test of no linear dependence

in the squared errors.
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Table 3: JPY/US$ Returns
A. Summary statistics19

Mean 0.000036
Standard Deviation 0.0066
Skewness -0.2346
Kurtosis 6.1223
Normality 1112.36
ADF(5) -21.68c

Qx(20) 26.05 (0.16)

B. Model speci�cation20

AR 5
MA 0
GARCH(p,q) (1,1)
ARMA errors (1,1)
SIC -7.264

R2 0.0077
Qx(20) 15.34 (0.64)
ARCH LM (20) 0.39 (0.99)

19N = 2; 678 observations. ADF(5) is a unit root test with 5 lags. Normality is the

Bera-Jarque test, asymptotically distributed �2(2). Qx(80) is the Ljung-Box statistic of

order 20. ARCH(5) is Engle's LM test for ARCH.
20The order of the AR components was obtained using AIC and SIC. R2 is adjusted R2.

ARCH reports the F-statistics and P-values for the ARCH LM test of no linear dependence

in the squared errors.
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