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Abstract
This study investigates the effects of varying sampling intervals on the long memory
characteristics of certain stochastic processes. We find that although different sampling
intervals do not affect the decay rate of discrete time long memory autocorrelation functions
in large lags, the autocorrelation functions in short lags are affected significantly. The level of
the autocorrelation functions moves upward for temporally aggregated processes and
downward for systematically sampled processes, and these effects result in a bias in the long
memory parameter. For the ARFIMAY) process, the absolute magnitude of the long
memory parameterd|| of the temporally aggregated process is greater thad thiethe true
process, which is greater than ttieof the systematically sampled process. We also find that
the true long memory parameter can be obtained if we use a decay rate that is not affected by

different sampling intervals.



1 Introduction

An important class of time series models are the so-called long memory processes which
were introduced by Mandelbrot and Van Ness (1968), Granger and Joyeux (1980), and
Hosking (1981). A simple property of long memory processes is that whilst the
autocorrelations decrease, they decrease very slowly. Therefore, the past influences the future
in a manner reminiscent of chaotic processes.

It is interesting to notice that many of the empirical studies use temporally aggregated
data, such as monthly time series, for the test of long memory process. We now have
available financial data that are sampled on many different frequencies. Consider foreign
exchange data for example. This is now available on a quote-by-quote or trade-by-trade basis.
It is also available on daily, weekly, and even much lower frequencies. This availability
naturally raises questions of temporal aggregation in long memory processes.

Ding, Granger and Engle (1992) conjectured that temporal aggregation does not
change the long memory property of the return series. Recently, Chambers (in press) shows
that at low frequencies, the decay rate of the spectral density functions of long memory
processes is not affected by sampling intervals. Therefore, the true long memory parameter
can be estimated by considering low frequencies regardless of the sampling interval.

A sampling interval which is different from the dynamics of the true process affects
the model specification of long memory processes. However, both the frequencies of the true
process and the effects of the sampling interval on the model specification of long memory
processes are not known. In this situation, an appropriate long memory model which takes
into account the sampling interval is impossible. Most empirical studies which use long

memory processes do not consider changes in model specification from varying sampling



intervals. For this reason, we assume that the sampling interval does not change the model
specification for a long memory process and investigate changes in the long memory
parameter. Thus, our focus is whether or not there is a change in the long memory parameter
when different sampling intervals are used.

In what follows, we extend Chambers (in press) results by using both time and
frequency domain analysis in discrete time long memory processestly, the effects of
systematic sampling and temporal aggregation on discrete time long memory processes are
presented in an analytical way; autocovariance, autocorrelation, and spectral density functions
are derived for the systematically sampled and temporally aggregated long memory
processes. Then, Monte Carlo simulations using frequency domain maximum likelihood
estimation methods are used for the finite sample properties of systematic sampling and
temporal aggregation effects on discrete time long memory processes.

Our study confirms the results of Chambers (in press), in that the decay rate of
discrete time long memory spectral density functions at low frequencies (or equivalently, the
decay rate of discrete time long memory autocorrelation functions in large lags) is not
affected by systematic sampling or temporal aggregation. However, significant effects of
systematic sampling or temporal aggregation are found in the autocorrelation functions at
short lags, which result in either upward or downward movements in the level of
autocorrelation function. We find that the effects are different for systematically sampled and
temporally aggregated long memory processes. The absolute value of the autocorrelation
coefficient of systematically sampled long memory processes becomes smaller as the
sampling interval increases, while the absolute value of the autocorrelation coefficient of
temporally aggregated long memory processes becomes larger as the sampling interval

increases. These effects result in a bias in the long memory pafarime®ystematically



sampled long memory processes, the long memory parameter is always biased towards zero
as the sampling interval increases, while in temporally aggregated long memory processes the
absolute value of the long memory parametifrijq larger than its true value. Although it is

not reported in this paper, we find that there is no temporal aggregation effect on continuous
time long memory processes.

We also investigate whether or not the true long memory parameter can be obtained
from the decay rate of long memory spectral density functions at low frequencies in finite
samples. For this purpose, we use the semiparametric regression model suggested by Geweke
and Porter-Hudak (1983). Our simulation results using the semiparametric regression for
discrete time long memory processes show that the estimation biases are much less than the
biases of ML estimates. Therefore, the true long memory parameter can be estimated in
temporally aggregated long memory processes. However, the standard deviation of the
estimates is very large and significant estimation bias still exists in systematically sampled

long memory processes.

2 Discrete Time Long Memory Processes

A model appears to be more attractive when just one parameter is used for long range
dependence. A long memory process is characterized as a process that should explain long
range dependence between observations more effectively than conventional short memory
processes. There are two major models for long memory process, continuous time models
such as the fractional Gaussian noise (FGN) model introduced by Mandelbrot and Van Ness
(1968), and discrete time models such as the autoregressive fractionally integrated moving

average (ARFIMA) model introduced by Granger and Joyeux (1980) and Hosking (1981).



Although the FGN model has the benefit that it can be used together with ordinary Brownian
motion, the ARFIMA model is generally preferred to the FGN model. The main reason is that
the former can describe economic and financial time series better than the latter. Moreover,
the ARFIMA model is a generalisation of the more familiar autoregressive integrated moving
average (ARIMA) model; it captures both long and short memory, and it is easier to use than
the FGN model.

Discrete time long memory processes have much more flexibility than AR A&
models. The order of integration in the ARIMA process is confined only to integer values
such as 0 or 1. In this process a shock has mean-reversion with an exponential decay rate
when d=0, but has infinite persistence whesl. This knife-edge distinction between
ARIMA(p,0,0 and ARIMA(p,1,0) may be too narrow. Long memory processes add more
flexibility by allowing for fractional orders of integration such &si€1.

A discrete time long memory process (fractionally integrated process), which was
introduced by Granger and Joyeux (1980) and Hosking (1981), is defined to be a discrete

time stochastic process which is represented as

0% = (1-L¥x =u, 1)
wherelL is the lag operatoty is an independent identically distributed random variable, and -
0.5<d<0.8. Using the binomial series expension, the fractional difference opé&ratan be
represented as

0% =@-L)¢
e FG=d) 2)
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wherel” (J is the gamma functioiihe infinite moving average representationcahay be

denoted b
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wheres is a lag between observationsjs a frequency, and? is a variance of. We can
see that the autocorrelations of the fractionally integrated series decline at a slower rate than
that of the autoregressive moving average (ARMA) model. The autocorrelation function (5)
decays at a hyperbolic rate, while that of the ARMA model decays exponentially.

Fractionally integrated processes show different characteristics depending on the
parameted. A fractionally integrated process is covariance stationary and invertible when
-0.5<d <0.5 and it is a long memory process witEires between 0 and 0.5. The fractional
differencing parametet is defined by the behaviour of the series up to infinite cyclesl As

goes to 0.5, the decay rate of the impact of a unit innovation becomes slower. Hence, the



fractional differencing parametett decides the decay of the system's response to the
innovation. Sowell (1990) shows that, while the variance of the partial sums of variables
grows linearly with number of observations wherr O, it grows faster than a linear rate
when 04<0.5. On the other hand, when -0ds®, the process has short memory since each
shock is negatively correlated with the others, thus making the variance of the partial sums of
variables less than the variance of the individual shock.

Fractionally integrated processes can easily be generalised to the AREAMA(

process. More formally,
O(L)(L- L)%= L)y, (7)
where@(L)=1-@,L-@,L°-..-¢,L°, O(L)=1+6.L+ 0,L*+...+6,L%, -0.5<0<0.5, and

all the roots of®(L) and©(L) lie outside of the unit circle. In the ARFIMA moddimay be

chosen to describe the autocorrelation structure of distant observations of a time series, while
the 6 and ¢ parameters can be chosen to describe the low lag autocorrelation structure.
Therefore, the ARFIMA model not only overcomes the drawbacks that Mcleod and Hipel
(1978) point out but also generalises the Box-Jenkins ARIMA model where only integral

differencing is allowed.

3 The Effects of Systematic Sampling and Temporal Aggregation on
Discrete Time Long Memory Processes

The sampling interval of observed economic and financial time series (e.g., daily, weekly,
and monthly) does not necessarily correspond to the true unknown interval. We conjecture
that the sampling interval is longer than the true interval, resulting in temporal aggregation in
flow time series and systematic sampling in stock time series. We next investigate the effects

of systematic sampling and temporal aggregation on discrete time long memory processes



under the assumption that the sampling interval is longer than the true interval.

This section shows the effects of systematic sampling and temporal aggregation on
discrete time long memory processes: a systematically sampled ARFityDA\(@rocess and
a temporally aggregated ARFIMADD) process. For these two processes, properties such as

autocovariance, autocorrelation, and spectral density functions are derived.

Assumption 1 The dynamics of the true underlying discrete time procBsske place at
every unknown f/period wherej is a positive integer, while the observations of the process

take place at every unit time period.

The underlying process is simply thought of as a series of logarithmic changes of the
original positive time series at discrete time intervals. For example, it is a return in financial
markets or a growth rate in economics.

In the assumption abova,is a sampling interval. More specifically,is the number
of times the dynamics of the true underlying process take place between observations. When
n=1, the observed time series is equivalent to the true process.Nid@npositive integer
greater than 1, then the time series is observed less frequently than the frequency of the true
process.

The true underlying process can be partially observed in two ways, systematic
sampling and temporal aggregation. A systematically sampled process is a sequence of the
true process at observation points and, thus, consists of everyjathdéne true process. A
temporally aggregated process is a sequence of the aggregated true process between sampling

intervals. Therefore, if the dynamics of the true process take place at every day, for example,



the systematically sampled process is like observing a daily process every Monday but not on

other days and the temporally aggregated process is a weekly return process.

Definition 1 A discrete systematically sampled process, whose true processnhas 1/

dynamic periods, consists of {X= " xt=1,2,3,...}. A discrete aggregated process, whose

n-1
true process has f/dynamic periods, consists of{* = ¥ x°, ; t=1,2,3,...}.
k=0 t-—
n

When the true process hd4; dynamic periods, the discrete true ARFIMAILQ)

processx"", is defined as

1

(1-U" ¥'xF = g, t =1, 141 , 1+2 , 1+8/ , ..., (8)
whereg is a white noise sequence with variaméeNote that the variance® is measured
with time intervall/n. When we assume that the frequency of the process defined in section 2

is 1/n , the variance of the white noise’, in section 2 is identical to® in equation (8).

Thus, without loss of generality, we assuafe= o> throughout this section.

We represent a theorem concerning autocovariance, autocorrelation, and spectral
density functions of a systematically sampled ARFIMA@), process. This generalises
theorem 1 (a) of Chambers (in press), where he derives the spectral density functions of a

systematically sampled ARFIMA@Q) process.

Theorem 1 Systematically Sampled ARFIMA(@,0) Process
Under assumption 1 and definition 1, the discrete systematically sampled ARFIMA(O,d,0)

process, X', is represented as
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The autocovariance,y, s (S,17), autocorrelation, pys-(s,7), and spectral density
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wheren is a sampling interval, s is a lag between observatiaris,a frequency, and® is a
variance ofg;.

Proof : See the Appendix.

The properties of the discrete systematically sampled ARFIMA(Oprocess have a
sampling intervaln that the true discrete ARFIMA@Q) process does not have (see
equations (4), (5), and (6)). The true process is observed differently by the sampling interval.
As pointed out in Chambers (in press), the decay rate in the spectral density function at low
frequencies;2d, is the same as that of the true ARFIMAI0) process. The autocorrelation

function for larges also confirms that the decay rate is not changed by systematic sampling
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(compare equation (11) with equation (5)).

However, the absolute value of the autocorrelation function of the systematically
sampled process is always less than that of the true ARFIMB)(process, since for any
positive integem>1, n*** is less than 1 when -0.8<0.5. This decreased autocorrelation
function is expected to make the estimaleiased toward zero. Figures 1 to 4 show the
changes of the autocorrelation functions for systematically sampled and aggregated
ARFIMA(0,d,0) processes wheitr0.35()=5) andd=-0.35{)=5), respectively. In figures 1
and 3, we can see that the absolute values of the autocorrelation functions are decreased by
systematic sampling. Figures 2 and 4 show the ratios of the autocorrelatigh§ tof those
of the true process in various lags, which are always less than 1. Therefore, although we may
estimate the trud by considering low frequencies or equivalently remote autocorrelations, a
systematically sampled ARFIMA@Q) process becomes less persistent than the true

ARFIMA(0,d,0) process.

A discrete aggregated ARFIMAQ) processx™*", can be obtained by summing a

discrete true ARFIMA(®,0) processs”", up to(n—-1)/n lags.

xPF = ST,
12 st 1
= I+ +L7+,. L") (1-L7)° & (13)
1

= (1-0) (11 " &
We present a theorem concerning autocovariance, autocorrelation, and spectral density
functions of a temporally aggregated ARFIMALD) process. This generalises theorem 1 (b)
of Chambers (in press), where he only derives spectral density functions of temporally

aggregated and systematically sampled ARFIMAQ) processes.
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Theorem 2 Temporally Aggregated ARFIMA(0¢,0) Process

Under assumption 1 and definition 1, the discrete aggregated ARFIMA(0,d,0) prgt&ss, x

is defined as
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X = o E K
i=ok=ol (K+1) 7 (d)
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non

t=1,2, 3, .. (14)

The autocovariancey - (s,17) , autocorrelation, p,.- (S,17) , and spectral density functions,
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Proof : See the Appendix.
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The limiting spectral density and autocorrelation functions show that the decay rate of
the ARFIMA(0d,0) process is not changed by temporal aggregation, identical to results in
theorem 1 (b) of Chambers (in press). However, as we can see in figure O=@t&snand

n=5, the autocorrelation function of the aggregated process is always larger than that of the

1+2d
true process. For positivk " d(d+2d) in equation (16) is always larger than its true
wod _ [ (1+d)
[(=d)
r@a-dy . - . . .
value in (5). This is shown in figure 2 by the ratio of the autocorrelation of the

I(d)
aggregated ARFIMA(@,0) process to that of the true ARFIMA4M) process whed=0.35
and n=5. Therefore, although the limiting autocorrelation and spectral density functions do
not show any change in the decay rate, the level of the autocorrelation function moves
upward, making the aggregated ARFIMAL0) process more persistent than the true
ARFIMA(0,d,0) process. On the other hand, when -G<® the ratio of the autocorrelation
function of the aggregated ARFIMA@Q) process to that of the true ARFIMAGM)
process does not show a consistent pattern; see figure 4. However, the pattern of the
autocorrelation function of the aggregated ARFIMA(@), process in figure 3 is typical for a
larger negatived value. Therefore, for negativdy temporal aggregation makes the true
ARFIMA(0,d,0) process have a higher negativé\s a result, we conclude that, the absolute
value of the discrete time long memory parameteof the aggregated ARFIMA@D)

process is larger than that of its true process. We present our conclusions in Proposition 1.

Proposition 1

1. Systematic Sampling Effect

13



In the discrete systematically sampled ARFIMA(O,d,0) processes, the absolute values of d are
biased toward zero, as the sampling interyahcreases.

2. Temporal Aggregation Effect

In the discrete aggregated ARFIMA(0,d,0) process, the absolute value of d increases as the

sampling intervah increases.

A referee suggests that the ARFIMA4,9 model rather than the ARFIMA@D)
model would be better to specify the autocorrelation functions of systematically sampled or
temporally aggregated discrete time long memory processes. Figures 2 and 4 support this
suggestion; the ratios of autocorrelation of systematically sampled and temporally aggregated
ARFIMA(0,d,0) processes are not constant over lags. That is, the ratios vary for short lags,
but they approach a constant for larger lags. In addition, the major changes in the levels of the
autocorrelation of systematically sampled and temporally aggregated ARFtVA\(O,
processes occur in the first lag. Therefore, although the autocorrelation functions of
systematically sampled and temporally aggregated ARFIMAYOprocesses a®(™Y as
S— oo, autocorrelation levels of systematically sampled and temporally aggregated
ARFIMA(0,d,0) processes are changed in short lags, generating a short memory process. In
these cases, ARFIMA@Q) processes together with appropriate short memory processes
may be better specified than ARFIMAQM) processes for systematically sampled and
temporally aggregated ARFIMA@Q) processes. However, we do not know what the
exactly specified model is or the dynamic period of the true underlying process. In this study,
we investigate the effects of sampling interval on the long memory parameter when sampling

intervals are disregarded.
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Whilst the above analysis reflects the impact of temporal aggregation on the true
model, it does not deal with issues of estimation. We consider this problem in the next

section.

4 Finite Sample Properties of the Effects of Systematic Sampling and
Temporal Aggregation on Discrete Time ARFIMA(0d,0) Processes

4.1 Maximum Likelihood Estimation

Many studies of long memory processes have used the frequency domain approach, since the

spectral generating function is generally easy to evaluate. Time domain maximum likelihood

is computationally difficult to use for large sample sizes because of the inversionTeflthe

covariance matrix. The frequency domain approximate log-likelihood is represented as

follows:
172 17w
InL(8)=-=>Ins(w,)——= : 18
O)= 5 g ns@) =552 (18)
T —?
S &% (X~ Xr)
wherel(w,) = = Py , S() is a spectral density function, and
T
2
W, :Tnk’ andk =1, 2, ...,T -1

Fox and Tagqu (1986) prove that the estimates obtained using only the last term of
equation (18) are consistent and asymptotically normal. These results are extended by
Dahlhaus (1989) as in equation (18). Cheung and Diebold (1994) compare the exact time
domain ML estimates of Sowell (1992a) with the approximate frequency domain ML
estimates of Fox and Tagqu (1986). When the mean of a process is known, the time domain

ML estimates are superior. However, time domain ML estimates with a known mean are not
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feasible in practice. Time domain ML estimates with a sample mean do not seem to be
preferred to frequency domain ML estimates. In addition, when the sample size is more than
150 andd>0, there is little difference between the two, and the frequency domain ML
estimates are less biased than the time domain ML estimates. Therefore, Cheung and Diebold
(1994) suggest that the frequency domain ML estimation method is an attractive and efficient
alternative when large sample sizes are used. Hauser (1992) and Lee (1994) also find similar
results.

The recursive Levinson (1947)-Durbin (1960) algorithm is used for the generation of
the ARFIMA(0d,0) process. The Cholesky decomposition is not a suitable method here,
because, as noted in GPH, it needs memory proportiondf ®nd computation time
proportional tor>. Therefore, when as in this stuty1000, it becomes impractical to use the
Cholesky decomposition.

The GAUSS computer package is used for all computations. We use the same
GAUSS code as Lee (1994) for the generation of fractionally integrated processes. For the
numerical optimization method, the Broyden, Fletcher, Goldfard and Shanno (BFGS)
algorithm is used. However, when the BFGS algorithm cannot find the optimum, the
Davidon, Fletcher and Powell (DFP) algorithm, or the Newton-Raphson algorithm, or the
steepest descent method are used in that order. Convergence tolerance for the gradient of
estimated coefficients is set t010

Sampling intervals ofy = 1, 5, 10, 15, 20 are explored. First, a sample size of
T=1,000 is generated and then, the original time series are transformed into systematically
sampled or temporally aggregated processes. Systematically sampled processes are obtained

by using the following formulation:

16



Xon = Xy (19)
wherex;, is a systematically sampled process with a sampling intgnaaid x is the

originally generated series. Whanl, the frequencies of the true process are the same as the
observation frequencies. However, wher»l, the transformed process becomes a
systematically sampled process with sampling intemvallo explore temporal aggregation

effects, the original process is temporally aggregated as f8ilows

n-1

X@ﬂ = kgoxnt-k (20)

Since the sample size decreases according to the increase in the sampling interval, the sample
sizes for the sampling intervajs1, 5, 10, 15, 20 are 1,000, 200, 100, 66, 50, respectively.
For the ARFIMA(Od,0) process, equation (18) is used for the likelihood function.

The spectral density functions for the ARFIMA{@) process are

0.2

S(wk) = 22d+1 7_[(1_ COS@)k ))Zd (21)

where a,f is the variance of the white noise variables of systematically sampled or

temporally aggregated ARFIMA@Q) processes. Since the exact values of the variance are

not known for systematically sampled and temporally aggregated prdcessesstimate

{d, 0,72 } for the ARFIMA(0,d,0) model for all;.

As shown in section 3, the autocorrelations of systematically sampled and aggregated
processes are also a function of the parametefherefore, ten points in both the parameter
d of the ARFIMA process are exploratk+0.05, £0.15, £0.25, +0.35, £0.45. For each A}
set, 1000 Monte Carlo replications are performed. For the starting valubshef trued

values are used. Sample variances of systematically sampled or temporally aggregated

17



processes are used for the starting valuesr,fof The bias, standard deviation, and mean

square error (MSE) of the estimatkdre computed.

The results of 1000 replications of the ML estimation of the ARFIMAQ),
processes are reported in tables 1 to 3. Table 1 shows the finite sample properties of the
frequency domain approximate ML estimation for the original ARFIM&Q), process at
sample sizes 0f=1000, 200, 100, 66, 50, respectively. The results for the ARFIM/A{O,
process are consistent with those of Hauser (1992) and Lee (1994). As expected, the
estimation bias and standard deviation of estimates tend to increase, as the sample size
becomes smaller.

Table 2 shows the simulation results for the finite sample properties of the
systematically sampled process. As explained in the previous section, for the systematically
sampled process, long memory parameters are biased toward zero. The finite sample
properties of the systematic sampling effects can be summarised as follows. Firstly, the
systematic sampling effect appears in the ARFIM&(®,process. When the dynamics of the
true process are more frequent than the observations of the process, the estimates of the
observed systematically sampled process are always biased toward zero. Table 2 shows that
the bias is larger in -0.850 than in 0€<0.5. This is because in -0&<0, long memory
processes have similar properties to those of short memory processes.

Our second investigation looks at the temporal aggregation effects, see table 3. As
expected, in the aggregated ARFIMAIQ) process, the aggregation effect has upward bias.
The simulation results support what we found in the section 3, that is, the absolute magnitude
of the long memory parametat], |of the aggregated ARFIMA@Q) process is greater than

the | of the true ARFIMA(QjJ,0) process.
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Table 3 show that the magnitude of the bias depends on the sampling interval; the
bias of the aggregated ARFIMA())) process increases rincreases. However, after some
sampling intervals, it shows little difference. This can be explained by the autocorrelation
function of (16). Asn becomes infinitely large, the limiting autocorrelation function can be
represented as

98120

r(-d)
=d(1+2d)s'! , as n - .

(22)

Therefore, for an infinitely largg the autocorrelation is not a function @f Note that the

above limiting autocorrelation function is the same as that of the discrete time fractional
Gaussian noise process, see Mandelbrot and Van Ness (1969). The dynamics of the true
process which have an infinitestimal interval in continuous time long memory processes

are equivalent to an infinitely larggin discrete time long memory processes.

4.2 Further Considerations
Chambers (in press) shows that the true long memory parachetan be estimated
regardless of sampling interval, since the decay rates of the spectral density function are not
affected by systematic sampling or temporal aggregation. Our results agree with his for both
spectral density and autocorrelation functions; see equations (11), (12), (16), and (17).

To further investigate whether or not estimates obtained using low frequencies reflect
the true long memory parametdrwe use simulations with the semiparametric regression
analysis of Geweke and Porter-Hudak (1983) (GPH). GPH concentrate on low frequencies

becauseal is determined by the spectral density near zero frequencies. Their equation can be
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represented &s
; wi 2
In I(ew;) = cCc-d In(25|n(7)) +g, (23)

wherec is a constant. The long memory paramektean be estimated wit1,2,...g(T),

wherelim g(T) =wand lim g(T)/ T=0. That is,g(T) should be sufficiently small compared
Too0

T
with T. Here,g(T) is set equal td°°. As presented in equation (23), the semiparametric
method of GPH uses only the decay rate of fractionally integrated processes. Since systematic
sampling and temporal aggregation do not affect the decay rate of the true long memory
process, the GPH method is a more appropriate method to estimate the true unobserved long
memory parameter than parametric methods such as those used in the previous subsection.

Four pointsd=+0.15, £0.35 at sampling intervajs-1, 5, 10, 15, 20 are considered in
both the systematically sampled and temporally aggregated ARFIN@YProcesses. Other
simulation conditions are the same as those of the ML estimation of subsection 4.1.

Tables 4 to 6 show the results of 1,000 replications of GPH’'s semiparametric
estimation. Table 4 represents finite sample properties of GPH'’s estimates. The estimation
bias is small and seems robust to changes in sample siz&’afitie standard deviation is
also robust to the changes in the value of the true parameter. However, the standard
deviations are larger than those of the ML estimates in table 1 and seem very large for small
samples. This is because the number of periodograms used in GPH estimatiorTs.only
Therefore, the MSEs of the GPH estimates are high compared with those of ML estimates
and the GPH estimates are not efficient for small sariples

Let us first consider the finite sample properties of systematically sampled processes.
Table 5 shows that the estimation bias is still present. Although the estimation biases are less

than that of the ML estimates (see table 2), they are still very large. In addition, for ndgative

20



values, there is little difference between GPH and ML estimates. This may be because for
negatived, the discrete time long memory process has the properties of a short memory
process rather than those of a long memory process. However, as expected, for a temporally
aggregated long memory process, using low frequencies gives estimates close to the true long
memory parameter. Table 6 shows that the bias of estimates obtained using low frequencies is
small in the aggregated long memory process.

Therefore, for the finite samples considered in this study, thedtmmy not be
obtained when observed time series are systematically sampled. On the other hand, for the
temporally aggregated time series, we may obtain thedthyeconsidering low frequencies.
However, note that standard deviations are relatively very high in the GPH’s semiparametric
estimates.

Chambers (in press) concentrates only on the decay rate of long memory processes
near the zero frequency and suggests that the true long memory parameter can be estimated
using the decay rate of the spectral density function at low frequencies. Our finite sampling
simulations show that GPH semiparametric estimates using only low frequencies may fail to
obtain the true long memory parameter when the observed time series is systematically
sampled or the number of observations is small. In addition, the true long memory parameter

may not be obtained when -0d0.

5 Conclusion

This study investigated the effects of systematic sampling and temporal aggregation on long
memory processes under the assumption that there was no change in model specification

caused by systematic sampling or temporal aggregation. From the theoretical explanation in
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section 3 and the simulations conducted in section 4, the following results are obtained: for
the ARFIMA(0d,0) process, the absolute value of the long memory paranujtesf the
temporally aggregated process is larger thardftet {he true process which is larger than the

|d| of the systematically sampled process.

Our results are consistent with those of Chambers (in press) and Ding, Granger and
Engle (1992) who conjecture that temporal aggregation does not change the decay rate of
autocorrelations. One of the interesting properties of discrete time long memory processes is
that although the autocorrelation level is affected by systematic sampling or temporal
aggregation, the decay rate of the autocorrelations in remote lags or equivalently, the decay
rate of spectral densities at low frequencies is not affected by the sampling interval. For the
finite samples used in this study, GPH’s semiparametric regression gives a long memory
parameter close to its true value for the temporally aggregated process, while the estimates
are still biased toward zero for the systematically sampled long memory process.

However, it is worth pointing out that the autocorrelation function of discrete time
long memory processes shifts downwards or upwards by systematic sampling or temporal
aggregation. In this respect, although we may estimate the true long memory parameter using
the decay rates, we conclude that the sampling interval does impact on the long memory
parameter if we do not consider the changes in model specification. Empirical studies on the
existence of long memory processes in economic and financial time series may be affected by
the sampling interval. The probability that we find evidence of a long memory process
increases as the sampling interval increases for a temporally aggregated time series, if there
exists long memory. Our results in section 4 do suggest that for a large number of
observations such as in financial time series, the true long memory parameter may be

estimated using the semiparametric regression of Geweke and Porter-Hudak (1983).
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NOTES

! The results for continuous time long memory processes can be obtained from the author on request.

2 We use ‘bias’ for the difference between the true long memory parameter values and the long memory
parameter values of the systematically sampled or temporally aggregated long memory processes. ‘Bias’ used
in this study means a model misspecification bias. We use ‘estimation bias’ for the difference between the
true values and the estimated parameter values to differentiate the ‘bias’ in this study.

% Althoughd may be any real numbat,is assumed to lie in the interval (-0.5, 0.5) with a finite number of
difference.

* Moving average (MA) representation will be used for our explanation. The autoregressive (AR) representation
can be inferred from the MA representation. That is,dtloé the MA representation is equal # of the AR
representation.

® See Granger and Joyeux (1980) and Hosking (1981) for proof.

® Sample size of both systematically sampled and aggregated processes-tHiés 66 and only the first 990

observations from the original sample size of 1000 are used.
"Only whenn=1, o is known to be 1.

8 This equation is a logarithmic transformation of equation (6).

® The GPH method has some difficulties in selectji; see Sowell (1992b) and Hurvich and Beltrao (1993).
GPH suggest thaf(T)=T°* is appropriate and Diebold and Rudebusch (1989) andngh£993) also show that

the exponent (0.5) is appropriate.

1 The biases of the GPH estimates are found in the presence of AR or MA processes (Agiakloglou, Newbold
and Wohar, 1993) and in either non-invertibdiz-0.5) or nonstationaryd£0.5) ARFIMA(0d,0) processes
(Hurvich and Ray, 1995).

1 See Sowell (1992a) for the simulation results of the finite sample properties of GHP, time domain ML, and
frequency domain ML estimates. Also see Robinson (1994, 1995) and Hidalgo and Yajima (1997) for further

discussion of the GPH estimation and its modification.
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APPENDIX

Proof of Theorem 1 Systematically Sampled ARFIMA(@,0) Process.
The spectral density function &FF in equation (12) is easily obtained from equation (8).

The autocovariance function g1°", y .. (s,n7), has ams lag between observations in the
true process. That is, a lag of magnitsdeetween observations in systematically sampled
ARFIMA(0,d,0) is equivalent to a lag of magnituds in the true ARFIMA(0,d,0) process.
Therefore, we can use equation (4) to demwg:(s,n) by simply replacings with ns.

Mathematically,

DSF DSF

Yose(S:n)=Cou X, % )

:E[(£t+—r(1+d) Lot r(ns+d) st (ns+d+1) L

r(dyr(2) -, r(d)r(ns+1) r(d)r(ns+2) s,

(st—s+M€ 1+M5 )

r(d)r(2) ws_ r(d)yr(3) s,
_ o? [r(ns+d)r(d)+r(ns+1+d)r(1+d)

r(d)*" r(ns+1)r(1) r(ns+2)r(2)
+/'(ns+2+d)l‘(2+d)+

+..)x

+.)]

(ns+3)r(3)
_0? [(ns+d)r(d) 1+(I7$+d)d +(r7s+d)(r7s+1+d)d(1+d)+ ]
T r(d)?  r(ns+1) (ns+1)1 (ns+1)(ns+2)102

_ o* [(ns+d)r(d)
Cr(d)>  r(ns+1)
_g® [(ns+d)r(d) r(ns+1)r(1-2d)
T r(d)?  r(ns+1l) [(ns+1-d)r(1-d)
__ Ts+d)r@-2d)
r(d)r(1-d)r(ns+1-d)

F(d,ns+d;ns+11)

(A1)

whereF(a,(;y,1) is ahypergeometric functioand
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G a(a+DBB+Y  ala+D(a+2B(B+Y(B+ 2
P ByD=1 " gayae Ty Dy +90oms

_riyry-a-p Mz 8] (A2)

S F(y-a)r(y-p)
(9.122, p1068, Gradshteyn and Ryzhik, 1994).

The autocorrelation function in equation (11) follows straightforwamdly.

Proof of Theorem 2 Temporally Aggregated ARFIMA(O¢,0) Process.

Let us definey,.(s) as the autocovariance function of the true underlying fractionally

integrated process x>, where s is a lag between observations. That is,

Vor (S) =CoM X" 'XBZ/,; )
_  (@a-2d)r(s+d) o2
r(d)yr(a-dyr(s+i-d)

This is actually the same as equation (4) as explained after Definition 1 of page 10. Then the

autocovariance function of™*" is

Yoar (S:17) = CoY ZZ ](-)X’[Di/r] Zﬂ (l)XtD'; k/n
= NYor (1) + 310N =1 )Woe (N15=1)+ ST0(n =i )yoe (NS +i)
Yo (M) + S0 S 1aVor (N5=1)+ 3103 1o Vor (NS +i)

=,—0 r(1-2d) =z Z[ I(d+ns) +’7§ I'(d+ns—i). (A3)
(d)r(1-d)& r@-d+ns) &r(@A-d+ns-i)
+-'< r(d+ns+i)
S M(1-d+ns+i)
o?r(1-2d) r(1+ns+d+n)

T 21+2d)r(1+d)r(1-d)- r(ns-d+n)
N I'(1+ns+d—n)_2I'(1+ns+d)]
(ns—-d-n) I(ns—-d)

using the following Lemma of Sowell (1990) twice;
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N [ (a+ k) _ 1 [/'(1+ a+N) /'(1+a)]_ (A4)
&r(b+k) 1+a-b r(b+N)  I(b)

The variance function ok™*" is

o’r(1-2d) r(1+d+n)
2(1+2d)l‘(1+d)/’(1—d)[ r(-d+n)
+I'(1+d—/7)_2I'(1+d)
[(-d-n) r(-d)

Yoar (0.7) =
(AS)

]

Using the following equation (see 8.334, p946, Gradshteyn and Ryzhik, 1994)

T

I(1-x)r(x)= Sin(%) (AB)
we have

r(1+d-n)r(-d +n):sin(n(7—Td+n)) (A7)
r(1+d+n)r(—d—n)=sin(n(’_Td _ (A8)

Since ) is a positive integer, equation (A7) is the same as equation (A8). Equating and
rearranging the two equations, we have

F(1+d-n) _r(@+d+n)

(A9)
r(-d-n) r(-d+n)
Therefore, we have
Vo (0n)= o’r(1-2d) [21'(1+d+r7)_2/‘(1+d)] (A10)

21+2d)r(1+d)r(1-d)  r(-d+n) r(-d)
The autocorrelation function ok>" is obtained using autocovariance function (A3) and
variance function (A9) ofx>*", and the spectral density function &f*" follows from

equation (13m
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Table 1 Finite Sample Properties of the Frequency Domain Approximate
Maximum Likelihood Estimation of ARFIMA(O,d,0) Processes

1. Bias
Sample Size
True d 1000 200 | 100 66 50
0.45 0.001% -0.0015 -0.0084 -0.0124 -0.0[L73
0.35 0.0000 -0.0041 -0.0103 -0.0141 -0.0[L.88
0.25 -0.0010 -0.0048 -0.0182 -0.0165 -0.0p16
0.15 -0.001Y -0.0093 -0.0154 -0.0187 -0.0p49
0.05 -0.0020 -0.0049 -0.0163 -0.0199 -0.0p61
-0.05 -0.0019 -0.0087 -0.0161 -0.0199 -0.0p58
-0.15 -0.0015% -0.0077 -0.0146 -0.0186 -0.0p39
-0.25 -0.000Y -0.0056 -0.011L7 -0.0157 -0.0p03
-0.35 0.000 -0.0022 -0.00¥2 -0.0111 -0.0[L46
-0.45 0.00BI 0.0032 -0.0006 -0.0045 -0.0p66
2. Standard Deviation
Sample Size
True d 1000 | 200 100 66 50
0.45 0.026 0.0671 0.1086 0.1467 0.1p44
0.35 0.026 0.0642 0.0995 0.1259 0.1p46
0.25 0.026 0.0696 0.0993 0.1264 0.1p43
0.15 0.026 0.0655 0.0989 0.1266 0.1p29
0.05 0.025 0.0655 0.0990 0.1267 0.1p32
-0.05 0.025 0.0655 0.0992 0.1268 0.1p34
-0.15 0.025 0.0656 0.0995 0.1470 0.1p38
-0.25 0.025 0.0637 0.10p0 0.1474 0.1p46
-0.35 0.026 0.0641 0.1008 0.1282 0.1p58
-0.45 0.026 0.0671 0.10p4 0.1496 0.1p74
3. Mean-Squared Error
Sample Size
True d 1000 200 100 66 50
0.45 0.000Y 0.0045 0.0108 0.0162 0.0p41
0.35 0.000Y 0.0044 0.0100 0.0161 0.0p43
0.25 0.000Y 0.0043 0.0100 0.0162 0.0p43
0.15 0.0007 0.0044 0.0100 0.0164 0.0p40
0.05 0.000Y 0.0044 0.01p1 0.0164 0.0p42
-0.05 0.0007 0.0044 0.01p1 0.0165 0.0p42
-0.15 0.0007 0.0044 0.01p1 0.0165 0.0p42
-0.25 0.000¢Y 0.0044 0.01p1 0.0165 0.0p43
-0.35 0.0007 0.0044 0.01p2 0.0166 0.0p45
-0.45 0.000Y 0.0045 0.0105 0.0168 0.0p48

Notes: The results are based on 1000 replications of frequency domain ML estimates.



Table 2 Finite Sample Properties of the Frequency Domain Approximate
Maximum Likelihood Estimation of Systematically Sampled

ARFIMA(O, d,0) Processes

1. Bias
Sampling Interval )
True d 1 5 10 15 20
0.45 0.001% -0.1188 -0.1688 -0.2¢01 -0.2p00
0.35 0.0000 -0.1320 -0.1798 -0.2159 -0.2835
0.25 -0.0010 -0.1289 -0.1690 -0.1996 -0.21114
0.15 -0.0017 -0.10Q7 -0.1244 -0.1472 -0.1p18
0.05 -0.0020 -0.0441 -0.0512 -0.0679 -0.0p84
-0.05 -0.0019 0.0355 0.03%0 0.0451 0.0p61
-0.15 -0.001% 0.1299 0.13y0 0.1438 0.1p48
-0.25 -0.0007 0.22499 0.2379 0.2443 0.2p49
-0.35 0.000 0.3315 0.3396 0.3353 0.3p55
-0.45 0.003t 0.4348 0.4411 0.4462 0.4p62
2. Standard Deviation
Sampling Interval )
True d 1 | 5 10 15 20
0.45 0.026 0.0623 0.0981 0.1463 0.1p23
0.35 0.026 0.0649 0.09%59 0.1458 0.1p09
0.25 0.026 0.0601 0.0951 0.1343 0.1199
0.15 0.026 0.06d6 0.09%5 0.1438 0.1190
0.05 0.025 0.0622 0.0961 0.1426 0.1195
-0.05 0.025 0.0631 0.0965 0.1417 0.1p10
-0.15 0.025 0.0632 0.0967 0.1412 0.1p29
-0.25 0.025 0.0628 0.0965 0.1409 0.1p48
-0.35 0.026 0.06243 0.0963 0.1408 0.1p62
-0.45 0.026 0.0618 0.09p2 0.1409 0.1p71
3. Mean-Squared Error
Sampling Interval )
True d 1 5 10 15 20
0.45 0.000FY 0.0190 0.03p4 0.0560 0.0fF16
0.35 0.000FY 0.0211 0.0415 0.0624 0.0[r73
0.25 0.000FY 0.0202 0.03y6 0.0553 0.0p72
0.15 0.000FY 0.0138 0.0246 0.0370 0.0452
0.05 0.000FY 0.0058 0.0119 0.0196 0.0p70
-0.05 0.000Y 0.0052 0.01p8 0.0154 0.0p35
-0.15 0.000Y 0.02d6 0.0281 0.0300 0.0B90
-0.25 0.000Y 0.0544 0.0659 0.0649 0.0r46
-0.35 0.000Y 0.1138 0.1246 0.1304 0.1B04
-0.45 0.000}Y 0.1929 0.2088 0.1963 0.2p63

Notes: The results are based on 1000 replications of frequency domain ML estimates.
Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50,

respectively.



Table 3 Finite Sample Properties of the Frequency Domain Approximate
Maximum Likelihood Estimation of Temporally Aggregated

ARFIMA(O, d,0) Processes

1. Bias
Sampling Interval )
True d 1 5 | 10 15 20
0.45 0.001% 0.0916 0.10¢11 0.0977 0.0p09
0.35 0.0000 0.0694 0.08p2 0.0176 0.0p87
0.25 -0.0010 0.04940 0.05p2 0.0340 0.0463
0.15 -0.001Y 0.0247 0.03p7 0.0362 0.00.77
0.05 -0.0020 0.0092 0.00416 -0.0430 -0.01.19
-0.05 -0.0019 -0.0165 -0.02p4 -0.0335 -0.0427
-0.15 -0.001% -0.0340 -0.05p0 -0.0651 -0.0[45
-0.25 -0.0007 -0.0597 -0.07y4 -0.0968 -0.1p68
-0.35 0.000 -0.0773 -0.10p8 -0.1459 -0.1B70
-0.45 0.00BI -0.091/0 -0.12p3 -0.1473 -0.1p98
2. Standard Deviation
Sampling Interval )
True d 1 | 5 10 15 20
0.45 0.026 0.07(08 0.1088 0.1348 0.1p03
0.35 0.026 0.0673 0.0995 0.1288 0.1p30
0.25 0.026 0.0645 0.0969 0.1280 0.1p30
0.15 0.026 0.0642 0.0962 0.1372 0.1p20
0.05 0.025 0.0642 0.0963 0.1265 0.1p32
-0.05 0.025 0.0641 0.0962 0.1367 0.1p42
-0.15 0.025 0.0641 0.0961 0.1371 0.1p54
-0.25 0.025 0.0642 0.0965 0.1378 0.1p68
-0.35 0.026 0.0647 0.09y6 0.1290 0.1p84
-0.45 0.026 0.0675 0.10p4 0.1314 0.1p99
3. Mean-Squared Error
Sampling Interval )
True d 1 5 10 15 20
0.45 0.0007 0.0134 0.0216 0.0377 0.0B40
0.35 0.0007 0.0093 0.0163 0.0326 0.0p81
0.25 0.0007 0.0046 0.01P5 0.0193 0.0p55
0.15 0.0007 0.0040 0.01p2 0.0169 0.0p34
0.05 0.0007 0.0043 0.0093 0.0160 0.0p36
-0.05 0.000¢Y 0.0045 0.0097 0.0172 0.0p56
-0.15 0.000¢Y 0.0047 0.011L7 0.0304 0.0p97
-0.25 0.000¢Y 0.0077 0.0153 0.0357 0.0B60
-0.35 0.000¢Y 0.01403 0.02p1 0.0325 0.0439
-0.45 0.000¢Y 0.0149 0.0250 0.0390 0.0p11

Notes: The results are based on 1000 replications of frequency domain ML estimates.
Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50,

respectively.



Table 4

Finite Sample Properties of the Semiparametric Regression

Analysis of GPH for ARFIMA(@,0) Processes

1. Bias
Sample Size
True d 1000 200 100 66 50
0.35 0.0028 0.0047 0.0184 0.0168 0.0p65
0.15 -0.003 -0.0021 0.0026 0.0¢61 -0.0p44
-0.15 -0.00SE 0.0045 0.0055 0.0403 -0.0p65
-0.35 0.008 0.0238 0.02b2 0.0186 0.0[132
2. Standard Deviation
Sample Size
True d 1000 | 200 100 66 50
0.35 0.137 0.2340 0.29P1 0.3546 0.3p08
0.15 0.137 0.2476 0.2946 0.3495 0.3p8s1
-0.15 0.140 0.2344 0.2943 0.3377 0.4p45
-0.35 0.141 0.2365 0.29P9 0.3484 0.3p76
3. Mean Squared Error
Sample Size
True d 1000 200 100 66 50
0.35 0.0190 0.05598 0.0855 0.1260 0.1p28
0.15 0.0189 0.0549 0.0868 0.1422 0.1p85
-0.15 0.019¢Y 0.0549 0.0866 0.1379 0.1p37
-0.35 0.0201 0.0547 0.0853 0.1317 0.1p82

Notes: The results are based on 1000 replications of GPH semiparametric regression

estimates.



Table 5 Finite Sample Properties of Semiparametric Regression
Analysis of GPH for Systematically Sampled ARFIMA(Od ,0) Processes

1. Bias

Sampling Interval«)

True d 1 5 10 15 20
0.35 0.0023 -0.0547 -0.1212 -0.1833 -0.2p13
0.15 -0.0038 -0.0796 -0.1191 -0.1329 -0.1B55
-0.15 -0.0051 0.1374 0.1413 0.1439 0.1477
-0.35 0.0084 0.3413 0.34p2 0.3489 0.3p27

2. Standard Deviation

Sampling Interval )

True d 1 5 10 15 20
0.35 0.1378 0.2311 0.3067 0.3508 0.3p76
0.15 0.137% 0.2332 0.2842 0.3438 0.3p24
-0.15 0.1404 0.2342 0.28y1 0.3399 0.3p35
-0.35 0.1415% 0.2472 0.28h2 0.3454 0.3[r73

3. Mean Squared Error

Sampling Interval«)

True d 1 5 10 15 20
0.35 0.0190 0.0547 0.1088 0.1466 0.1p86
0.15 0.0189 0.0647 0.09p9 0.1333 0.1)23
-0.15 0.019¢Y 0.0747 0.10p4 0.1392 0.1)y67
-0.35 0.0201 0.1776 0.1984 0.2410 0.2p68

Notes: The results are based on 1000 replications of semiparametric regression estimates.
Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50,
respectively.



Table 6 Finite Sample Properties of Semiparametric Regression

Analysis of GPH for Temporally Aggregated ARFIMA(0,d,0) Processes

1. Bias
Sampling Interval )
True d 1 5 10 15 20
0.35 0.0023 0.0033 0.0019 0.0125 0.0[L05
0.15 -0.0038 -0.0041 -0.00¥3 -0.0043 -0.0p71
-0.15 -0.0051 -0.0145 -0.0288 -0.0476 -0.0B77
-0.35 0.0084 -0.0036 -0.02P9 -0.0382 -0.093
2. Standard Deviation
Sampling Interval«)
True d 1 5 10 15 20
0.35 0.1378 0.23591 0.29].8 0.3362 0.4po2
0.15 0.1372 0.2342 0.29p4 0.3650 0.3p73
-0.15 0.1404 0.2347 0.3041 0.3627 0.4[132
-0.35 0.141% 0.2423 0.29p4 0.3545 0.3p70
3. Mean Squared Error
Sampling Interval {)
True d 1 5 10 15 20
0.35 0.0190 0.0553 0.0851 0.1470 0.1p03
0.15 0.0189 0.0549 0.0844 0.1332 0.1p79
-0.15 0.0197 0.0547 0.0980 0.1323 0.1]722
-0.35 0.0201 0.0547 0.08}8 0.1471 0.1p01

Notes: The results are based on 1000 replications of semiparametric regression estimates.
Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50,
respectively.



Figure 1 Autocorrelation Functions of True, Systematically
Sampled and Aggregated ARFIMA(O¢ ,0) Processes
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Notes : The upper line represents the autocorrelation function of the aggregated ARFINA f§fpcess,

the middle line represents the autocorrelation function of the true ARFIBIAOprocess, and the lower

line represents the autocorrelation function of the systematically sampled ARFtN@(Process.

The autocorrelations up to 30 lags are calculated using exact autocorrelation functions and autocorrelations
from 31 to 200 lags are calculated using limiting autocorrelation functions (see equations (11) and (16)).

Figure 2 Ratio of Autocorrelation of Systematically Sampled
4 _:’;md Aggregated ARFIMA(0,d,0) Processes to That of the True
ARFIMA(O, d,0) Processq=0.35 andn =5)
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Notes : The upper line represents the ratio of autocorrelations of the aggregated AREINAcess
to those of its true ARFIMA (@,,0) process. The lower line represents the ratio of autocorrelations
of the systematically sampled ARFIMA@Q) process to those of the true ARFIMA{() process.



Figure 3 Autocorrelation Functions of True, Systematically
0.05 - Sampled and Aggregated ARFIMA(Od ,0) Processes
' (d=-0.35 andn =5)
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Notes : The thick line represents the autocorrelation function of the aggregated ARFOVIA (Bpcess,
the middle line represents the autocorrelation function of the true ARFIBAprocess, and the thin
(upper) line represents the autocorrelation function of the systematically sampled AREINAfDocess.
The autocorrelations are calculated using exact autocorrelation functions.

Figure 4 Ratio of Autocorrelation of Systematically Sampled
. __and Aggregated ARFIMA(0,d,0) processes to That of the True
ARFIMA(O, d,0) Processd=-0.35 andn =5)
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Notes : The upper line represents the ratio of autocorrelations of the aggregated AREINAhcess
to those of its true ARFIMA (@,,0) process. The lower line represents the ratio of autocorrelations
of the systematically sampled ARFIMA@P) process to those of the true ARFIMA{() process.



