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Abstract

This study investigates the effects of varying sampling intervals on the long memory

characteristics of certain stochastic processes. We find that although different sampling

intervals do not affect the decay rate of discrete time long memory autocorrelation functions

in large lags, the autocorrelation functions in short lags are affected significantly. The level of

the autocorrelation functions moves upward for temporally aggregated processes and

downward for systematically sampled processes, and these effects result in a bias in the long

memory parameter. For the ARFIMA(0,d,0) process, the absolute magnitude of the long

memory parameter, |d|, of the temporally aggregated process is greater than the |d| of the true

process, which is greater than the |d| of the systematically sampled process. We also find that

the true long memory parameter can be obtained if we use a decay rate that is not affected by

different sampling intervals.
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1  Introduction

An important class of time series models are the so-called long memory processes which

were introduced by Mandelbrot and Van Ness (1968), Granger and Joyeux (1980), and

Hosking (1981). A simple property of long memory processes is that whilst the

autocorrelations decrease, they decrease very slowly. Therefore, the past influences the future

in a manner reminiscent of chaotic processes.

It is interesting to notice that many of the empirical studies use temporally aggregated

data, such as monthly time series, for the test of long memory process. We now have

available financial data that are sampled on many different frequencies. Consider foreign

exchange data for example. This is now available on a quote-by-quote or trade-by-trade basis.

It is also available on daily, weekly, and even much lower frequencies. This availability

naturally raises questions of temporal aggregation in long memory processes.

Ding, Granger and Engle (1992) conjectured that temporal aggregation does not

change the long memory property of the return series. Recently, Chambers (in press) shows

that at low frequencies, the decay rate of the spectral density functions of long memory

processes is not affected by sampling intervals. Therefore, the true long memory parameter

can be estimated by considering low frequencies regardless of the sampling interval.

A sampling interval which is different from the dynamics of the true process affects

the model specification of long memory processes. However, both the frequencies of the true

process and the effects of the sampling interval on the model specification of long memory

processes are not known. In this situation, an appropriate long memory model which takes

into account the sampling interval is impossible. Most empirical studies which use long

memory processes do not consider changes in model specification from varying sampling
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intervals. For this reason, we assume that the sampling interval does not change the model

specification for a long memory process and investigate changes in the long memory

parameter. Thus, our focus is whether or not there is a change in the long memory parameter

when different sampling intervals are used.

In what follows, we extend Chambers (in press) results by using both time and

frequency domain analysis in discrete time long memory processes1. Firstly, the effects of

systematic sampling and temporal aggregation on discrete time long memory processes are

presented in an analytical way; autocovariance, autocorrelation, and spectral density functions

are derived for the systematically sampled and temporally aggregated long memory

processes. Then, Monte Carlo simulations using frequency domain maximum likelihood

estimation methods are used for the finite sample properties of systematic sampling and

temporal aggregation effects on discrete time long memory processes.

Our study confirms the results of Chambers (in press), in that the decay rate of

discrete time long memory spectral density functions at low frequencies (or equivalently, the

decay rate of discrete time long memory autocorrelation functions in large lags) is not

affected by systematic sampling or temporal aggregation. However, significant effects of

systematic sampling or temporal aggregation are found in the autocorrelation functions at

short lags, which result in either upward or downward movements in the level of

autocorrelation function. We find that the effects are different for systematically sampled and

temporally aggregated long memory processes. The absolute value of the autocorrelation

coefficient of systematically sampled long memory processes becomes smaller as the

sampling interval increases, while the absolute value of the autocorrelation coefficient of

temporally aggregated long memory processes becomes larger as the sampling interval

increases. These effects result in a bias in the long memory parameter2. In systematically
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sampled long memory processes, the long memory parameter is always biased towards zero

as the sampling interval increases, while in temporally aggregated long memory processes the

absolute value of the long memory parameter, |d|, is larger than its true value. Although it is

not reported in this paper, we find that there is no temporal aggregation effect on continuous

time long memory processes. 

We also investigate whether or not the true long memory parameter can be obtained

from the decay rate of long memory spectral density functions at low frequencies in finite

samples. For this purpose, we use the semiparametric regression model suggested by Geweke

and Porter-Hudak (1983). Our simulation results using the semiparametric regression for

discrete time long memory processes show that the estimation biases are much less than the

biases of ML estimates. Therefore, the true long memory parameter can be estimated in

temporally aggregated long memory processes. However, the standard deviation of the

estimates is very large and significant estimation bias still exists in systematically sampled

long memory processes. 

2  Discrete Time Long Memory Processes

A model appears to be more attractive when just one parameter is used for long range

dependence. A long memory process is characterized as a process that should explain long

range dependence between observations more effectively than conventional short memory

processes. There are two major models for long memory process, continuous time models

such as the fractional Gaussian noise (FGN) model introduced by Mandelbrot and Van Ness

(1968), and discrete time models such as the autoregressive fractionally integrated moving

average (ARFIMA) model introduced by Granger and Joyeux (1980) and Hosking (1981).
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Although the FGN model has the benefit that it can be used together with ordinary Brownian

motion, the ARFIMA model is generally preferred to the FGN model. The main reason is that

the former can describe economic and financial time series better than the latter. Moreover,

the ARFIMA model is a generalisation of the more familiar autoregressive integrated moving

average (ARIMA) model; it captures both long and short memory, and it is easier to use than

the FGN model.

Discrete time long memory processes have much more flexibility than ARIMA(p,d,q)

models. The order of integration in the ARIMA process is confined only to integer values

such as 0 or 1. In this process a shock has mean-reversion with an exponential decay rate

when d=0, but has infinite persistence when d=1. This knife-edge distinction between

ARIMA( p,0,q) and ARIMA(p,1,q) may be too narrow. Long memory processes add more

flexibility by allowing for fractional orders of integration such as 0≤d≤1.

A discrete time long memory process (fractionally integrated process), which was

introduced by Granger and Joyeux (1980) and Hosking (1981), is defined to be a discrete

time stochastic process which is represented as

d
t

d
t tx L x u∇  =  (1- )  =  , (1)

where L is the lag operator, ut is an independent identically distributed random variable, and -

0.5<d<0.53. Using the binomial series expension, the fractional difference operator ∇ d can be

represented as

∇ d d

j

jL

= −
−

+ −=

∞

∑

(1 )

)

( 1) ( )

L

j d

j d
     =

Γ
Γ Γ

(
,

0

(2)

where ( ) is the gamma function.Γ ⋅  The infinite moving average representation of xt may be

denoted by4
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x L ut t j t j
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The autocovariance, autocorrelation and spectral density functions of the fractionally

integrated process for  s≥0 and 0<ω≤π are5
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where s is a lag between observations, ω is a frequency, and σ u
2  is a variance of ut. We can

see that the autocorrelations of the fractionally integrated series decline at a slower rate than

that of the autoregressive moving average (ARMA) model. The autocorrelation function (5)

decays at a hyperbolic rate, while that of the ARMA model decays exponentially.

Fractionally integrated processes show different characteristics depending on the

parameter d. A fractionally integrated process is covariance stationary and invertible when

-0.5 < < 0.5d , and it is a long memory process when d lies between 0 and 0.5. The fractional

differencing parameter d is defined by the behaviour of the series up to infinite cycles. As d

goes to 0.5, the decay rate of the impact of a unit innovation becomes slower. Hence, the
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fractional differencing parameter d decides the decay of the system's response to the

innovation. Sowell (1990) shows that, while the variance of the partial sums of variables

grows linearly with number of observations when d = 0, it grows faster than a linear rate

when 0<d<0.5. On the other hand, when -0.5<d<0, the process has short memory since each

shock is negatively correlated with the others, thus making the variance of the partial sums of

variables less than the variance of the individual shock. 

Fractionally integrated processes can easily be generalised to the ARFIMA(p,d,q)

process. More formally,

Φ Θ(L)(1- L) x = (L)ud
t t (7)

whereΦ(L) = 1 L L ... L1 2
2

p
p− − − −φ φ φ , Θ(L) = 1+ L+ L +...+ L1 2

2
p

qθ θ θ , -0.5<d<0.5, and

all the roots of Φ(L) and Θ(L) lie outside of the unit circle. In the ARFIMA model, d may be

chosen to describe the autocorrelation structure of distant observations of a time series, while

the θ and φ parameters can be chosen to describe the low lag autocorrelation structure.

Therefore, the ARFIMA model not only overcomes the drawbacks that Mcleod and Hipel

(1978) point out but also generalises the Box-Jenkins ARIMA model where only integral

differencing is allowed.

3  The Effects of Systematic Sampling and Temporal Aggregation on 
Discrete Time Long Memory Processes

The sampling interval of observed economic and financial time series (e.g., daily, weekly,

and monthly) does not necessarily correspond to the true unknown interval. We conjecture

that the sampling interval is longer than the true interval, resulting in temporal aggregation in

flow time series and systematic sampling in stock time series. We next investigate the effects

of systematic sampling and temporal aggregation on discrete time long memory processes
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under the assumption that the sampling interval is longer than the true interval.

This section shows the effects of systematic sampling and temporal aggregation on

discrete time long memory processes: a systematically sampled ARFIMA(0,d,0) process and

a temporally aggregated ARFIMA(0,d,0) process. For these two processes, properties such as

autocovariance, autocorrelation, and spectral density functions are derived.

Assumption 1  The dynamics of the true underlying discrete time process xt
D take place at

every unknown 1/η period where η is a positive integer, while the observations of the process

take place at every unit time period.

The underlying process is simply thought of as a series of logarithmic changes of the

original positive time series at discrete time intervals. For example, it is a return in financial

markets or a growth rate in economics.

In the assumption above, η is a sampling interval. More specifically, η is the number

of times the dynamics of the true underlying process take place between observations. When

η=1, the observed time series is equivalent to the true process. When η is a positive integer

greater than 1, then the time series is observed less frequently than the frequency of the true

process.

The true underlying process can be partially observed in two ways, systematic

sampling and temporal aggregation. A systematically sampled process is a sequence of the

true process at observation points and, thus, consists of every other η of the true process. A

temporally aggregated process is a sequence of the aggregated true process between sampling

intervals. Therefore, if the dynamics of the true process take place at every day, for example,
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the systematically sampled process is like observing a daily process every Monday but not on

other days and the temporally aggregated process is a weekly return process. 

Definition 1   A discrete systematically sampled process, whose true process has 1/η

dynamic periods, consists of { x xt
DS

t
D= ; t=1,2,3,...}. A discrete aggregated process, whose

true process has 1/η dynamic periods, consists of {x xt
DA

t
k

D

k 0

1

= ∑
−=

−

η

η
; t=1,2,3,...}.

When the true process has 1/η dynamic periods, the discrete true ARFIMA(0,d,0)

process, xt
DF, is defined as

(1- L ) x  =  d
t
DF

t

1

η ε η η η,                  =1,  1+1/ ,  1+ 2 / ,  1+ 3 / ,  ...,t (8)

where εt is a white noise sequence with variance σ2. Note that the variance σ2 is measured

with time interval 1/η. When we assume that the frequency of the process defined in section 2

is 1/η , the variance of the white noise, σ u
2 , in section 2 is identical to σ2 in equation (8).

Thus, without loss of generality, we assume σ σu
2 2=  throughout this section.

We represent a theorem concerning autocovariance, autocorrelation, and spectral

density functions of a systematically sampled ARFIMA(0,d,0) process. This generalises

theorem 1 (a) of Chambers (in press), where he derives the spectral density functions of a

systematically sampled ARFIMA(0,d,0) process. 

Theorem 1  Systematically Sampled ARFIMA(0,d,0) Process

Under assumption 1 and definition 1, the discrete systematically sampled ARFIMA(0,d,0)

process, xt
DSF, is represented as
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x
k d

d kt
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The autocovariance, γ ηDSF s( , ) , autocorrelation, ρ ηDSF s( , ) , and  spectral  density 

functions, SDSF ( , )ω η , of  xt
DSF  for  s≥0,  η≥1, and 0<ω≤π are given by
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π

η ω ω
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2 2
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0d d,         as ,

where η is a sampling interval, s is a lag between observations, ω is a frequency, and σ2 is a

variance of εt.

Proof : See the Appendix.

The properties of the discrete systematically sampled ARFIMA(0,d,0) process have a

sampling interval η that the true discrete ARFIMA(0,d,0) process does not have (see

equations (4), (5), and (6)). The true process is observed differently by the sampling interval.

As pointed out in Chambers (in press), the decay rate in the spectral density function at low

frequencies, -2d, is the same as that of the true ARFIMA(0,d,0) process. The autocorrelation

function for large s also confirms that the decay rate is not changed by systematic sampling
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(compare equation (11) with equation (5)).

However, the absolute value of the autocorrelation function of the systematically

sampled process is always less than that of the true ARFIMA(0,d,0) process, since for any

positive integer η>1, η2d-1 is less than 1 when -0.5<d<0.5. This decreased autocorrelation

function is expected to make the estimated d biased toward zero.  Figures 1 to 4 show the

changes of the autocorrelation functions for systematically sampled and aggregated

ARFIMA(0,d,0) processes when d=0.35(η=5) and d=-0.35(η=5), respectively. In figures 1

and 3, we can see that the absolute values of the autocorrelation functions are decreased by

systematic sampling.  Figures 2 and 4 show the ratios of the autocorrelations of xt
DSF to those

of the true process in various lags, which are always less than 1. Therefore, although we may

estimate the true d by considering low frequencies or equivalently remote autocorrelations, a

systematically sampled ARFIMA(0,d,0) process becomes less persistent than the true

ARFIMA(0,d,0) process.

A discrete aggregated ARFIMA(0,d,0) process, xt
DAF, can be obtained by summing a

discrete true ARFIMA(0,d,0) process, xt
DF, up to (η−1)/η lags.

t
DAF

j=0
-1

t j
DF

-d
t

-d-1
t

x  =  x

     =  (1+ L + L L ) (1- L )  

     =  (1- L) (1- L )  

η
η

η η
η

η η

η

ε

ε

Σ −
−

+

/

,...,     

     

1 2 1 1

1
(13)

We present a theorem concerning autocovariance, autocorrelation, and spectral density

functions of a temporally aggregated ARFIMA(0,d,0) process. This generalises theorem 1 (b)

of Chambers (in press), where he only derives spectral density functions of temporally

aggregated and systematically sampled ARFIMA(0,d,0) processes.
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Theorem 2   Temporally Aggregated ARFIMA(0,d,0) Process

Under assumption 1 and definition 1, the discrete aggregated ARFIMA(0,d,0) process, xt
DAF,

is defined as

x
k d

k dt
DAF

t
k j

kj
= +

+
∑∑

− −=

∞

=

− Γ
Γ Γ

( )

( ) ( )100

1

ε
η η

η
      =1,  2,  3,  ... t  (14)

The autocovariance, γ ηDAF s( , ) , autocorrelation, ρ ηDAF s( , ) , and spectral density functions,

SDAF ( , )ω η , of xt
DAF for s≥0, η≥1, and 0<ω≤π are given by
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s

   using Taylor series up to second order,

SDAF
d( , ) ( sin ) ( sin )( )ω η
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2
2 1 2

2
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(17)
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where η is a sampling interval, s is a lag between observations, ω is a frequency, and σ2 is a

variance of εt.

Proof : See the Appendix.



13

The limiting spectral density and autocorrelation functions show that the decay rate of

the ARFIMA(0,d,0) process is not changed by temporal aggregation, identical to results in

theorem 1 (b) of Chambers (in press). However, as we can see in figure 1, when d=0.35 and

η=5, the autocorrelation function of the aggregated process is always larger than that of the

true process. For positive d, 
η

η

1 2

1 2

1 2
1

+

+

+

− +
−

d

d

d d
d

d

( )
( )

( )

Γ
Γ

 in equation (16) is always larger than its true

value 
Γ

Γ
( )

( )

1− d

d
 in (5). This is shown in figure 2 by the ratio of the autocorrelation of the

aggregated ARFIMA(0,d,0) process to that of the true ARFIMA(0,d,0) process when d=0.35

and η=5. Therefore, although the limiting autocorrelation and spectral density functions do

not show any change in the decay rate, the level of the autocorrelation function moves

upward, making the aggregated ARFIMA(0,d,0) process more persistent than the true

ARFIMA(0,d,0) process. On the other hand, when -0.5<d<0, the ratio of the autocorrelation

function of the aggregated ARFIMA(0,d,0) process to that of the true ARFIMA(0,d,0)

process does not show a consistent pattern; see figure 4. However, the pattern of the

autocorrelation function of the aggregated ARFIMA(0,d,0) process in figure 3 is typical for a

larger negative d value. Therefore, for negative d, temporal aggregation makes the true

ARFIMA(0,d,0) process have a higher negative d. As a result, we conclude that, the absolute

value of the discrete time long memory parameter |d| of the aggregated ARFIMA(0,d,0)

process is larger than that of its true process. We present our conclusions in Proposition 1.

Proposition 1

1. Systematic Sampling Effect
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In the discrete systematically sampled ARFIMA(0,d,0) processes, the absolute values of d are

biased toward zero, as the sampling interval η increases.

2. Temporal Aggregation Effect

In the discrete aggregated ARFIMA(0,d,0) process, the absolute value of d increases as the

sampling interval η increases.

A referee suggests that the ARFIMA(p,d,q) model rather than the ARFIMA(0,d,0)

model would be better to specify the autocorrelation functions of systematically sampled or

temporally aggregated discrete time long memory processes. Figures 2 and 4 support this

suggestion; the ratios of autocorrelation of systematically sampled and temporally aggregated

ARFIMA(0,d,0) processes are not constant over lags. That is, the ratios vary for short lags,

but they approach a constant for larger lags. In addition, the major changes in the levels of the

autocorrelation of systematically sampled and temporally aggregated ARFIMA(0,d,0)

processes occur in the first lag. Therefore, although the autocorrelation functions of

systematically sampled and temporally aggregated ARFIMA(0,d,0) processes are O(s2d-1) as

s→∞, autocorrelation levels of systematically sampled and temporally aggregated

ARFIMA(0,d,0) processes are changed in short lags, generating a short memory process. In

these cases, ARFIMA(0,d,0) processes together with appropriate short memory processes

may be better specified than ARFIMA(0,d,0) processes for systematically sampled and

temporally aggregated ARFIMA(0,d,0) processes. However, we do not know what the

exactly specified model is or the dynamic period of the true underlying process. In this study,

we investigate the effects of sampling interval on the long memory parameter when sampling

intervals are disregarded.
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Whilst the above analysis reflects the impact of temporal aggregation on the true

model, it does not deal with issues of estimation. We consider this problem in the next

section.

4  Finite Sample Properties of the Effects of Systematic Sampling and
Temporal Aggregation on Discrete Time ARFIMA(0,d,0) Processes

4.1  Maximum Likelihood Estimation

Many studies of long memory processes have used the frequency domain approach, since the

spectral generating function is generally easy to evaluate. Time domain maximum likelihood

is computationally difficult to use for large sample sizes because of the inversion of the T×T

covariance matrix. The frequency domain approximate log-likelihood is represented as

follows:

ln lnL( ) = s( )
1

2

I( )

s( )k=

T-1

k
k

kk

T

θ ω ω
ω

− − ∑
=

−1

2 1 1

1

Σ , (18)

where I( ) =  
e (X - X )

2 Tk
t=1

T
i t

t T
k

ω
π

ωΣ
2

, s(ωk) is a spectral density function, and

ω
π

k

k

T
k= =

2
1 2, , , ..., and    -1T .

Fox and Taqqu (1986) prove that the estimates obtained using only the last term of

equation (18) are consistent and asymptotically normal. These results are extended by

Dahlhaus (1989) as in equation (18). Cheung and Diebold (1994) compare the exact time

domain ML estimates of Sowell (1992a) with the approximate frequency domain ML

estimates of Fox and Taqqu (1986). When the mean of a process is known, the time domain

ML estimates are superior. However, time domain ML estimates with a known mean are not
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feasible in practice. Time domain ML estimates with a sample mean do not seem to be

preferred to frequency domain ML estimates. In addition, when the sample size is more than

150 and d>0, there is little difference between the two, and the frequency domain ML

estimates are less biased than the time domain ML estimates. Therefore, Cheung and Diebold

(1994) suggest that the frequency domain ML estimation method is an attractive and efficient

alternative when large sample sizes are used. Hauser (1992) and Lee (1994) also find similar

results.

The recursive Levinson (1947)-Durbin (1960) algorithm is used for the generation of

the ARFIMA(0,d,0) process. The Cholesky decomposition is not a suitable method here,

because, as noted in GPH, it needs memory proportional to T2 and computation time

proportional to T3. Therefore, when as in this study T=1000, it becomes impractical to use the

Cholesky decomposition.

The GAUSS computer package is used for all computations. We use the same

GAUSS code as Lee (1994) for the generation of fractionally integrated processes. For the

numerical optimization method, the Broyden, Fletcher, Goldfard and Shanno (BFGS)

algorithm is used. However, when the BFGS algorithm cannot find the optimum, the

Davidon, Fletcher and Powell (DFP) algorithm, or the Newton-Raphson algorithm, or the

steepest descent method are used in that order. Convergence tolerance for the gradient of

estimated coefficients is set to 10-5.

Sampling intervals of η = 1, 5, 10, 15, 20 are explored.  First, a sample size of

T=1,000 is generated and then, the original time series are transformed into systematically

sampled or temporally aggregated processes. Systematically sampled  processes are obtained

by using the following formulation:
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x xt
S

t,η η= (19)

where  xt
s
,η  is a systematically sampled process with a sampling interval η and xt is the

originally generated series. When η=1, the frequencies of the true process are the same as the

observation frequencies. However, when η>1, the transformed process becomes a

systematically sampled process with sampling interval η.  To explore temporal aggregation

effects, the original process is temporally aggregated as follows6:

t,
A

k=
t-kx  =  xη

η

η
0

1−
Σ (20)

Since the sample size decreases according to the increase in the sampling interval, the sample

sizes for the sampling intervals η=1, 5, 10, 15, 20 are 1,000, 200, 100, 66, 50, respectively.

For the ARFIMA(0,d,0) process, equation (18) is used for the likelihood function.

The spectral density functions for the ARFIMA(0,d,0) process are

d
k

dkS
212

2

))cos(1(2
)(

ωπ
σ

ω η

−
= + (21)

where 2
ησ  is the variance of the white noise variables of systematically sampled or

temporally aggregated ARFIMA(0,d,0) processes. Since the exact values of the variance are

not known for systematically sampled and temporally aggregated processes7, we estimate

{d, 2
ησ } for the ARFIMA(0,d,0) model for all η.

As shown in section 3, the autocorrelations of systematically sampled and aggregated

processes are also a function of the parameters d.  Therefore, ten points in both the parameter

d of the ARFIMA process are explored: d=±0.05, ±0.15, ±0.25, ±0.35, ±0.45. For each {d, η}

set, 1000 Monte Carlo replications are performed. For the starting values of d, the true d

values are used. Sample variances of systematically sampled or temporally aggregated
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processes are used for the starting values of 2
ησ . The bias, standard deviation, and mean

square error (MSE) of the estimated d are computed.

The results of 1000 replications of the ML estimation of the ARFIMA(0,d,0)

processes are reported in tables 1 to 3. Table 1 shows the finite sample properties of the

frequency domain approximate ML estimation for the original ARFIMA(0,d,0) process at

sample sizes of T=1000, 200, 100, 66, 50, respectively. The results for the ARFIMA(0,d,0)

process are consistent with those of Hauser (1992) and Lee (1994). As expected, the

estimation bias and standard deviation of estimates tend to increase, as the sample size

becomes smaller.

Table 2 shows the simulation results for the finite sample properties of the

systematically sampled process. As explained in the previous section, for the systematically

sampled process, long memory parameters are biased toward zero. The finite sample

properties of the systematic sampling effects can be summarised as follows. Firstly, the

systematic sampling effect appears in the ARFIMA(0,d,0) process. When the dynamics of the

true process are more frequent than the observations of the process, the estimates of the

observed systematically sampled process are always biased toward zero. Table 2 shows that

the bias is larger in -0.5<d<0 than in 0<d<0.5. This is because in -0.5<d<0, long memory

processes have similar properties to those of short memory processes. 

Our second investigation looks at the temporal aggregation effects, see table 3. As

expected, in the aggregated ARFIMA(0,d,0) process, the aggregation effect has upward bias.

The simulation results support what we found in the section 3, that is, the absolute magnitude

of the long memory parameter, |d|, of the aggregated ARFIMA(0,d,0) process is greater than

the |d| of the true ARFIMA(0,d,0) process.
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Table 3 show that the magnitude of the bias depends on the sampling interval; the

bias of the aggregated ARFIMA(0,d,0) process increases as η increases. However, after some

sampling intervals, it shows little difference. This can be explained by the autocorrelation

function of (16). As η becomes infinitely large, the limiting autocorrelation function can be

represented as

            

ρ η
η

η

η

DAF
d d

d

s d
d d s

d

d

( , , )
( )

( )

( )

.

≈
+

−
+
−

≈ → ∞

+ −

+

1 2 2 1

1 2

1 2
1Γ

Γ

      

                   ,        d(1+ 2d)s2d-1 as   

(22)

Therefore, for an infinitely large η the autocorrelation is not a function of η. Note that the

above limiting autocorrelation function is the same as that of the discrete time fractional

Gaussian noise process, see Mandelbrot and Van Ness (1969). The dynamics of the true

process which have an infinitestimal interval in continuous time long memory processes

are equivalent to an infinitely large η in discrete time long memory processes.

4.2 Further Considerations

Chambers (in press) shows that the true long memory parameter d can be estimated

regardless of sampling interval, since the decay rates of the spectral density function are not

affected by systematic sampling or temporal aggregation. Our results agree with his for both

spectral density and autocorrelation functions; see equations (11), (12), (16), and (17).

To further investigate whether or not estimates obtained using low frequencies reflect

the true long memory parameter d, we use simulations with the semiparametric regression

analysis of Geweke and Porter-Hudak (1983) (GPH). GPH concentrate on low frequencies

because d is determined by the spectral density near zero frequencies.  Their equation can be
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represented as8

ln ln sin( )) I( ) =  c -  d (j
j

jω
ω

ε2
2

2 + (23)

where c is a constant. The long memory parameter d can be estimated with j=1,2,...,g(T),

where 
T

g T
→∞

= ∞lim ( ) and 
T

g T T
→∞

=lim ( ) / 0 . That is, g(T) should be sufficiently small compared

with T.  Here, g(T)9 is set equal to T0.5. As presented in equation (23), the semiparametric

method of GPH uses only the decay rate of fractionally integrated processes. Since systematic

sampling and temporal aggregation do not affect the decay rate of the true long memory

process, the GPH method is a more appropriate method to estimate the true unobserved long

memory parameter than parametric methods such as those used in the previous subsection.

Four points, d=±0.15, ±0.35 at sampling intervals η=1, 5, 10, 15, 20 are considered in

both the systematically sampled and temporally aggregated ARFIMA(0,d,0) processes. Other

simulation conditions are the same as those of the ML estimation of subsection 4.1.

Tables 4 to 6 show the results of 1,000 replications of GPH’s semiparametric

estimation. Table 4 represents finite sample properties of GPH’s estimates. The estimation

bias is small and seems robust to changes in sample size and d10. The standard deviation is

also robust to the changes in the value of the true parameter. However, the standard

deviations are larger than those of the ML estimates in table 1 and seem very large for small

samples. This is because the number of periodograms used in GPH estimation is only T0.5.

Therefore, the MSEs of the GPH estimates are high compared with those of ML estimates

and the GPH estimates are not efficient for small samples11.

Let us first consider the finite sample properties of systematically sampled processes.

Table 5 shows that the estimation bias is still present. Although the estimation biases are less

than that of the ML estimates (see table 2), they are still very large. In addition, for negative d



21

values, there is little difference between GPH and ML estimates. This may be because for

negative d, the discrete time long memory process has the properties of a short memory

process rather than those of a long memory process. However, as expected, for a temporally

aggregated long memory process, using low frequencies gives estimates close to the true long

memory parameter. Table 6 shows that the bias of estimates obtained using low frequencies is

small in the aggregated long memory process.

Therefore, for the finite samples considered in this study, the true d may not be

obtained when observed time series are systematically sampled. On the other hand, for the

temporally aggregated time series, we may obtain the true d by considering low frequencies.

However, note that standard deviations are relatively very high in the GPH’s semiparametric

estimates.

 Chambers (in press) concentrates only on the decay rate of long memory processes

near the zero frequency and suggests that the true long memory parameter can be estimated

using the decay rate of the spectral density function at low frequencies. Our finite sampling

simulations show that GPH semiparametric estimates using only low frequencies may fail to

obtain the true long memory parameter when the observed time series is systematically

sampled or the number of observations is small. In addition, the true long memory parameter

may not be obtained when -0.5<d<0.

5  Conclusion

This study investigated the effects of systematic sampling and temporal aggregation on long

memory processes under the assumption that there was no change in model specification

caused by systematic sampling or temporal aggregation. From the theoretical explanation in
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section 3 and the simulations conducted in section 4, the following results are obtained: for

the ARFIMA(0,d,0) process, the absolute value of the long memory parameter, |d|, of the

temporally aggregated process is larger than the |d| of the true process which is larger than the

|d| of the systematically sampled process.

Our results are consistent with those of Chambers (in press) and Ding, Granger and

Engle (1992) who conjecture that temporal aggregation does not change the decay rate of

autocorrelations. One of the interesting properties of discrete time long memory processes is

that although the autocorrelation level is affected by systematic sampling or temporal

aggregation, the decay rate of the autocorrelations in remote lags or equivalently, the decay

rate of spectral densities at low frequencies is not affected by the sampling interval. For the

finite samples used in this study, GPH’s semiparametric regression gives a long memory

parameter close to its true value for the temporally aggregated process, while the estimates

are still biased toward zero for the systematically sampled long memory process. 

However, it is worth pointing out that the autocorrelation function of discrete time

long memory processes shifts downwards or upwards by systematic sampling or temporal

aggregation. In this respect, although we may estimate the true long memory parameter using

the decay rates, we conclude that the sampling interval does impact on the long memory

parameter if we do not consider the changes in model specification. Empirical studies on the

existence of long memory processes in economic and financial time series may be affected by

the sampling interval. The probability that we find evidence of a long memory process

increases as the sampling interval increases for a temporally aggregated time series, if there

exists long memory. Our results in section 4 do suggest that for a large number of

observations such as in financial time series, the true long memory parameter may be

estimated using the semiparametric regression of Geweke and Porter-Hudak (1983).
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NOTES

1 The results for continuous time long memory processes can be obtained from the author on request.

2 We use ‘bias’ for the difference between the true long memory parameter values and the long memory

parameter values of the systematically sampled or temporally aggregated long memory processes. ‘Bias’ used

in this study means a model misspecification bias. We use ‘estimation bias’ for the difference between the

true values and the estimated parameter values to differentiate the ‘bias’ in this study. 

3 Although d may be any real number, d is assumed to lie in the interval (-0.5, 0.5) with a finite number of

difference.

4 Moving average (MA) representation will be used for our explanation. The autoregressive (AR) representation

can be inferred from the MA representation. That is, the d of the MA representation is equal to -d of the AR

representation.

5 See Granger and Joyeux (1980) and Hosking (1981) for proof.

6 Sample size of both systematically sampled and aggregated processes when η=15 is 66 and only the first 990

observations from the original sample size of 1000 are used.

7 Only when η=1, 2

1
σ  is known to be 1.

8 This equation is a logarithmic transformation of equation (6).

9 The GPH method has some difficulties in selecting g(T); see Sowell (1992b) and Hurvich and Beltrao (1993).

GPH suggest that g(T)=T0.5 is appropriate and Diebold and Rudebusch (1989) and Cheung (1993) also show that

the exponent (0.5) is appropriate. 

10 The biases of the GPH estimates are found in the presence of AR or MA processes (Agiakloglou, Newbold

and Wohar, 1993) and in either non-invertible (d=-0.5) or nonstationary (d=0.5) ARFIMA(0,d,0) processes

(Hurvich and Ray, 1995).

11 See Sowell (1992a) for the simulation results of the finite sample properties of GHP, time domain ML, and

frequency domain ML estimates. Also see Robinson (1994, 1995) and Hidalgo and Yajima (1997) for further

discussion of the GPH estimation and its modification.
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APPENDIX

Proof of Theorem 1   Systematically Sampled  ARFIMA(0,d,0) Process.

The spectral density function of xDSF in equation (12) is easily obtained from equation (8).

The autocovariance function of xDSF , γ ηDSF s( , ) , has an ηs lag between observations in the

true process. That is, a lag of magnitude s between observations in systematically sampled

ARFIMA(0,d,0) is equivalent to a lag of magnitude ηs in the true ARFIMA(0,d,0) process.

Therefore, we can use equation (4) to derive γ ηDSF s( , )  by simply replacing s with ηs.

Mathematically,
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where F(α,β;γ;1) is a hypergeometric function and
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The autocorrelation function in equation (11) follows straightforwardly.�

Proof of Theorem 2   Temporally Aggregated ARFIMA(0,d,0) Process.

Let us define )s(DFγ  as the autocovariance function of the true underlying fractionally

integrated process DF
tx , where s is a lag between observations. That is,
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using the following Lemma of Sowell (1990) twice;
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The variance function of DAF
tx  is
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Using the following equation (see 8.334, p946, Gradshteyn and Ryzhik, 1994)
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we have
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Since η is a positive integer, equation (A7) is the same as equation (A8). Equating and

rearranging the two equations, we have
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Therefore, we have
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The autocorrelation function of DAF
tx  is obtained using autocovariance function (A3) and

variance function (A9) of DAF
tx , and the spectral density function of DAF

tx  follows from

equation (13).�



Table 1  Finite Sample Properties of the Frequency Domain Approximate 
          Maximum Likelihood Estimation of ARFIMA(0,d ,0) Processes

1. Bias  
 Sample Size

True  d 1000 200 100 66 50
0.45 0.0015 -0.0015 -0.0084 -0.0124 -0.0173
0.35 0.0000 -0.0041 -0.0103 -0.0141 -0.0188
0.25 -0.0010 -0.0068 -0.0132 -0.0165 -0.0216
0.15 -0.0017 -0.0083 -0.0154 -0.0187 -0.0249
0.05 -0.0020 -0.0089 -0.0163 -0.0199 -0.0261
-0.05 -0.0019 -0.0087 -0.0161 -0.0199 -0.0258
-0.15 -0.0015 -0.0077 -0.0146 -0.0186 -0.0239
-0.25 -0.0007 -0.0056 -0.0117 -0.0157 -0.0203
-0.35 0.0008 -0.0022 -0.0072 -0.0111 -0.0146
-0.45 0.0035 0.0032 -0.0006 -0.0045 -0.0066

2. Standard Deviation
 Sample Size

True  d 1000 200 100 66 50
0.45 0.0268 0.0671 0.1036 0.1267 0.1544
0.35 0.0264 0.0662 0.0995 0.1259 0.1546
0.25 0.0261 0.0656 0.0993 0.1264 0.1543
0.15 0.0260 0.0655 0.0989 0.1266 0.1529
0.05 0.0259 0.0655 0.0990 0.1267 0.1532
-0.05 0.0258 0.0655 0.0992 0.1268 0.1534
-0.15 0.0258 0.0656 0.0995 0.1270 0.1538
-0.25 0.0258 0.0657 0.1000 0.1274 0.1546
-0.35 0.0260 0.0661 0.1008 0.1282 0.1558
-0.45 0.0265 0.0671 0.1024 0.1296 0.1574

3. Mean-Squared Error
 Sample Size

True  d 1000 200 100 66 50
0.45 0.0007 0.0045 0.0108 0.0162 0.0241
0.35 0.0007 0.0044 0.0100 0.0161 0.0243
0.25 0.0007 0.0043 0.0100 0.0162 0.0243
0.15 0.0007 0.0044 0.0100 0.0164 0.0240
0.05 0.0007 0.0044 0.0101 0.0164 0.0242
-0.05 0.0007 0.0044 0.0101 0.0165 0.0242
-0.15 0.0007 0.0044 0.0101 0.0165 0.0242
-0.25 0.0007 0.0044 0.0101 0.0165 0.0243
-0.35 0.0007 0.0044 0.0102 0.0166 0.0245
-0.45 0.0007 0.0045 0.0105 0.0168 0.0248

Notes: The results are based on 1000 replications of frequency domain ML estimates.

 



Table 2    Finite Sample Properties of the Frequency Domain Approximate
            Maximum Likelihood Estimation of Systematically Sampled

 ARFIMA(0, d ,0) Processes

1. Bias  
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.45 0.0015 -0.1188 -0.1638 -0.2001 -0.2200
0.35 0.0000 -0.1320 -0.1798 -0.2159 -0.2335
0.25 -0.0010 -0.1289 -0.1690 -0.1996 -0.2114
0.15 -0.0017 -0.1007 -0.1244 -0.1472 -0.1518
0.05 -0.0020 -0.0441 -0.0512 -0.0679 -0.0684
-0.05 -0.0019 0.0355 0.0390 0.0251 0.0261
-0.15 -0.0015 0.1289 0.1370 0.1238 0.1248
-0.25 -0.0007 0.2289 0.2379 0.2243 0.2249
-0.35 0.0008 0.3315 0.3396 0.3253 0.3255
-0.45 0.0035 0.4348 0.4411 0.4262 0.4262

2. Standard Deviation
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.45 0.0268 0.0623 0.0981 0.1263 0.1523
0.35 0.0264 0.0609 0.0959 0.1258 0.1509
0.25 0.0261 0.0601 0.0951 0.1243 0.1499
0.15 0.0260 0.0606 0.0955 0.1238 0.1490
0.05 0.0259 0.0622 0.0961 0.1226 0.1495
-0.05 0.0258 0.0631 0.0965 0.1217 0.1510
-0.15 0.0258 0.0632 0.0967 0.1212 0.1529
-0.25 0.0258 0.0628 0.0965 0.1209 0.1548
-0.35 0.0260 0.0623 0.0963 0.1208 0.1562
-0.45 0.0265 0.0618 0.0962 0.1209 0.1571

3. Mean-Squared Error
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.45 0.0007 0.0180 0.0364 0.0560 0.0716
0.35 0.0007 0.0211 0.0415 0.0624 0.0773
0.25 0.0007 0.0202 0.0376 0.0553 0.0672
0.15 0.0007 0.0138 0.0246 0.0370 0.0452
0.05 0.0007 0.0058 0.0119 0.0196 0.0270
-0.05 0.0007 0.0052 0.0108 0.0154 0.0235
-0.15 0.0007 0.0206 0.0281 0.0300 0.0390
-0.25 0.0007 0.0564 0.0659 0.0649 0.0746
-0.35 0.0007 0.1138 0.1246 0.1204 0.1304
-0.45 0.0007 0.1929 0.2038 0.1963 0.2063

Notes: The results are based on 1000 replications of frequency domain ML estimates.
Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50, 
respectively. 
 



Table 3  Finite Sample Properties of the Frequency Domain Approximate
                Maximum Likelihood Estimation of Temporally Aggregated

 ARFIMA(0, d ,0) Processes

1. Bias  
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.45 0.0015 0.0916 0.1041 0.0977 0.0909
0.35 0.0000 0.0694 0.0802 0.0776 0.0687
0.25 -0.0010 0.0480 0.0562 0.0540 0.0463
0.15 -0.0017 0.0267 0.0307 0.0262 0.0177
0.05 -0.0020 0.0052 0.0046 -0.0030 -0.0119
-0.05 -0.0019 -0.0165 -0.0224 -0.0335 -0.0427
-0.15 -0.0015 -0.0380 -0.0500 -0.0651 -0.0745
-0.25 -0.0007 -0.0587 -0.0774 -0.0968 -0.1068
-0.35 0.0008 -0.0773 -0.1028 -0.1259 -0.1370
-0.45 0.0035 -0.0910 -0.1223 -0.1473 -0.1598

2. Standard Deviation
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.45 0.0268 0.0708 0.1038 0.1348 0.1603
0.35 0.0264 0.0673 0.0995 0.1288 0.1530
0.25 0.0261 0.0655 0.0969 0.1280 0.1530
0.15 0.0260 0.0652 0.0962 0.1272 0.1520
0.05 0.0259 0.0652 0.0963 0.1265 0.1532
-0.05 0.0258 0.0651 0.0962 0.1267 0.1542
-0.15 0.0258 0.0651 0.0961 0.1271 0.1554
-0.25 0.0258 0.0652 0.0965 0.1278 0.1568
-0.35 0.0260 0.0657 0.0976 0.1290 0.1584
-0.45 0.0265 0.0675 0.1004 0.1314 0.1599

3. Mean-Squared Error
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.45 0.0007 0.0134 0.0216 0.0277 0.0340
0.35 0.0007 0.0093 0.0163 0.0226 0.0281
0.25 0.0007 0.0066 0.0125 0.0193 0.0255
0.15 0.0007 0.0050 0.0102 0.0169 0.0234
0.05 0.0007 0.0043 0.0093 0.0160 0.0236
-0.05 0.0007 0.0045 0.0097 0.0172 0.0256
-0.15 0.0007 0.0057 0.0117 0.0204 0.0297
-0.25 0.0007 0.0077 0.0153 0.0257 0.0360
-0.35 0.0007 0.0103 0.0201 0.0325 0.0439
-0.45 0.0007 0.0129 0.0250 0.0390 0.0511

Notes: The results are based on 1000 replications of frequency domain ML estimates.
Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50, 
respectively.
 



Table 4     Finite Sample Properties of the Semiparametric Regression
                        Analysis of GPH  for ARFIMA(0,d ,0) Processes

1. Bias  
 Sample Size

True  d 1000 200 100 66 50
0.35 0.0023 0.0087 0.0134 0.0168 0.0065
0.15 -0.0038 -0.0021 0.0026 0.0061 -0.0044
-0.15 -0.0051 0.0045 0.0055 0.0003 -0.0065
-0.35 0.0084 0.0268 0.0252 0.0186 0.0132

2. Standard Deviation
 Sample Size

True  d 1000 200 100 66 50
0.35 0.1378 0.2360 0.2921 0.3546 0.3908
0.15 0.1372 0.2426 0.2946 0.3495 0.3981
-0.15 0.1404 0.2384 0.2943 0.3577 0.4045
-0.35 0.1415 0.2365 0.2909 0.3484 0.3976

3. Mean Squared Error
 Sample Size

True  d 1000 200 100 66 50
0.35 0.0190 0.0558 0.0855 0.1260 0.1528
0.15 0.0189 0.0589 0.0868 0.1222 0.1585
-0.15 0.0197 0.0569 0.0866 0.1279 0.1637
-0.35 0.0201 0.0567 0.0853 0.1217 0.1582

Notes: The results are based on 1000 replications of GPH semiparametric regression
estimates. 



 

   Table 5  Finite Sample Properties of Semiparametric Regression 
Analysis of GPH for Systematically Sampled ARFIMA(0,d ,0) Processes

1. Bias  
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.35 0.0023 -0.0567 -0.1212 -0.1533 -0.2013
0.15 -0.0038 -0.0796 -0.1101 -0.1229 -0.1355
-0.15 -0.0051 0.1374 0.1413 0.1539 0.1477
-0.35 0.0084 0.3413 0.3422 0.3489 0.3527

2. Standard Deviation
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.35 0.1378 0.2311 0.3067 0.3508 0.3976
0.15 0.1372 0.2332 0.2842 0.3438 0.3924
-0.15 0.1404 0.2362 0.2871 0.3399 0.3935
-0.35 0.1415 0.2472 0.2852 0.3454 0.3773

3. Mean Squared Error
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.35 0.0190 0.0567 0.1088 0.1466 0.1986
0.15 0.0189 0.0607 0.0929 0.1333 0.1723
-0.15 0.0197 0.0747 0.1024 0.1392 0.1767
-0.35 0.0201 0.1776 0.1984 0.2410 0.2668

Notes: The results are based on 1000 replications of semiparametric regression estimates.

Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50, 

respectively.
 



    Table 6   Finite Sample Properties of Semiparametric Regression 
Analysis of GPH for Temporally Aggregated ARFIMA(0,d ,0) Processes

1. Bias  
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.35 0.0023 0.0033 0.0019 0.0125 0.0105
0.15 -0.0038 -0.0061 -0.0073 -0.0043 -0.0071
-0.15 -0.0051 -0.0145 -0.0238 -0.0276 -0.0377
-0.35 0.0084 -0.0036 -0.0229 -0.0382 -0.0493

2. Standard Deviation
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.35 0.1378 0.2351 0.2918 0.3562 0.4002
0.15 0.1372 0.2342 0.2904 0.3650 0.3973
-0.15 0.1404 0.2377 0.3041 0.3627 0.4132
-0.35 0.1415 0.2423 0.2954 0.3545 0.3970

3. Mean Squared Error  
 Sampling Interval (τ )

True  d 1 5 10 15 20
0.35 0.0190 0.0553 0.0851 0.1270 0.1603
0.15 0.0189 0.0549 0.0844 0.1332 0.1579
-0.15 0.0197 0.0567 0.0930 0.1323 0.1722
-0.35 0.0201 0.0587 0.0878 0.1271 0.1601

Notes: The results are based on 1000 replications of semiparametric regression estimates.
Sample sizes for sampling intervals 1, 5, 10, 15, and 20 are 1000, 200, 100, 66, and 50, 
respectively. 
 



Notes : The upper line represents the autocorrelation function of the aggregated ARFIMA (0,d ,0) process,
the middle line represents the autocorrelation function of the true ARFIMA(0,d ,0) process, and the lower
line represents the autocorrelation function of the systematically sampled ARFIMA(0,d ,0) process.
The autocorrelations up to 30 lags are calculated using exact autocorrelation functions and autocorrelations
from 31 to 200 lags are calculated using limiting autocorrelation functions (see equations (11) and (16)).

Notes : The upper line represents the ratio of autocorrelations of the aggregated ARFIMA (0,d ,0) process
to those of its true ARFIMA (0,d ,0) process. The lower line represents the ratio of autocorrelations
of the systematically sampled ARFIMA(0,d ,0) process to those of the true ARFIMA(0,d ,0) process.

Figure 1  Autocorrelation Functions of True, Systematically 
Sampled and Aggregated ARFIMA(0,d ,0) Processes

(d=0.35 and η =5)
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Figure 2  Ratio of Autocorrelation of Systematically Sampled 
and Aggregated ARFIMA(0,d ,0) Processes to That of the True 

ARFIMA(0, d ,0) Process (d=0.35 and η =5)
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Notes : The thick line represents the autocorrelation function of the aggregated ARFIMA (0,d ,0) process,
the middle line represents the autocorrelation function of the true ARFIMA(0,d ,0) process, and the thin
(upper) line represents the autocorrelation function of the systematically sampled ARFIMA(0,d ,0) process.
The autocorrelations are calculated using exact autocorrelation functions.
 

Notes : The upper line represents the ratio of autocorrelations of the aggregated ARFIMA (0,d ,0) process
to those of its true ARFIMA (0,d ,0) process. The lower line represents the ratio of autocorrelations
of the systematically sampled ARFIMA(0,d ,0) process to those of the true ARFIMA(0,d ,0) process.

Figure 3  Autocorrelation Functions of True, Systematically 
Sampled and Aggregated ARFIMA(0,d ,0) Processes

(d=-0.35 and η =5)
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Figure 4  Ratio of Autocorrelation of Systematically Sampled 
and Aggregated ARFIMA(0,d ,0) processes to That of the True 

ARFIMA(0, d ,0) Process (d=-0.35 and η =5) 
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