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Abstract

This paper suggests a refinement of the standard T2 test statistic used in testing
asset pricing theories in linear factor models. The test is designed to have improved
power characteristics and to deal with the empirically important case where there
are many more assets than time periods. This is necessary because the case of too
few time periods invalidates the conventional 72. Furthermore, the test is shown
to have reasonable power in cases when common factors are present in the residual
covariance matrix.



1 Introduction

The purpose of this paper is to suggest a new procedure for testing asset pricing
theories in linear factor models. Conventionally, an F' test based on Hotelling’s 1
statistic is the standard procedure; this was suggested by Jobson and Korkie (1982),
investigated by Mackinlay (1987), and further investigated by Gibbons, Ross, and
Shanken (1989). A broad discussion of this test and its properties are contained in
Campbell, Lo, and MacKinlay (1997) (hereafter, CLM).

The T? test is known to suffer from two clear defects. Firstly, it can only be
applied to universe of stocks where the number of stocks, IV, is less than the number
of observations, T'. Empirically, this is very restrictive, as practitioners often set N
to 20,000 (stocks) and T to 60 (five years of monthly data) in global stock selection
models. Secondly, it is known to lack power; in particular, the procedure uses the
unconstrained maximum likelihood estimator of the (N x N) covariance matrix of
the idiosyncratic errors in the linear factor model. In many cases there are known
restrictions on this covariance matrix.

The procedure we advocate uses a restricted covariance matrix to gain power
and, by construction, will be valid for all N and T" greater than K, where K is the
number of factors in the linear model. Furthermore, our test, a Wald test, has an
exact distribution which, like T2, is parameter free and depends only on N, T', and
K. In fact, the distribution of our test statistic is of some statistical interest being
the N fold convolution of the F(1,T7 — K — 1) distribution divided by N. Since
the characteristic function of the F' distribution is known, see Phillips (1982), it is
possible to compute an expression for the characteristic function of our test statistic.
We cannot derive a closed form expression for the density of the test statistic but we
can compute it numerically very easily, as well as its power function, for the usual
alternative hypotheses.

In the next section, we described the Hotelling T test and motivate and derive
our test statistic. In section 3, we present some critical values for our test and
compare them with those of the T2 test. Some power calculations and empirical
calculations are contained in section 4. Our conclusions follow in section 5.

2 New Test Statistic for Linear Factor Models

The popularity of linear factor models (LFMs) in financial economics stems from
the arbitrage pricing theory (APT) introduced by Ross (1976) which allows for
explanations of risk premia using multiple risk factors. Under the assumption that
markets are competitive and frictionless and that there are K factors, the APT is
applied to the system of N asset returns;

Rt = -+ Bft + &t (1>
E[é't’ft] =0



E[é'té';’ft] = X

where Ry = (R1¢ Rt - - Ryyt) is a vector of asset returns, a= (g ag -+ + ay)’ is
a vector of intercept of the factor model, 8= (8, B, - - By) is an (N x K) matrix
of factor sensitivities, where 3; is an (K x 1) vector of factor sensitivities for asset
g, B = (fir far -+ [xy) 1s a vector of common factor realizations, and €, = (g,
€94+ £ny) 18 an did vector of disturbance terms.

In this model, the disturbance terms are uncorrelated across assets since the
factors are assumed to account for all the common variation in asset returns. Fur-
thermore, following the arguments in Ross (1976) the model implies,

BE(R) = iXo + B, (2)

where )g is the risk{ree return or zero-beta portfolio return, Ax is a (K x 1) vector
of factor risk premia, and i is an (N x 1) vector, i =(1 - -+ 1)’. Note that the exact
parametric restriction implied by equation (2) is justified by the findings of Connor
(1984), Dybvig (1985) and Grinblatt and Titman (1985), who show that theoretical
deviations of approximate factor pricing models from exact factor pricing are likely
to be negligible under plausible conditions. Although the APT is known to apply
for more general processes than those described by equation (1), see, for example,
Chamberlain and Rothschild (1983) and Reisman (1992), equations (1) and (2)
remain a model of central importance to financial economics, not least because of
its links with factor analysis, and its widespread adoption by practitioners.

2.1 Conventional F Statistic for Linear Factor Models

Among several versions of the exact factor pricing model, we consider the case that
factors are portfolios of traded assets and a riskfree asset exists.!Then, a testable
version for the exact factor pricing model is

rt:a—l—ﬁr{—l—et (3)

where r, is now a (N x 1) vector of excess returns for N assets and rf is a (K x 1)
vector of factor portfolio excess returns, and €; = (€14 €2 - - €nyt) is a (N x 1)
vector of disturbance terms whose variance-covariance matrix is F(€:€;) = 2.

When we assume that returns conditional on the factor realizations are iid jointly
multivariate normal, from the maximum likelihood (or equivalently OLS) estimators
we have conditionally on the factor realisations,

— 1 A~
& N(a, (1 + Fhe 2 i) B, (4)

where



T
~ 1 =N =N
Qx = T ;(r{ - HK)(T{ - “’K)/'

See Gibbons, Ross, and Shanken (1989) for the one factor model and chapter 6 of
CLM for the multi-factor model.
The Wald test statistic for the hypothesis Hy : a = ag 1s

S{ =T+ @S ] (@—a0) 3! (@—a0) X*(N). (5)

The equation (5) says that the null hypothesis is distributed as chi-square with N
degrees of freedom. With the replacement of the sample estimate of 32 in equation
(5), the usual multivariate F-test statistic is

T-N-K

Sy N

[+ A i) (@—a0)'S (@—a0), (6)

where

1 T

Y = ?;(rt—ﬁ—,@r{)(rt—ﬁ—ﬁr{)’
and a and B are the maximum likelihood estimators of a and 3, respectively. It can
be shown that the test statistic, Sy, is unconditionally distributed central F' with
N degrees of freedom in the numerator and (T'— N — K) degrees of freedom in the
denominator; see chapters 5 and 6 of CLLM for a detailed explanation.
Thus, for the test of APT models, i.e., the null hypothesis of H§ : a = 0 against
the alternative hypothesis H{ : a # 0, the usual multivariate F-test statistic is

T-N-K _,

S1 @'y 'a (7)

where ¢ = (1 + ﬁ}(ﬁ;ﬁK)fl

As previously mentioned, we face a problem when 7" is smaller than N. Because
of the time-varying properties of risk factors, most practitioners tend to estimate
LEM’s using monthly data for 5 to 7 years. In this case, the degrees of freedom,
(IT'— N — K), in the denominator of the conventional F' test statistic can become
negative, the covariance matrix 3 becomes singular, and thus we cannot apply the
F' test, see equation (7).

Although asset returns are widely known to be skewed and fat-tailed and as
such this may seem to restrict the usefulness of the linear factor model with normal
errors, it should be pointed out that in many actual and potential appications; (i)
the data are monthly, so that time aggregation makes the data more normal, (i)
most of the non-normal results are to do with returns, rather than residual returns.
It is obvious that the errors could be normal and returns could be (unconditionally)
non-normal.



It is further assumed that returns are iid; much has been written on this topic
but it is worth noting that we only require our errors to be iid. Thus, factors could
provide a variety of time-series behaviour; indeed since they contribute to the risk
premia of individual assets, we may well expect tham to be serially correlated.

2.2 Sum of F Statistic for Linear Factor Models

A solution to the problem of the standard procedure based on the Hotelling’s sta-
tistics is to impose zero restrictions on the off-diaonal elements of the covariance
matrix of the errors, 3J. The new test statistic based on this assumption is well de-
fined even in situations where N > T'. In what follows we assume the Wald testing
principle.

Note that the standard assumption of linear factor models is that 33 is diagonal,
see Ross (1976). Even if X is not diagonal, then its off-diagonal elements will be
the result of missing factors whose exposure is hopefully small. Imposing a (false)
zero restriction may reduce estimation error, especially in the case when N is large.
Therefore, under the assumption that the risk premium at time ¢ is described by
the estimated value of Br{ at time ¢, the appropriate test statistic, SY, to test the
efficiency of such a theory, i.e., Hy:a =0, is

Sy = Taax¥'a (8)

For the unknown true 0?, the new test statistic is still distributed with chi-square
with IV degrees of freedom as explained in equation (5). Now let us consider the
sample estimate 3? instead of 0? in the new test statistic SY¥. The relationship

between the unknown 0? and the sample estimate, (/7\? is

T
~ 1 ~ 5
7 = gt = Brl)’ (9
t=1
~02X2(T K—1)
I T-K-1
Therefore, we have
2 2
o, .x*(T—K-1)
0_; T—-—K-1 (10)
j

When @7 /0% in equation (8) is divided by 35 /0% for each j, we have the following
test statistic. This is a Wald test in that we directly compute the distribution of the
tested restrictions, replacing unknown parameters by maximum likelihood estimates.



Diagonality for the covariance matrix follows from the maintained hypothesis. Thus
we get,
A
Sy = TCZU—;/U—; (11)
=13 %
N a2

= TCZ %

j=1 ZtT:l(Tj,t —a; — /Bjr{>2/(T - K-1)

N
Y F(1,T-K-1)
=1

where F;(1,1T — K — 1) are independent variable with 1 degree of freedom in the
numerator and (T — K — 1) degrees of freedom in the denominator.

When T is very large compared with K, each F;(1,7 — K — 1) converges in
distribution to a chi-square distribution with 1 degree of freedom. Therefore, in
this case, S5 converges to a chi-square distribution with N degrees of freedom.
Furthermore, our test, as a Wald test, will have the usual large T" fixed N optimality
properties associated with local power.

As suggested by a referee, an alternative to our procedure is to consider the
above problem as a Neyman and Scott (1948) problem and use 'new likelihood’
methods such as the Cox-Reid conditional likelihood and McCullagh-Tibshirani ad-
justed score and likelihood to generate alternative estimators and tests; see, Ghosh
(1994). We have not explored linkages and comparison between these approaches
and our approach.

To obtain a statistic that is asymptotically scaled for large T', we suggest as our
new statistic

Sy = S;/N (12)

N
1
NZFj(l,T— K—1).
=1
When T is very large compared with K, S, is distributed as x?(N)/N. This is

the same asymptotic result as the case of the conventional test statistic of equation

(7), since in that case we have lim F(N, T — N — K)i X*(N)/N, where d means

convergence in distribution. Fo::: ootoher relationships for Sy and between S; and S5,
note that Sy = Sy if N = 1. If N gets large we get by the weak law of large numbers
that Sy converges in probability to E[F(1,T — K — 1)] which equals to ;:g:; for
T — K > 3. For Sy, if N gets large T needs to get large as well so that T"— K — N
remains positive. If T" and N get large together such that T'— K — N > 0, we find
that plim S; = plim S, = 1.

The new statistic can be applied to any case when the number of observations,
T, is larger than the number of factors plus one, K + 1. This is a major advantage
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of our new test statistic since in many cases, as we have discussed, we have the
number of assets larger than the number of observations. On the other hand, the
conventional I statistic requires T'— K — N > 0, which does not always happen in
practice as we explained above.

The probability density function of our new test statistic is discussed and its
characteristic function derived; see Appendix. However, a closed form of the pdf of
the new test statistic is not suggested. This might be thought of as a disadvantage
of the new test statistic. By inspection, its density depends only upon T, N, and K.
In the following section, we tabulate the new statistic for various 7', N, and K with
Monte Carlo simulations.

2.3 Missing Factors and the New Test Statistic

Suppose that the true model is the linear factor model represented in equation (3).
Then for any P, 0 < P < K, and () = K — P, we can rewrite the model as

rr=a+ Blrgl + BQI{Q + € (13>

where 3; (N x P) is the first P columns of 3 and B, (N x Q) is the last @) columns
of B. In addition, r{' (P x 1 vector) is the first P rows of r/ and r? (@ x 1 vector)
is the last Q rows of r/.

Let us assume that we include only the first P factors in the LEM. That is,

r, = ap+03,rl" + v, (14)

where ap = a+ Bou’?, v, = € + By(r]> — p?), and p> = E(r{?). Then the

variance-covariance matrix conditioning on the P factors are
p= B0, + X, (15)

where €2 is the variance-covariance matrix of the () factor returns. Note that in
this discussion, the factor returns are usually restricted to be orthogonal to each
other and to have unit variance, that is, Qx= I, Qo= 1g,and Qp= Ip. Therefore,
we have

. 1,
ap"N(a+Byp", (1 + fpip)Sp) (16)

where Xp= 3,3, + X.

Since we do not know the true factors in the LEM, for the null hypothesis of
Hy : ap = 0 against the alternative hypothesis Hy : ap # 0, the usual multivariate
I'-test statistic is

T—N-P
SIZT

1+ f@phip] 183, ap (17)



where

Xp = % Z(rt —ap—Birf!)(r, —ap — Bixl').
t=1
For our new test statistic, we may not simply assume a’Pz]];lap = E;V:h,_]; as
in equation (8), since the variance-covariance matrix of Xp in equation (16) is no
longer a diagonal matrix. However, as is the often the case, the factor loadings, the
elements in the vector 3,, are small and if the number of missing factors, @, is also
small, we can assume 3,3, is negligible. The assumption gives us approximately

the same test statistic as follows, 1.e.,
XN
Sy p N;Fj(l,T—P—l). (18)

In this case, S is still distributed correctly under Hy up to a scalar. If the above as-
sumptions are not reasonable, then power calculations can be carried out to evaluate
both tests relative performance, see Mackinlay (1987), for an analysis of S;.

Our arguments in the non-diagonal case can be seen as a procedure of imposing
false constraints in a model to improve efficiency or power. Thus we (falsely) assume
that the nuisance (off-diagonal) parameters in the covariacne matrix are zero even
when they not. To assess the merits of this approach requires a simulation study
which we provide in the following section.

3 Simulations for the New Test Statistic

In the previous section, we investigated the new test statistic, Sy, when all the pop-
ulation covariances were zero in equation (2). It seems difficult to get an analytic
derivation of pdf (y) and we do not suggest a closed form solution for the new sta-
tistics. Note that an F' test based on Hotelling’s T? statistics has a finite sample
distribution that is known in closed form and tabulated.

In this section, we calculate pdf (y) via simulations. Since the closed form solution
is not known, we carry out extensive simulations to tabulate the statistics; simula-
tions for test statistics and power tests for given critical values. All the simulation
results reported in this study are obtained with 10,000 replications.

3.1 Simulated Tabulations of the New Test Statistic

Our first simulation procedure for the calculation of test statistics for given critical
values is as follows. We first generate N variables each of which has T'— K obser-
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vations from the N (0, 1) distribution, which is denoted as variable z. Then for each
variable, the square of the last observation is divided by the sum of the square of
the first T'— K — 1 observations. More formally, we generate the 7' F'(1,T — K —1)
variable x;

2
AT K,j

€T, = d ]_9

oy (- K - 1) o)

where 27N (0,1). We use the same method for all N variables. Then, the N variables
are averaged. We repeat this procedure 10,000 times to obtain 10,000 statistics and
report the result together with the conventional F' distribution of S; with T'— K — N
degrees of freedom in the numerator and N degrees of freedom in the denominator.

We use the number of observations, 7" = 60 and 120, and 7" = 600 to investigate
the properties of the new statistics when T" become very large. The number of assets,
N, varies from 10 to 1,000 in our settings. As explained before, when T— N — K < 0,
ordinary F'statistics are not available, whilst the new statistic is available. We report
the new statistics for large N such as 500 and 1,000 to see how the new statistics
behave. Finally, the number of factors is set to 1, 2, 3, 4, 5, and 10.We believe
these values of the number of factors cover most cases in the tests of linear factor
models. See section 6.4 of CLM for a summary on this topic.

Table 1 reports the simulation results for seven cases. All the results in table 1
are supported by the analytical discussion in the previous section. First, the results
show that both the new and conventional F statistics approach x?(N)/N when T
becomes large. For example, when 7" = 600 (panel G), the conventional F statistics
and the new statistics become close to each other; compare the results in panel G
with those of panels A and B. Secondly, when N is large, by the weak law of large
numbers, the new statistic approaches ;:g:; for T'— K > 3. The last row of each
panel shows values of ;:g:; for given T" and K. Table 1 also reports critical values
when N > T, which cannot be obtained with the conventional I statistic. This is
one of the most useful advantage of the new statistic.

3.2 The Power of the New Tests

In this subsection, we represent three simulations for the power of the new tests and
compare the results with those of the conventional F' tests. The power of a test is
the probability that the null hypothesis is rejected when an alternative hypothesis
is true, and is a useful tool to discriminate between different test statistics. The
choice of parameter values for the power calculations depend upon ones view about
what are interesting alternatives. In this study, we use the non-centrality parameter
values in chapter 5 of CLM, and real data for the missing factors in the previous
section, details of which are explained below.
As explained above, the distribution of the conventional S; for the alternative
hypothesis is
S1(61) " F(N, T — N — K; 61) (20)

8



where 01 is the non-centrality parameter of the I’ distribution which is defined as

§ =T+ Q2 ') 'a'S 'a (21)
see MacKinlay (1987) for a detailed explanation. On the other hand, the distribution
of Sy for the alternative hypothesis is

N

52(52)~% D F(LT = K = 1;6) (22)

=1

where 8, = (64,1, 02,2,...62.v) is the vector of the non-centrality parameters of the
new test statistic distribution. The 84 ; are defined by

52,3‘ = T[l + ﬁ%ﬂilﬁk]’l (23>

m.qw | H.Qw

Here we only consider the case of K =1 for the market portfolio, but similar results
can be obtained for K > 1. In the K = 1 case for the alternative hypothesis, the
distribution of the conventional S1(61) is FI(N,T — N — 1;61) where 6y = T[1 +

~2 ~2 7—1 x2 ~9
g—g]fla’zfla =T [1 + g—g} [;—g — g—g}, where p represents the tangency portfolio

(the mean-variance efficient portfolio); see Gibbons, Ross, and Shanken (1989) for
the derivation of this equation. In addition, the distribution of Sy for the alternative

N o2
hypothesis is 52(62)~% E;.V:l F;(1,T — 2; 69, ;) where 69 ; = T|[1 + ﬁ]*l—é.

2l 5

Let us first consider the case of Hy : a; =0, j = 1,..., N against Hil La; =,

for j =1, and a; =0, for 7 = 2,..., N. This is the case when one asset, asset 1, of

the N has a non-zero alpha under H{. We first generate a chi-square variable x?(1)

from the standard normal variable z"N(0,1). Then the non-central variable z73(6;)
for the alternative hypothesis of S7(6;) is generated with

XH(1561) + Y, X2 (D)| /N
z1(61) = T-N—1_o (24)
Ej:l Xj(1>/(T -N-1)

where 61 is the non-centrality parameter of the first chi-square variable which can

~5
be represented as 6y = T[1 + g—gm]flz—; On the other hand, the non-central variable
m 1

x3(69) for the alternative hypothesis of S;(8,) is generated with

! X’ (L 82,1) S X;(1)
75(62) = - ’ + - (25)
N X (/T = 2) Jz; Yot Xon s (1D/(T = 2)
where 691 = T[1 + %]71:—; For the value of %, we use 0.013 as in chapter 5

of CLM, which is equin;falent to the market portfoTio with the annualised expected
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excess return of 8% and the annualised standard deviation of 20%. In addition, the
2
values for é are set to the values of 0, 0.004, 0.008, ..., 0.396. The power of our test

statistic, S (62) is calculated for critical values of 1%, 2.5%, 5%, and 10%. That is,
numbers of variables larger than the test statistics obtained with the critical values
of 0.5%, 1%, 2.5%, 5%, and 10% in S;(82) are calculated. The power of S7(67) is
calculated using the same method. We use the number of observations, T" = 120
and 60. The number of assets, IV, varies from 10 to 110 for 7' = 120 and from 10 to
50 for T'= 60. The number of factors is set to 1 and 5.

Figure 1 represents the power function of the new and conventional tests at 1%,
5%, and 10%, for case 1 (T = 120, N = 30, and K = 1), and case 2 (T = 120,
N =90, and K = 1).*The figures show that the new test has more power than the
conventional F' test. Especially, note that when NN is close to T', the power of the
conventional F' test is very low, while the new test has more power.

Figure 1 is based on the assumption that only one asset, aq, is different from
zero. The next simulations consider the case that HY :a; =0, j =1,..., N against
HY taj=p,j=1
zero in the alternative hypothesis. Since under Hy, the distribution of Sy does not
depend upon X, it is convenient, under HYY, in what follows to set 3 = INU and
set a; = £ Vj. The results for the conventional F' test are reported in page 207,

, ..., N. That is, all assets have a common value different from

chapter 5, CLM Here we use exactly the same method as CLLM. The non-centrality
parameter, 0, is calculated with
2 2
Nm H Him
§=TL+3] (5 - 3) (26)

2 2
Um JP Jm

where p represents the tangency portfolio and m is the market portfolio. CLM
set the values of [1 + AQ 2| 1(5—’2’ — %) to 0.01, 0.02, 0.03, 0.04. These numbers
are obtained by assuming ~'that the ta;gency portfolios have the annualised expected
excess return of 8.5%, 10.2%, 11.6%, 13.0% and the annualised standard deviation of
16% for all four tangency portfolios, and that the market portfolio has the annualised
expected excess return of 8% and the annualised standard deviation of 20%. The
non-centrality parameter, 8, can be used to generate the non-central variable z1(6)

for the F(N,T — N — 1;6) as follows;

xX*(N;6)/N
X)(T-N-1)/(I'-N-1)

21(6) = (27)
where x*(N;6) = >y, and y N (/6/N,1). Therefore, . = 1/6/N. On the other
hand, the non-central variable x5(8) for the new test statistic under the alternative
hypothesis is

XJ (L 5/N)
== Z 3 (28)
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where x%(1;6/N) = y?, and y "N (/6 /N, 1).

The simulation results are reported in table 2. The numbers in the conventional
I test power are not exactly the same as those in the table 5.2 of CLM, but the
difference is marginal and reflects the differences in parameter information required
to specify the distribution of Sy under H1. The table shows that in general the
new test has more power than the conventional F' test. As expected, when N = 1,
the results are exactly the same. However, when the number of assets increases, the
new test begins to perform relatively better. Interestingly and as hoped, the table
shows that the relative power of the new test against the F' test is also an increasing
function of the number of observations, T'.

Finally, we test the power of the new test when there are missing factors as ex-
plained in the previous section. We use three factors as explanatory variables; excess
market returns and two factor mimicking portfolio (FMP) returns. Factor portfolios
may be portfolios of equities corresponding to attractive equity characteristics such
as size or growth. The factor portfolios may be actual indices such as the S&P500,
FTSEL00 (for size) or artificially constructed portfolios long in high growth equities
and short in low growth equities (for growth).

The data we use for this power test are the log-returns of the S&P500 index and
its individual equities, 3 month US treasury bill, and FMP returns for growth and
size. Our choice of factors is intentional, in that a great deal of research on the US
stock market has compared the rival merits of these 3 factors, i.e., market, growth,
and size. See Capaul, Rowley and Sharpe (1993), Arshanapalli, Coggin and Doukas
(1998) Fama and French (1998), and Hall, Hwang, and Satchell (2000) for some
recent studies on this topic. Thus it is likely that including a subset of the factors
in regression, and by default relegating the other factors to the covariance matrix
may have parallels in recent empirical work.

A total number of 120 monthly returns from April 1989 to March 1999 is used.
Excess individual equity returns and market returns are calculated by taking the 3
month US treasury bill from individual equity returns and market returns, respec-
tively. For the two factors, we use FMPs for growth and size from Hall, Hwang,
and Satchell (2000)."Note that all three factor returns are designed to have zero
expected returns to prevent the power test results from being affected by missing
factors that have negative or positive expected returns. Thus, in these simulations,
1.2 ', = 0 as in section 6.6 of CLM and the noncentrality parameter becomes
Sy =Ta'X 'a.

Some of the statistical properties of excess market returns and FMP returns are
reported in table 3. All of the factor returns have different standard deviations;
the standard deviation of the excess market returns are nearly four time larger
than that of the growth FMP returns. Correlations between the two FMPs are
not significant, but the excess market returns and the growth FMP returns are
significantly correlated. Therefore, by missing one or two factors, we can test the
power of our new test statistic that is based on the assumption of diagonality of
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variance-covariance matrix of ¥p in equation (16).

The simulations are designed as follows. We first randomly select N equities from
the 500 equities included in the S&P500 index and then estimate parameters in the
following linear factor model;

Ir'r=—a + ﬁlTi\/[ + BQTtG + ,637'5 + €, (29>

where 1, is a (IV x 1) vector of excess returns for N assets, and 7/ | r&, r? are factor

returns, i.e., excess market returns, growth FMP returns, and size FMP returns,
and €; is a (IV x 1) vector of disturbance terms whose variance-covariance matrix is
FE(e€,) = . The mean and standard deviation of the estimates of the coeflicients
are reposted in table 3. As expected, the coefficients on the excess market returns
are close to one and significant, whilst the other two FMP returns are close to zero
and not significant.

Then a new set of individual equity returns, T;, are generated with the factor
returns and the estimates as follows;

T =a4Bir + Borl + Byri + €, (30)
0 52 0
o o | o) [0 2
where 34, 3,, 35 are maximum likelihood estimates, and €," N ,
0 0 O
and &7 is the estimated variance of disturbance term for equity i, i.e., 6, = + ST

By making the variance-covariance matrix diagonal, we assume a setting that there
are only three common factors for the explanation of equity returns.

In these simulations, we consider the case that HY : a; =0, j =1,..., N against
HM :a; = p, j =1,...,N, where p is set to 0, 0.083, 0.208, 0.417, 0.625, 0.833,
which are 0, 1%, 2.5%, 5%, 7.5%, and 10% in annual term, respectively. For T
and N, we use T=60, 120, and N=10, 50, 110. We use equations (7) and (12)
for the conventional F' test statistic and the new test statistic, respectively. The
noncentrality parameter value §,;y = Ta’¥ 'a depend on T, a(p), 3. For the given
values of p and T, the parameter values depend on 32 that changes on the missing
factors. See equation (15). We report the noncentrality parameter values in table 4
for each cases.

Table 4 reports the simulated power of the new and conventional tests for five
sets of T" and N. Our results report two different tests; the power of the tests
for increasing noncentrality parameter values and mis-specified factor models. In
general, our new test has more power in most cases. Hspecially, the table shows
that as NV increases, the power of the conventional F' test tends to decrease, whilst
that of the new test tend to increase. Similar to the previous two power simulations,
the new test has more power as IV increases. In addition, our new test provides the
results of the power test for the case of T=60 and N=110, which cannot be obtained
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with the conventional F' test. Panel E shows that the power of the new test increases
as N increases.

Both the conventional F' test and the new test are poor when an important factor
is missed (i.e., misspecified models); see the cases of the excess market factor being
missed, the excess market and size FMP being missed, and the excess market and the
growth FMP being missed. The performance of the new test seems to be relatively
better than that of the conventional F' test. However, in these cases, both tests tend
to accept the null hypothesis too frequently even though the noncentality parameter
is zero. The tendency is relatively large for the new test, whilst the conventional F'
test statistic suffers less significantly from the important missing factor.

N Suppose that a factor is missed. Then our simulatign imply that a’N (0, %(U;B f,@/f—l—
3)), where 0% is the variance of the factor returns, B is the (IV x 1) vector of co-
efficients on tAhe factor returns as in (30), and 3 is the variance-covariance matrix
of €. When 3, such as 3, and B, in (30) is very small, then the power of the new
test 1s not affected significantly. However, when most of the elements of B s such as
Bl in (30) are positive and large (see table 3 for the mean and standard deviation
of the coeflicients), then the variance-covariance matrix of a is not approximated by

a diagonal matrix. In this case, if we do not consider the off-diaogonal elements,
then we have smaller values of test statistics, since the large positive off-diagonal

elements of B fB/f is disregarded. This is the reason why we have zero power (ac-
cept too frequently) for the test levels we used for the null hypothesis. See the first
column of the power of the new test in table 4.

Except in the case that important factors in the linear factor model are missed,
then the new test performs better than the conventional F' test. Our simulations
in table 4 show that missing two important factors in equity markets such as size
and growth do not degrade the power of the new test found in table 2 and figure
1, suggesting some robustness against non-zero off-diagonal elements. FEven when
important factors are missed, as the value of the noncentrality parameter increases,
the new test become powerful. Therefore, the results in table 4 suggest that if we
do not miss the most important factor such as the market, our test is more powerful
than the conventional I test.

4 Conclusion

The test procedure we outline is simple to calculate, and simple to provide critical
values for power analysis, although specifying parameters under the alternative is
slightly more complicated than the conventional model. Its distribution, the average
value of F' statistics, should be intrinsically interesting to statisticians and the extra
power it provides for practitioners should be welcomed.
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Footnotes

1. This is the first case of section 6.2, CLM. For a detailed discussion on the
estimation and testing of the linear factor model, refer to chapter 6, CLM.

2. The new statistics for other values of the number of factors such as 2 and 4 can
be obtained from authors upon request.

3. Only these two cases are reported in this paper. The results for other cases can
be obtained from the authors by request.

4. See Hall, Hwang, and Satchell (2000) for the detailed explanation on the con-
struction of factor mimicking portfolios. We do not pursue this discussion further,
since our purpose in this study is to investigate the power of the conventional F' test
and the new test.
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Appendix Characteristic Function of the Sum of
F-Distribution

The distribution function of the sum of F-distributions is not known. Note that
all F-distributions in equation (11) have the same degrees of freedom and Sy is dis-
tributed as the mean of N independent and identically distributed F'-distributions.
Let  be a variable distributed as F'(1,n), where n = T'— K — 1 and denote its prob-
ability density function as pdf(z). Then the characteristic function of the F'(1,n)
distribution can be derived as follows

o(t,n) = /Ooopdf(a:)emda: (31)

L[
S TRTGR) (n+a)"

e dx.

Let y = z/n and ndy = dx, then

_ P(% % ) - 71+T” 7% itny
_ T(3+35n) 1 o
- 71'2‘(%712) @(5’ 1-— P —nit)

where I'(+) is the gamma function, 7 is the imaginary number, and ¥(-) is Tricomi’s
confluent hypergeometric function. Equation (32) was first shown by Phillips (1982).
Tricomi’s confluent hypergeometric function is

11 T'(in) 11
U(=,1—=n;—nit) = ——2-— 1Fi(=,1— —n;—nit 33
[(—1in) n 1 1 1 .
Pé) (—nit)"/? 1F1(§ + 5 1+ o™ —nit),

where 1 F1(+) is Kummer’s confluent hypergeometric function which is defined as

az ala+1)22 ala+1)(a+2)2?
Flabs)=14of N7~ — 4. 4
1hila, b;2) AU TR+ 2 e b2 3 e

See Abadir (1999) for a detailed explanation on various kinds of hypergeometric
functions and their applications to economic theory.

If b in equation (34) is a nonpositive integer, 1Fi(a,b;z) and thus \Il(%,l —
%n; —nit) is not defined. Note that n is a positive integer since it represents de-
grees of freedom in the denominator of the F'(1,n) distribution and thus we need
1 - %n and 1+ %n in equation (33) to be positive integers. However, since n is a
positive integer, both 1— %n and 14 %n cannot be kept to be positive integers. More
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generally, when § € Z, we have a definition called the ’logarithmic case’ alterna-
tive to Tricomi’s confluent hypergeometric function in (33). See Abadir (1999) and
FErdélyi (1953, vol.1 pp.260-262 and vol.2 p.9) for the discussion on the logarithmic
case.

Let ¢;(t,n) be defined as a characteristic function of the j™ independent F'(1,7)
variable. Then, the characteristic function of Sy is

a(tn) = [[oi(5m) (3)

where ¢(-) is defined in (32). Therefore, the density function of our new test statistic
Sa, pdf (y), under the null hypothesis is obtained by

pif(s) = o | [qﬁ(%,n)]]ve“ydt (3)

where y is a variable distributed as the average of the N different F'(1,n) distributions.
This sum of F-distributions can be used when the variance-covariance matrix 33 is
a diagonal matrix.
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Table1l Comparison of New Test Statistics and F-Statistics

A. Number of Observations T=60, Number of Factors K=1

Number of Test Statistics Percentile of Test Statistics

Assets (N) 0.5% 1.0% 2.5% 5.0% 10.0%
N=10 New Test Statistics 2.719 2.508 2.186 1.931 1.674
F(10,49) N=10, T-N-K=49 2.985 2.728 2.341 2.033 1.737
N=20 New Test Statistics 2.109 1.987 1.802 1.660 1.487
F(20,39) N=20, T-N-K=39 2.573 2.393 2.092 1.860 1.614
N=30 New Test Statistics 1.868 1.787 1.643 1.528 1.408
F(30,29) N=30, T-N-K=29 2.614 2.424 2.109 1.869 1.620
N=40 New Test Statistics 1.733 1.651 1.542 1.448 1.342
F(40,19) N=40, T-N-K=19 3.044 2.764 2.346 2.033 1.729
N=50 New Test Statistics 1.674 1.607 1.497 1.414 1.321
F(50,9) N=50, T-N-K=9 5.261 4.424 3.453 2.766 2.201
N =60 New Test Statistics 1.623 1.549 1.455 1.375 1.297
N=70 New Test Statistics 1.591 1.529 1.427 1.361 1.275
N=80 New Test Statistics 1.531 1.479 1.387 1.321 1.246
N=90 New Test Statistics 1.488 1.440 1.374 1.307 1.243
N=100 New Test Statistics 1.477 1.422 1.356 1.300 1.234
N=110 New Test Statistics 1.458 1.407 1.339 1.282 1.225
N =200 New Test Statistics 1.342 1.305 1.257 1.218 1.174
N =500 New Test Statistics 1.218 1.203 1.173 1.150 1.123
N=1000 New Test Statistics 1.167 1.150 1.132 1.115 1.097
N =+infinite New Test Statistics 1.036 1.036 1.036 1.036 1.036

Notes: For the new test statistics, see equation (12). The new statistics are the average value of N different
F (1, T-K-1) distributions. The statistics reported in the table are the results of simulations with 10,000

replications. Detail simulation procedures are explained in section 3.1.
The standard errors of the above simulated statistics are 0.001, 0.001, 0.002, 0.002, and 0.003 for the critical
values of 0.5%, 1.0%, 2.5%, 5.0%, and 10.0% respectively.




B. Number of Observations T=60, Number of Factors K=3

Number of Test Statistics Percentile of Test Statistics

Assets (N) 0.5% 1.0% 2.5% 5.0% 10.0%
N=10 New Test Statistics 2.701 2.444 2.155 1.919 1.681
F(10,45) N=10, T-N-K=45 3.007 2.746 2.350 2.040 1.743
N=20 New Test Statistics 2131 1.973 1.783 1.649 1.484
F(20,35) N=20, T-N-K=35 2.608 2.423 2.113 1.870 1.624
N=30 New Test Statistics 1.893 1.796 1.657 1534 1.404
F(30,25) N=30, T-N-K=25 2.681 2.484 2.152 1.900 1.642
N=40 New Test Statistics 1.755 1.670 1.553 1.452 1.351
F(40,15) N=40, T-N-K=15 3.275 2.946 2.465 2.119 1.782
N=50 New Test Statistics 1.657 1.611 1.496 1.408 1.316
F(50,5) N=50, T-N-K=5 7.042 5.776 4.280 3.284 2.508
N=60 New Test Statistics 1.610 1.552 1.460 1.386 1.293
N=70 New Test Statistics 1.578 1.512 1.425 1.352 1.269
N=80 New Test Statistics 1.536 1.481 1.397 1.332 1.264
N=90 New Test Statistics 1.496 1.450 1.376 1.315 1.249
N=100 New Test Statistics 1.483 1.428 1.350 1.293 1.237
N=110 New Test Statistics 1.449 1.400 1.341 1.286 1.225
N =200 New Test Statistics 1.327 1.300 1.255 1.217 1.175
N =500 New Test Statistics 1.219 1.200 1.172 1.150 1.124
N=1000 New Test Statistics 1.162 1.151 1.133 1.117 1.100
N =+infinite New Test Statistics 1.037 1.037 1.037 1.037 1.037

Notes: For the new test statistics, see equation (12). The new statistics are the average value of N different

F (1, T-K-1) distributions. The statistics reported in the table are the results of simulations with 10,000

replications. Detail simulation procedures are explained in section 3.1.
The standard errors of the above simulated statistics are 0.001, 0.001, 0.002, 0.002, and 0.003 for the critical
values of 0.5%, 1.0%, 2.5%, 5.0%, and 10.0% respectively.




C. Number of Observations T=60, Number of Factors K=5

Number of Test Statistics Percentile of Test Statistics

Assets (N) 0.5% 1.0% 2.5% 5.0% 10.0%
N=10 New Test Statistics 2.770 2.539 2.170 1.924 1.674
F(10,45) N=10, T-N-K=45 3.032 2.773 2.368 2.053 1.750
N=20 New Test Statistics 2.053 1.929 1.780 1.645 1.485
F(20,35) N=20, T-N-K=35 2.649 2.461 2.139 1.890 1.636
N=30 New Test Statistics 1.916 1.805 1.649 1.532 1.402
F(30,25) N=30, T-N-K=25 2.747 2.547 2.201 1.932 1.664
N=40 New Test Statistics 1.766 1.666 1.560 1.464 1.353
F(40,15) N=40, T-N-K=15 3.543 3.161 2.610 2.222 1.847
N=50 New Test Statistics 1.662 1.602 1.494 1.417 1.314
F(50,5) N=50, T-N-K=5 11.896 9.265 6.272 4,420 3.135
N =60 New Test Statistics 1.590 1.541 1.460 1.387 1.299
N=70 New Test Statistics 1.561 1.503 1.422 1.350 1.274
N=80 New Test Statistics 1.509 1.460 1.386 1.329 1.255
N=90 New Test Statistics 1.493 1.436 1.367 1.307 1.237
N=100 New Test Statistics 1.473 1.423 1.354 1.303 1.240
N=110 New Test Statistics 1.430 1.393 1.344 1.287 1.226
N=200 New Test Statistics 1.336 1.295 1.254 1.222 1.179
N =500 New Test Statistics 1.220 1.204 1.176 1.154 1.128
N=1000 New Test Statistics 1.162 1.152 1.134 1.116 1.099
N =+infinite New Test Statistics 1.038 1.038 1.038 1.038 1.038

Notes: For the new test statistics, see equation (12). The new statistics are the average value of N different

F (1, T-K-1) distributions. The statistics reported in the table are the results of simulations with 10,000

replications. Detail simulation procedures are explained in section 3.1.
The standard errors of the above simulated statistics are 0.001, 0.001, 0.002, 0.002, and 0.003 for the critical
values of 0.5%, 1.0%, 2.5%, 5.0%, and 10.0% respectively.




D. Number of Observations T=120, Number of Factors K=1

Number of Test Statistics Percentile of Test Statistics

Assets (N) 0.5% 1.0% 2.5% 5.0% 10.0%
N=10 New Test Statistics 2.638 2.422 2.123 1.886 1.642
F(10,109) N=10, T-N-K=109 2.682 2.499 2.184 1.934 1.663
N=20 New Test Statistics 2.105 1.942 1.748 1.600 1.452
F(20,99) N=20, T-N-K=99 2.201 2.070 1.858 1.682 1.496
N=30 New Test Statistics 1.825 1.728 1.581 1.481 1.358
F(30,89) N=30, T-N-K=89 2.015 1.906 1.722 1.575 1421
N=40 New Test Statistics 1.681 1.614 1.511 1.419 1.319
F(40,79) N=40, T-N-K=79 1.959 1.853 1.671 1.538 1.397
N=50 New Test Statistics 1.641 1571 1.461 1.386 1.287
F(50,69) N=50, T-N-K=69 1.950 1.839 1.656 1.527 1.388
N =60 New Test Statistics 1.587 1.509 1.412 1.349 1.263
F(60,59) N=60, T-N-K=59 1.963 1.843 1.673 1.540 1.397
N=70 New Test Statistics 1.512 1471 1.392 1.320 1.241
F(70,49) N=70, T-N-K=49 2.024 1.893 1.709 1571 1.424
N=80 New Test Statistics 1.489 1.439 1.366 1.300 1.233
F(80,39) N=80, T-N-K=39 2.141 1.985 1.777 1.621 1.459
N=90 New Test Statistics 1.461 1.416 1.340 1.280 1.217
F(90,29) N=90, T-N-K=29 2.389 2.176 1.914 1.730 1.526
N=100 New Test Statistics 1.425 1.387 1.322 1.268 1.207
F(100,19) N=100, T-N-K=19 2.998 2.644 2.226 1.957 1.685
N=110 New Test Statistics 1.400 1.366 1.306 1.252 1.196
F(110,9) N=110, T-N-K=9 5.666 4531 3.418 2.797 2.207
N =200 New Test Statistics 1.294 1.270 1.230 1.192 1.151
N =500 New Test Statistics 1.192 1.177 1.150 1.128 1.104
N=1000 New Test Statistics 1.137 1.125 1.107 1.093 1.074
N =+infinite New Test Statistics 1.017 1.017 1.017 1.017 1.017

Notes: For the new test statistics, see equation (12). The new statistics are the average value of N different

F (1, T-K-1) distributions. The statistics reported in the table are the results of simulations with 10,000

replications. Detail simulation procedures are explained in section 3.1.
The standard errors of the above simulated statistics are 0.001, 0.001, 0.002, 0.002, and 0.003 for the critical
values of 0.5%, 1.0%, 2.5%, 5.0%, and 10.0% respectively.




E. Number of Observations T=120, Number of Factors K=3

Number of Test Statistics Percentile of Test Statistics

Assets (N) 0.5% 1.0% 2.5% 5.0% 10.0%
N=10 New Test Statistics 2.528 2.342 2.083 1.860 1.634
F(10,107) N=10, T-N-K=107 2.686 2.502 2.187 1.933 1.663
N=20 New Test Statistics 2.067 1.934 1.743 1.611 1.449
F(20,97) N=20, T-N-K=97 2.209 2.078 1.861 1.684 1.496
N=30 New Test Statistics 1.876 1.750 1.595 1.496 1.378
F(30,87) N=30, T-N-K=87 2.021 1.911 1.728 1.579 1.425
N=40 New Test Statistics 1.696 1.617 1511 1.418 1.319
F(40,77) N=40, T-N-K=77 1.964 1.857 1.676 1.544 1.401
N=50 New Test Statistics 1.628 1.564 1.466 1.384 1.297
F(50,67) N=50, T-N-K=67 1.965 1.849 1.667 1.532 1.393
N=60 New Test Statistics 1.568 1.516 1.422 1.343 1.261
F(60,57) N=60, T-N-K=57 1.982 1.857 1.683 1.547 1.404
N=70 New Test Statistics 1.526 1.470 1.386 1.322 1.245
F(70,47) N=70, T-N-K=47 2.048 1.913 1.722 1.584 1.434
N=80 New Test Statistics 1.487 1.432 1.357 1.299 1.230
F(80,37) N=80, T-N-K=37 2.192 2.021 1.803 1.641 1.473
N=90 New Test Statistics 1.463 1.412 1.339 1.283 1.216
F(90,27) N=90, T-N-K=27 2.468 2.231 1.957 1.762 1.550
N=100 New Test Statistics 1.439 1.395 1.327 1.271 1.207
F(100,17) N=100, T-N-K=17 3.244 2.815 2.335 2.038 1.739
N=110 New Test Statistics 1.411 1.361 1.303 1.253 1.200
F(110,7) N=110, T-N-K=7 8.013 5.976 4,224 3.322 2.510
N =200 New Test Statistics 1.297 1.267 1.229 1.193 1.153
N =500 New Test Statistics 1.191 1.177 1.151 1.126 1.101
N=1000 New Test Statistics 1.140 1.129 1.110 1.094 1.077
N =+infinite New Test Statistics 1.018 1.018 1.018 1.018 1.018

Notes: For the new test statistics, see equation (12). The new statistics are the average value of N different

F (1, T-K-1) distributions. The statistics reported in the table are the results of simulations with 10,000

replications. Detail simulation procedures are explained in section 3.1.
The standard errors of the above simulated statistics are 0.001, 0.001, 0.002, 0.002, and 0.003 for the critical
values of 0.5%, 1.0%, 2.5%, 5.0%, and 10.0% respectively.




F. Number of Observations T=120, Number of Factors K=5

Number of Test Statistics Percentile of Test Statistics

Assets (N) 0.5% 1.0% 2.5% 5.0% 10.0%
N=10 New Test Statistics 2.609 2.363 2.126 1.890 1.636
F(10,105) N=10, T-N-K=105 2.690 2.506 2.189 1.934 1.665
N=20 New Test Statistics 2.067 1.932 1.749 1.612 1.452
F(20,95) N=20, T-N-K=95 2.214 2.085 1.866 1.690 1.499
N=30 New Test Statistics 1.855 1.754 1.608 1.501 1.378
F(30,85) N=30, T-N-K=85 2.017 1.912 1.730 1.580 1.429
N=40 New Test Statistics 1.704 1.608 1.507 1.416 1.319
F(40,75) N=40, T-N-K=75 1.970 1.853 1.675 1.545 1.401
N =50 New Test Statistics 1.647 1.559 1.463 1.381 1.289
F(50,65) N=50, T-N-K=65 1.973 1.854 1.672 1.539 1.399
N =60 New Test Statistics 1.586 1.519 1.430 1.353 1.267
F(60,55) N=60, T-N-K=55 2.002 1.871 1.693 1.554 1.408
N=70 New Test Statistics 1.527 1.460 1.383 1.316 1.247
F(70,45) N=70, T-N-K=45 2.080 1.934 1.738 1.596 1.441
N=80 New Test Statistics 1.486 1.434 1.362 1.298 1.231
F(80,35) N=80, T-N-K=35 2.222 2.052 1.829 1.663 1.488
N=90 New Test Statistics 1.453 1.417 1.343 1.287 1.219
F(90,25) N=90, T-N-K=25 2.557 2.308 2.003 1.797 1.574
N=100 New Test Statistics 1.437 1.380 1.321 1.272 1.212
F(100,15) N=100, T-N-K=15 3.453 3.022 2471 2.135 1.802
N=110 New Test Statistics 1.411 1.363 1.300 1.253 1.199
F(110,5) N=110, T-N-K=5 14.562 9.701 6.138 4,491 3.158
N=200 New Test Statistics 1.313 1.282 1.231 1.195 1.156
N =500 New Test Statistics 1.186 1.170 1.147 1.126 1.100
N =1000 New Test Statistics 1.141 1.127 1.110 1.096 1.078
N =+infinite New Test Statistics 1.018 1.018 1.018 1.018 1.018

Notes: For the new test statistics, see equation (12). The new statistics are the average value of N different

F (1, T-K-1) distributions. The statistics reported in the table are the results of simulations with 10,000
replications. Detail simulation procedures are explained in section 3.1.
The standard errors of the above simulated statistics are 0.001, 0.001, 0.002, 0.002, and 0.003 for the critical

values of 0.5%, 1.0%, 2.5%, 5.0%, and 10.0% respectively.




G. Number of Observations T=600, Number of Factors K=3

Number of Test Statistics Percentile of Test Statistics

Assets (N) 0.5% 1.0% 2.5% 5.0% 10.0%
N=10 New Test Statistics 2.590 2.369 2.070 1.835 1.604
F(10,587) N=10, T-N-K=587 2.556 2.366 2.061 1.837 1.600
N=20 New Test Statistics 1.976 1.873 1.705 1.563 1.420
F(20,577) N=20, T-N-K=577 2.071 1.930 1.738 1.599 1.442
N=30 New Test Statistics 1.805 1.714 1572 1.466 1.348
F(30,567) N=30, T-N-K=567 1.825 1.718 1.579 1.468 1.348
N=40 New Test Statistics 1.661 1.599 1.497 1.401 1.299
F(40,557) N=40, T-N-K=557 1.719 1.622 1.518 1.422 1.318
N=50 New Test Statistics 1.609 1.538 1.440 1.361 1.276
F(50,547) N=50, T-N-K=547 1.629 1.564 1.469 1.387 1.286
N=60 New Test Statistics 1.546 1.484 1.39%4 1.318 1.239
F(60,537) N=60, T-N-K=537 1.603 1.515 1.418 1.341 1.262
N=70 New Test Statistics 1.510 1.440 1.363 1.296 1.225
F(70,527) N=70, T-N-K=527 1.546 1.483 1.387 1.318 1.236
N=80 New Test Statistics 1.459 1.410 1.342 1.281 1.213
F(80,517) N=80, T-N-K=517 1.494 1.445 1.369 1.303 1.226
N=90 New Test Statistics 1.437 1.391 1.318 1.263 1.202
F(90,507) N=90, T-N-K=507 1.493 1.427 1.344 1.288 1.219
N=100 New Test Statistics 1.395 1.359 1.301 1.250 1.189
F(100,497) N=100, T-N-K=497 1.470 1.418 1.339 1.282 1.211
N=110 New Test Statistics 1.393 1.351 1.290 1.238 1.184
F(110,487) N=110, T-N-K=487 1.448 1.405 1.329 1.263 1.197
N =200 New Test Statistics 1.283 1.256 1.215 1.175 1.135
F(200,397) N=200, T-N-K=397 1.371 1.322 1.268 1.216 1.167
N =500 New Test Statistics 1.174 1.158 1.131 1.109 1.085
F(500,97) N=500, T-N-K=97 1.541 1.483 1.388 1.316 1.238
N=1000 New Test Statistics 1.123 1.110 1.094 1.079 1.062
N =+infinite New Test Statistics 1.003 1.003 1.003 1.003 1.003

Notes: For the new test statistics, see equation (12). The new statistics are the average value of N different

F (1, T-K-1) distributions. The statistics reported in the table are the results of simulations with 10,000
replications. Detail simulation procedures are explained in section 3.1.
The standard errors of the above simulated statistics are 0.001, 0.001, 0.002, 0.002, and 0.003 for the critical

values of 0.5%, 1.0%, 2.5%, 5.0%, and 10.0% respectively.




Table2 Power of the Conventional F Test and the New Test of the CAPM

for the HypothesisH ;: a=0,H ;: a=1rr.

Testing Alternatives | Number of Number of Assets
Methods Observations N=1 N=5 N=10 N=20 =40
m,=8.5% T=60 0.124 0.076 0.066 0.061 0.052
S ,=16% T=120 0.189 0.101 0.083 0.073 0.060
Power of the T=240 0.344 0.172 0.135 0.100 0.082
Conventional m,=10.2% T=60 0.196 0.105 0.084 0.069 0.056
F Test S ,=16% T=120 0.327 0.172 0.124 0.098 0.073
T=240 0.598 0.333 0.251 0.169 0.120
m,=11.6% T=60 0.272 0.135 0.101 0.079 0.060
S ,=16% T=120 0.456 0.252 0.171 0.129 0.091
T=240 0.771 0.497 0.378 0.258 0.170
m,=13.0% T=60 0.339 0.169 0.121 0.091 0.064
S ,=16% T=120 0.575 0.333 0.225 0.161 0.107
T=240 0.877 0.636 0.507 0.349 0.227
m,=8.5% T=60 0.124 0.077 0.068 0.061 0.057
S ,=16% T=120 0.189 0.103 0.088 0.078 0.069
T=240 0.344 0.180 0.132 0.111 0.088
m,=10.2% T=60 0.196 0.110 0.087 0.074 0.066
Power of S ,=16% T=120 0.327 0.172 0.138 0.110 0.088
the New Test T=240 0.598 0.340 0.242 0.188 0.137
m,=11.6% T=60 0.272 0.145 0.108 0.089 0.077
S ,=16% T=120 0.456 0.246 0.196 0.145 0.112
T=240 0.771 0.507 0.372 0.278 0.192
m,=13.0% T=60 0.339 0.183 0.132 0.102 0.086
S ,=16% T=120 0.575 0.325 0.260 0.188 0.138
T=240 0.877 0.647 0.502 0.384 0.264

Notes: The table reports simulation results on the case of the null hypothesisHy:a;=0, j=1,...,N

againstH,:a;=m,j=1,...,N. The non-central variables of the F test and the new test are represented

in equations (27) and (28) and the non-centrality parameter is defined in equation (26). The above table
reports the results of 10,000 replications.




Table 3 Properties of Factorsand Their Regression Coefficients

A. Entire Sample Period (April 1989 - March 1999)

Growth FMP Size FMP Excess Market Return
Standard Deviation 0.980 2.457 3.847
Correlation Matrix
Growth FMP 1.000
Size FMP 0.083 1.000
Excess Market Return 0.472 0.168 1.000
Estimates of Coefficients (T=120, N=110)
Mean 0.015 -0.271 1.113
Standard Deviation 0.831 0.463 0.420
B. Second Half Sample Period (April 1994 - March 1999)
Growth FMP Size FMP Excess Market Return
Standard Deviation 1.139 2.493 3.979
Correlation Matrix
Growth FMP 1.000
Size FMP 0.075 1.000
Excess Market Return 0.550 0.102 1.000
Estimates of Coefficients (T=60, N=50)
Mean -0.109 -0.246 0.980
Standard Deviation 1.062 0.487 0.477

Notes: All factor returns are monthly log-returns and have the expected value of zero.

The entire sample preiod (Panel A) isused for T=120, and the second half sample period (Panel B)

is used for T=60. Estimates of coefficients are the maximum likelihood estimates of the linear factor model in (29).
Mean and standard deviation of the estimates of coefficients are calculated with 110 (Panel A) and 50 (Panel B)

estimates, respectively.




Table4 Power of the Conventional F Test and the New Test of Linear Factor Model for the Null Hypothesis H OM :a=0
against the Alternative HypothesisH M: a=min the Presence of M issing Factors

A. T=60, N=10

Missing Factors

Power of Conventiona F Test

Power of New Test

Elements of the (Nx1) Vector a

Elements of the (Nx1) Vector a

0 0.083 0.208 0417 0625 0.833 0 0.083 0.208 0417 0625 0.833

Value of Noncentrality Parameter 0 0110 0.689 2757 6.202 11.026 0 0110 0.689 2757 6.202 11.026
No Missing Factors 1% 0.01 0.01 0.01 0.03 0.10 0.23 0.01 0.01 0.02 0.05 0.14 0.34
(K=3) Test Level 5% 0.05 0.05 0.07 0.13 0.27 0.50 0.05 0.06 0.07 0.16 0.33 0.58
10% 0.10 0.10 0.13 0.22 0.40 0.63 0.10 0.11 0.13 0.25 0.45 0.69
Value of Noncentrality Parameter 0.00 0.11 0.68 2.73 6.14 10.91 0.00 0.11 0.68 2.73 6.14 10.91
Size FMP 1% 0.01 0.01 0.01 0.03 0.09 0.23 0.01 0.01 0.01 0.04 0.12 0.30
(K=2) Test Level 5% 0.05 0.05 0.06 0.12 0.26 0.48 0.05 0.05 0.06 0.14 0.30 0.55
10% 0.09 0.09 0.12 0.21 0.39 0.62 0.09 0.10 0.12 0.23 0.43 0.67
Value of Noncentrality Parameter 0.00 0.11 0.69 2.75 6.19 11.01 0.00 0.11 0.69 2.75 6.19 11.01
Growth FMP 1% 0.01 0.01 0.01 0.03 0.09 0.23 0.01 0.01 0.01 0.04 0.12 0.31
(K=2) Test Level 5% 0.05 0.05 0.06 0.12 0.26 0.49 0.05 0.05 0.07 0.14 0.31 0.56
10% 0.09 0.09 0.12 0.21 0.40 0.62 0.10 0.10 0.12 0.23 0.44 0.68
Value of Noncentrality Parameter 0.00 0.03 0.17 0.67 1.50 2.67 0.00 0.03 0.17 0.67 1.50 2.67
Excess Market 1% 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.03 0.11
(K=2) Test Level 5% 0.04 0.04 0.04 0.05 0.07 0.10 0.01 0.01 0.02 0.05 0.13 0.30
10% 0.07 0.07 0.08 0.10 0.13 0.19 0.03 0.03 0.04 0.09 0.22 0.44
Value of Noncentrality Parameter 0.00 0.11 0.68 2.72 6.13 10.90 0.00 0.11 0.68 2.72 6.13 10.90
Growth FMP 1% 0.01 0.01 0.01 0.03 0.09 0.22 0.01 0.01 0.01 0.03 0.10 0.27
Size FMP Test Level 5% 0.04 0.04 0.06 0.12 0.25 0.48 0.04 0.04 0.06 0.12 0.28 0.53
(K=1) 10% 0.08 0.09 0.11 0.20 0.38 0.61 0.08 0.09 0.11 0.22 0.41 0.65
Value of Noncentrality Parameter 0.00 0.03 0.17 0.67 151 2.68 0.00 0.03 0.17 0.67 151 2.68
Excess Market 1% 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.03 0.09
Size FMP Test Level 5% 0.03 0.03 0.03 0.04 0.06 0.09 0.01 0.01 0.02 0.04 0.12 0.28
(K=1) 10% 0.07 0.07 0.07 0.09 0.12 0.18 0.03 0.03 0.04 0.09 0.21 0.42
Value of Noncentrality Parameter 0.00 0.03 0.18 0.70 1.58 2.80 0.00 0.03 0.18 0.70 1.58 2.80
Excess Market 1% 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.06
Growth FMP Test Level 5% 0.03 0.03 0.03 0.04 0.06 0.08 0.01 0.01 0.01 0.03 0.08 0.21
(K=1) 10% 0.07 0.07 0.07 0.08 0.11 0.16 0.02 0.02 0.03 0.06 0.16 0.34

Notes. Randomly selected N excess equity returns included in S& P500 are estimated with three factorsin the linear regression model; excess market return, size and
growth FMP returns. Then the coefficients and the variance of disturbance terms are used to generate N excess equity returns, which are used to test the power of the F test
and our new test in the presence of missing factors. See section 3.2 for a detailed explanation on the simulation proceddure. The numbers in 'Elements of
the (Nx1) Vector a' are monthly returns equivalent to 0%, 1%, 2.5%, 5%, 7.5%, and 10% in annual term. T=60 represents 60 monthly returns from April 1994 to March 1999.

K isthe number of factors used for the power test. The results on the power of tests are obtained with 10,000 replications.




B. T=60, N=50

Missing Factors

Power of Conventional F Test

Power of New Test

Elements of the (Nx1) Vector a

Elements of the (Nx1) Vector a

0 0.083 0.208 0417 0625 0.833 0 0.083 0.208 0417 0625 0.833

Value of Noncentrality Parameter 0 0570 3564 14.255 32.073 57.019 0 0570 3564 14.255 32.073 57.019
No Missing Factors 1% 0.01 0.01 0.01 0.02 0.04 0.08 0.01 0.01 0.02 0.15 0.59 0.95
(K=3) Test Level 5% 0.05 0.06 0.06 0.10 0.17 0.29 0.05 0.06 0.11 0.37 0.82 0.99
10% 0.10 0.10 0.12 0.17 0.29 0.45 0.11 0.12 0.18 0.50 0.89 1.00
Value of Noncentrality Parameter 0.00 0.55 346 1384 3115 5537 0.00 0.55 346 1384 3115 5537
Size FMP 1% 0.01 0.01 0.01 0.02 0.04 0.09 0.01 0.01 0.02 0.13 0.56 0.94
(K=2) Test Level 5% 0.05 0.05 0.06 0.10 0.18 0.31 0.04 0.04 0.08 0.31 0.78 0.98
10% 0.10 0.10 0.12 0.18 0.30 0.47 0.08 0.09 0.14 0.45 0.86 0.99
Value of Noncentrality Parameter 0.00 0.57 356 1423 3202 56.93 0.00 0.57 356 1423 3202 56.93
Growth FMP 1% 0.01 0.01 0.01 0.02 0.05 0.10 0.01 0.01 0.02 0.14 0.57 0.95
(K=2) Test Level 5% 0.05 0.05 0.06 0.10 0.19 0.32 0.04 0.05 0.09 0.32 0.79 0.99
10% 0.10 0.10 0.12 0.18 0.31 0.48 0.09 0.09 0.15 0.46 0.87 0.99
Value of Noncentrality Parameter 0.00 0.12 0.73 291 6.54 11.63 0.00 0.12 0.73 291 6.54 11.63
Excess Market 1% 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.01 0.16 0.68
(K=2) Test Level 5% 0.05 0.05 0.05 0.05 0.07 0.09 0.00 0.00 0.01 0.06 0.38 0.87
10% 0.09 0.09 0.10 0.11 0.13 0.16 0.01 0.01 0.02 0.11 0.52 0.93
Value of Noncentrality Parameter 0.00 0.55 345 1381 31.08 55.25 0.00 0.55 345 1381 31.08 55.25
Growth FMP 1% 0.01 0.01 0.01 0.02 0.05 0.11 0.00 0.01 0.01 0.10 0.50 0.93
Size FMP Test Level 5% 0.05 0.05 0.06 0.10 0.19 0.34 0.03 0.04 0.06 0.27 0.74 0.98
(K=1) 10% 0.09 0.10 0.12 0.18 0.31 0.51 0.06 0.07 0.12 0.40 0.84 0.99
Value of Noncentrality Parameter 0.00 0.12 0.73 291 6.55 11.65 0.00 0.12 0.73 291 6.55 11.65
Excess Market 1% 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.01 0.13 0.63
Size FMP Test Level 5% 0.05 0.05 0.05 0.06 0.07 0.09 0.00 0.00 0.00 0.05 0.34 0.85
(K=1) 10% 0.09 0.09 0.10 0.11 0.13 0.17 0.00 0.01 0.01 0.09 0.48 0.91
Value of Noncentrality Parameter 0.00 0.10 0.61 2.45 5.52 9.81 0.00 0.10 0.61 2.45 5.52 9.81
Excess Market 1% 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.06 0.46
Growth FMP Test Level 5% 0.04 0.04 0.05 0.05 0.06 0.08 0.00 0.00 0.00 0.02 0.21 0.73
(K=1) 10% 0.09 0.09 0.09 0.10 0.12 0.15 0.00 0.00 0.00 0.05 0.33 0.83

Notes. Randomly selected N excess equity returns included in S& P500 are estimated with three factorsin the linear regression model;
excess market return, size and growth FMP returns. Then the coefficients and the variance of disturbance terms are used to generate

N excess equity returns, which are used to test the power of the F test and our new test in the presence of missing factors.

See section 3.2 for a detailed explanation on the simulation proceddure. The numbers in 'Elements of the (Nx1) Vector a' are monthly returns
equivalent to 0%, 1%, 2.5%, 5%, 7.5%, and 10% in annual term. T=60 represents 60 monthly returns from April 1994 to March 1999.

K isthe number of factors used for the power test. The results on the power of tests are obtained with 10,000 replications.




C. T=120, N=10

Missing Factors

Power of Conventional F Test

Power of New Test

Elements of the (Nx1) Vector a

Elements of the (Nx1) Vector a

0 0.083 0.208 0417 0625 0.833 0 0.083 0.208 0417 0625 0.833

Value of Noncentrality Parameter 0 0205 1281 5123 11526 20.490 0 0205 1281 5123 11526 20.490
No Missing Factors 1% 0.01 0.01 0.02 0.09 0.31 0.67 0.01 0.01 0.03 0.12 0.39 0.75
(K=3) Test Level 5% 0.05 0.05 0.08 0.24 0.56 0.86 0.05 0.06 0.10 0.28 0.61 0.90
10% 0.10 0.11 0.16 0.37 0.69 0.92 0.10 0.11 0.17 0.39 0.72 0.94
Value of Noncentrality Parameter 0.00 0.20 1.28 512 1151 20.46 0.00 0.20 1.28 512 1151 20.46
Size FMP 1% 0.01 0.01 0.02 0.09 0.31 0.66 0.01 0.01 0.02 0.10 0.35 0.72
(K=2) Test Level 5% 0.04 0.05 0.08 0.23 0.55 0.85 0.04 0.05 0.08 0.25 0.58 0.88
10% 0.09 0.10 0.15 0.36 0.68 0.92 0.09 0.10 0.15 0.37 0.71 0.94
Value of Noncentrality Parameter 0.00 0.20 1.28 512 1152 20.48 0.00 0.20 1.28 512 1152 20.48
Growth FMP 1% 0.01 0.01 0.02 0.09 0.31 0.66 0.01 0.01 0.02 0.10 0.35 0.72
(K=2) Test Level 5% 0.04 0.05 0.08 0.24 0.55 0.85 0.04 0.05 0.08 0.25 0.58 0.88
10% 0.09 0.10 0.15 0.36 0.69 0.92 0.09 0.10 0.15 0.37 0.71 0.94
Value of Noncentrality Parameter 0.00 0.05 0.30 1.18 2.66 474 0.00 0.05 0.30 1.18 2.66 474
Excess Market 1% 0.01 0.01 0.01 0.01 0.02 0.05 0.00 0.00 0.00 0.02 0.12 0.40
(K=2) Test Level 5% 0.03 0.03 0.04 0.05 0.10 0.20 0.01 0.01 0.02 0.08 0.30 0.66
10% 0.07 0.07 0.08 0.11 0.19 0.33 0.03 0.03 0.05 0.16 0.44 0.79
Value of Noncentrality Parameter 0.00 0.20 1.28 512 1151 20.46 0.00 0.20 1.28 512 1151 20.46
Growth FMP 1% 0.01 0.01 0.02 0.08 0.30 0.66 0.01 0.01 0.02 0.09 0.32 0.69
Size FMP Test Level 5% 0.04 0.05 0.08 0.23 0.55 0.85 0.04 0.05 0.08 0.24 0.57 0.87
(K=1) 10% 0.09 0.10 0.14 0.36 0.68 0.92 0.09 0.10 0.14 0.36 0.70 0.93
Value of Noncentrality Parameter 0.00 0.05 0.30 1.18 2.66 472 0.00 0.05 0.30 1.18 2.66 472
Excess Market 1% 0.01 0.01 0.01 0.01 0.02 0.05 0.00 0.00 0.00 0.02 0.10 0.37
Size FMP Test Level 5% 0.03 0.03 0.03 0.05 0.09 0.19 0.01 0.01 0.02 0.08 0.30 0.65
(K=1) 10% 0.07 0.07 0.07 0.11 0.18 0.32 0.02 0.03 0.04 0.15 0.43 0.78
Value of Noncentrality Parameter 0.00 0.05 0.31 1.26 2.83 5.02 0.00 0.05 0.31 1.26 2.83 5.02
Excess Market 1% 0.01 0.01 0.01 0.01 0.02 0.04 0.00 0.00 0.00 0.01 0.07 0.31
Growth FMP Test Level 5% 0.03 0.03 0.03 0.05 0.09 0.17 0.01 0.01 0.01 0.06 0.24 0.59
(K=1) 10% 0.07 0.07 0.07 0.10 0.17 0.29 0.02 0.02 0.03 0.12 0.37 0.73

Notes: Randomly selected N excess equity returns included in S& P500 are estimated with three factorsin the linear regression model;
excess market return, size and growth FMP returns. Then the coefficients and the variance of disturbance terms are used to generate

N excess equity returns, which are used to test the power of the F test and our new test in the presence of missing factors.

See section 3.2 for a detailed explanation on the simulation proceddure. The numbers in 'Elements of the (Nx1) Vector a' are monthly returns
equivalent to 0%, 1%, 2.5%, 5%, 7.5%, and 10% in annual term. T=120 represents 120 monthly returns from April 1989 to March 1999.

K isthe number of factors used for the power test. The results on the power of tests are obtained with 10,000 replications.




D. T=120, N=110

Missing Factors

Power of Conventiona F Test

Power of New Test

Elements of the (Nx1) Vector a

Elements of the (Nx1) Vector a

0 0.083 0.208 0417 0625 0.833 0 0.083 0.208 0417 0.625 0.833
Value of Noncentrality Parameter 0 2.303 14.395 57.578 129.551 230.314 0 2303 14.395 57.578 129.551 230.314
No Missing Factors 1% 0.01 0.01 0.01 0.03 0.08 0.18 0.01 0.02 0.10 0.83 1.00 1.00
(K=3) Test Level 5% 0.05 0.05 0.07 0.14 0.29 0.52 0.05 0.07 0.25 0.94 1.00 1.00
10% 0.10 0.11 0.13 0.25 0.46 0.71 0.10 0.13 0.37 0.97 1.00 1.00
Value of Noncentrality Parameter 0.00 217 1353 5414 12181 21655 0.00 217 1353 5414 12181 21655
Size FMP 1% 0.01 0.01 0.01 0.03 0.09 0.21 0.01 0.01 0.06 0.78 1.00 1.00
(K=2) Test Level 5% 0.05 0.05 0.06 0.14 0.31 0.55 0.03 0.05 0.20 0.92 1.00 1.00
10% 0.09 0.10 0.13 0.25 0.48 0.73 0.08 0.10 0.32 0.96 1.00 1.00
Value of Noncentrality Parameter 0.00 230 1438 5752 12941 230.07 0.00 230 1438 5752 129.41 230.07
Growth FMP 1% 0.01 0.01 0.01 0.03 0.10 0.23 0.01 0.01 0.08 0.80 1.00 1.00
(K=2) Test Level 5% 0.05 0.05 0.07 0.15 0.33 0.58 0.04 0.06 0.23 0.93 1.00 1.00
10% 0.09 0.10 0.13 0.27 0.50 0.76 0.09 0.12 0.35 0.97 1.00 1.00
Value of Noncentrality Parameter 0.00 0.30 1.90 761 1713 30.45 0.00 0.30 1.90 761 1713 30.45
Excess Market 1% 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.13 0.96 1.00
(K=2) Test Level 5% 0.05 0.05 0.05 0.06 0.07 0.10 0.00 0.00 0.00 0.33 0.99 1.00
10% 0.09 0.10 0.10 0.12 0.14 0.18 0.00 0.00 0.01 0.48 1.00 1.00
Value of Noncentrality Parameter 0.00 216 1349 5394 12137 21577 0.00 216 1349 5394 12137 21577
Growth FMP 1% 0.01 0.01 0.01 0.03 0.10 0.25 0.01 0.01 0.06 0.77 1.00 1.00
Size FMP Test Level 5% 0.04 0.05 0.07 0.15 0.34 0.60 0.03 0.05 0.19 0.91 1.00 1.00
(K=1) 10% 0.09 0.10 0.13 0.27 0.52 0.78 0.07 0.09 0.30 0.96 1.00 1.00
Value of Noncentrality Parameter 0.00 0.28 1.76 706 1588 28.22 0.00 0.28 1.76 706 1588 28.22
Excess Market 1% 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.11 0.95 1.00
Size FMP Test Level 5% 0.04 0.04 0.05 0.06 0.07 0.09 0.00 0.00 0.00 0.30 0.99 1.00
(K=1) 10% 0.09 0.09 0.10 0.11 0.14 0.18 0.00 0.00 0.01 0.44 1.00 1.00
Value of Noncentrality Parameter 0.00 0.31 1.93 7.73 1740 30.93 0.00 0.31 1.93 7.73 1740 30.93
Excess Market 1% 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.06 0.89 1.00
Growth FMP Test Level 5% 0.04 0.05 0.05 0.06 0.07 0.10 0.00 0.00 0.00 0.19 0.98 1.00
(K=1) 10% 0.09 0.09 0.09 0.11 0.14 0.18 0.00 0.00 0.00 0.30 0.99 1.00

Notes: Randomly selected N excess equity returns included in S& P500 are estimated with three factors in the linear regression model;
excess market return, size and growth FMP returns. Then the coefficients and the variance of disturbance terms are used to generate

N excess equity returns, which are used to test the power of the F test and our new test in the presence of missing factors.

See section 3.2 for a detailed explanation on the simulation proceddure. The numbersin 'Elements of the (Nx1) Vector a' are monthly returns
equivalent to 0%, 1%, 2.5%, 5%, 7.5%, and 10% in annual term. T=120 represents 120 monthly returns from April 1989 to March 1999.

K isthe number of factors used for the power test. The results on the power of tests are obtained with 10,000 replications.




E. T=60, N=110

Missing Factors

Power of New Test

Elements of the (Nx1) Vector a

0.083 0.208 0.417 0.625 0.833

Value of Noncentrality Parameter 1.195 7.469 29.876 67.221 119.503
No Missing Factors 1% 0.01 0.01 0.04 0.32 0.90 1.00
(K=3) Test Level 5% 0.05 0.06 0.13 0.56 0.97 1.00
10% 0.10 0.12 0.22 0.69 0.99 1.00
Value of Noncentrality Parameter 0.00 1.10 6.88 27.53 61.93 110.10
Size FMP 1% 0.01 0.01 0.03 0.27 0.88 1.00
(K=2) Test Level 5% 0.04 0.05 0.10 0.50 0.96 1.00
10% 0.08 0.09 0.17 0.64 0.98 1.00
Value of Noncentrality Parameter 0.00 1.18 7.37 29.49 66.34 117.94
Growth FMP 1% 0.01 0.01 0.03 0.29 0.89 1.00
(K=2) Test Level 5% 0.04 0.05 0.11 0.53 0.97 1.00
10% 0.09 0.10 0.19 0.66 0.99 1.00
Value of Noncentrality Parameter 0.00 0.24 1.50 6.00 13.50 24.00
Excess Market 1% 0.00 0.00 0.00 0.01 0.32 0.94
(K=2) Test Level 5% 0.00 0.00 0.00 0.05 0.56 0.99
10% 0.00 0.00 0.00 0.11 0.70 1.00
Value of Noncentrality Parameter 0.00 1.09 6.82 27.29 61.40 109.16
Growth FMP 1% 0.00 0.00 0.02 0.20 0.83 1.00
Size FMP Test Level 5% 0.03 0.03 0.08 0.45 0.95 1.00
(K=1) 10% 0.06 0.07 0.14 0.58 0.98 1.00
Value of Noncentrality Parameter 0.00 0.24 1.50 5.99 13.47 23.94
Excess Market 1% 0.00 0.00 0.00 0.01 0.23 0.91
Size FMP Test Level 5% 0.00 0.00 0.00 0.04 0.50 0.98
(K=1) 10% 0.00 0.00 0.00 0.08 0.64 0.99
Value of Noncentrality Parameter 0.00 0.22 1.39 5.56 12.50 22.23
Excess Market 1% 0.00 0.00 0.00 0.00 0.09 0.75
Growth FMP Test Level 5% 0.00 0.00 0.00 0.01 0.27 0.92
(K=1) 10% 0.00 0.00 0.00 0.02 0.41 0.96

Notes: Randomly selected N excess equity returns included in S& P500 are estimated with three factorsin the linear regression model;
excess market return, size and growth FMP returns. Then the coefficients and the variance of disturbance terms are used to generate

N excess equity returns, which are used to test the power of the new test in the presence of missing factors.
See section 3.2 for a detailed explanation on the simulation proceddure. The numbers in 'Elements of the (Nx1) Vector a' are monthly returns
equivalent to 0%, 1%, 2.5%, 5%, 7.5%, and 10% in annual term. T=60 represents 60 monthly returns from April 1994 to March 1999.
Note that the conventional F test is not availablein this case. K is the number of factors used for the power test.

The results on the power of tests are obtained with 10,000 replications.




Figure1l Power of the New and F (N, T-N-K) Test Statisticsfor the Null Hypothesis
Ho:a;=0 for all j against the Alternative HypothesisH ;: a; =n and a;=0for j >1:

A. Case 1: T=120, N=30, K=1
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B. Case 2: T=120, N=90, K=1
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Notes: The figures A and B show the simulation results on case of the null hypothesisH :a;=0, j=1,...,N
against the alternative hypothessH , :a;=m, for j =1, and a;=0, for j=2,...,N. Simulation procedures
are explained in section 3.2. The non-central variables for the alternative hypothesis are generated with
equations (24) and (25) for the conventional F test and the new test, respectively.



