From Market Micro-Structure to
Macro Fundamentals:

Is There Predictability in the Dollar
Deutsche Mark Exchange Rate?

Robert Hillman and Mark Salmon*
Financial Econometrics Research Centre,

City University Business School
London
15th December1999

Abstract

In this paper we apply the variogram to the analysis of ir-
regularly spaced transactions data from a one week sample of
the Reuters DM2000-2 electronic trading system for the Dollar
D-Mark exchange rate.The variogram, defined as the variance of
increments in the process, is the standard tool used in Geostatis-
tics for the analysis of spatial data. This literature emphasises
the role of intrinsic random functions and intrinsic stationarity
which generalise notions of integrated processes and second or-
der stationarity familar to Econometricians to irregularly spaced
data. Moreover the variogram remains well defined over a wide
range of non-stationary processes unlike the acf and has better
sampling properties than the standard autocorrelation function.
In our empirical study we find some evidence of deviation from
unit-root behaviour in very short term, that is not apparent by
autocorrelation analysis. We also examine the cross-dependencies
between a number of micro-strucural variables and dynamics of
these variables around two interesting news events during the
week under study. It is also possible to move directly from an es-
timated variogram which captures the second order properties of
the process to MMSE predictors (kriging) without the need to de-
velop intermediate structural models to represent the underlying

DGP.

*We would like to thank Richard Payne for invaluable help with the DM2000-2
data set and also Reuters staff for explaining various ambiguities in the data and
Noel Cressie for several discussions relating to the interpretation and significance of
intrinsic random functions. We are also grateful to Ian Marsh and Steve Satchell
for comments made at earlier presentations of some of this material in seminars at
Cambridge and the Institute of Finance at City University Business School.




1 Introduction

This paper is concerned with the detection of autoregressive structure or
temporal dependence and hence predictability in high frequency foreign
exchange rates determined on the DM2000-2 electronic trading system.
We are faced with two immediate problems; the choice of statistical
technique for the analysis of a very large sample of irregularly spaced
data and secondly the question of which economic theory to call upon
to model the data.

Despite the growth of market micro structure theory in this area
the theoretical issue is not so easily resolved as it might appear since
it raises the question of how to rationalise the large body of existing,
“macro” results generated from daily, weekly... and other temporally
aggregated data with those generated from transactions data. It seems
that a different economic theory and different conditional information
sets need to be brought to bear when modelling an exchange rate on a
transactions time scale and when modelling the long run or equilibrium
exchange rate using say, quarterly data. This may seem reasonable since
critical information on the instantaneous structure of the order book
or bid-ask spread is lost when aggregated to even a daily basis and
hence is likely to be irrelevant when attempting to model the long run
equilibrium value of the exchange rate. Similarly new information on
macro fundamentals is simply not available on the second by second time
scale relevant to modelling transactions data. However both approaches
purport to model the same underlying data and hence DGP. We are
faced with a fundamental issue of consistency and at some stage have to
ask if there is any intellectually coherent smooth transition between the
two modelling approaches. While we may be willing to assume that there
is, in principle, a single data generation process for the Dollar- Dmark
exchange rate it seems that there will not be a single econometric model
or single statistical representation of that DGP that we would want to
use for all purposes.

The degree of predictability of a single given variable may of course
vary across different conditioning information sets and time horizons as
the relevant model also varies. It is, for instance , widely believed that
exchange rates are unpredictable in the very short run with expectational
forces and the heterogeneity of trader’s beliefs and objectives driving
the market and yet there is a growing body of evidence that fundamental
information, in various forms, can serve as an attractor for equilibrium
exchange rates, see for instance MacDonald(1998).

Market micro structure theory does not imply random trading and
market efficiency does not imply randomness in the realised exchange
rate unless the expected equilibrium exchange rate is constant (see for



instance Mussa (1990)) so given systematic and well estabilshed incen-
tives for market traders and systematic views as to where the equilibrium
exchange rate lies, relative to the current value, it is not unreasonable
to expect that we should find a degree of predictability in the very short
run given a suitable conditioning information set !. While traders clearly
have different objectives at different times they will trade in different
markets such as the forward market if they are explicitly taking a long
term position in which fundamental information is likely to be more rel-
evant than the spot market such as DM2000-2. So we might expect to
see little direct impact of fundamentals in DM2000-2 data, except at
times of major announcements which would allow the market to adjust
it’s view of the equilibrium until the next news on fundamentals arrives?.
One way in which we might see views of the equilibrium rate being ex-
pressed in the transactions data set could be in the shapes and positions
of the bid and offer curves as traders take limit order positions away
from the current market price in anticipation of the market moving to-
wards their own “equilibrium” view. Whether such behaviour is driven
by fundamentals or motivated by direct trading concerns would seem
to be difficult if not impossible to determine but clearly looking at the
way the bid and offer curves move around major announcements will be
important.

Given these arguments regarding the mixture of economic forces that
are likely to be at work in the market we have decided to adopt the sim-

I Although this degree of predictability might be lost almost as a statistical ar-
tifact through aggregation in the mid-horizon as the signals from the transaction
based conditioning information sets are aggregated and become imperfect only to be
recovered again in longer term models where the fundamental information dominates.

2Cheung, Chin and Marsh (1999) in a recent survey of Foreign Exchange traders
provide sone interesting observations on the nature of the foreign exchange market
which are useful to keep in mind in what follows:

e 50.6% of trades are via electronic brokers, 67.7% are interbank, 32.3% are
customer business

e 37 technical trading rule driven,41 fundamental analysis driven,36 driven by
customer orders,40 jobbing ( in and out)

e fundamental news is largely assimilated within 1 minute where the most impor-
tant fundamentals are seen to be,interest rates, inflation and unemployment.

e 97% believe intraday movements in forex do not accurately reflect changes in
fundamentals but within 6 months only 38 % and then 12 % over six months.

e on a scale of 1 to 5 traders believe the market is predictable to the following
degree,2.20 ( intraday), 2.94 ( within 6 months) 2.89 ( over six months)



plest atheoretical modelling strategy at this stage which is to simply to
investigate if there is any autoregressive dependence in the DM2000-2
data either from within the transacted prices themselves or more gen-
erally given other micro market information. This leads us to our sec-
ond immediate concern which is what statstical techniques should we
employ to capture temporal dependence in high frequency irregularly
spaced transactions data.

The standard approach has been to aggregate such data into blocks of
fixed intervals of time and use standard time series tools such as the au-
tocorrelation function. Using this approach Jon Danielsson and Richard
Payne (1999,Table 3) have found using 20 second aggregated intervals
on the “same” data set as ourselves that the D2000-2 returns are essen-
tially uncorrelated in that the only significant autocorrelation coefficient
is from the overnight 6.00pm-6.00 am period. Table(1) reproduces their
results for convenience. They also suggest this result is consistent with
efficiency in the DM2000-2 market.

period.

Time P1 Q(5)
6am to 8am | -0.03 3.81
8am to 10am | -0.02 3.41

10am to 12pm | 0.02 6.81

12pm to 2 pm | -0.05 5.18
2pm to 4pm 0.00 3.03
4pm to 6pm | -0.04 6.42
6pm to 6am | -0.13" | 270.51%

Table 1: First order autocorrelation coefficient, DandP (1999)

In what follows we explore this conclusion further by considering
the difficulties in using the autocorrelation function with irregular data
and suggest the use of different techniques, notably the variogram in
preference to the autocorrelation function when considering irregular
data.

In the next section we discuss the concepts of intrinsic stationar-
ity and intrinsic random functions and explain how they extend our
standard notions of integrated processes and second order stationarity
to irregular data. One implication of this discussion is that the sim-
ple first difference transformation may not be able to induce second
order stationarity with irregular data and a more general, in fact a gen-
eralised increment vector, may be defined which effectively annihilates
both stochastic and generalised polynomial time trends. The class of
intrinsically stationary processes is wider and encompasses the class of
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second order stationary processes. We then review several statistical
difficulties with the use of the autocorrelation function on temporally
aggregated data before turning to apply the variogram and cross vari-
ogram to the DM2000-2 data. Finally we turn to consider the impact
of macro news on the micro market characteristics and the return pro-
cess on the exchange rate itself to investigate “regimes of predictability”
within the period as discussed for instance by Guarda and Salmon(1997),
Hillman(1998) and Dacco and Satchell (1998), amongst others. In an ap-
pendix we explore the use of kriging (the term used in the geostatistical
literature for ‘optimal prediction’) on simulated and real series.

2 Intrinsic Stationarity and Intrinsic Random Func-
tions

Matheron(1973) introduced the concepts of intrinsic stationarity and
intrinsic random functions in the context of the statistical analysis and
subsequent prediction of mineral deposits where non-stationarity ap-
pears to be as commonplace as it is in economics. Spatial statistics treats
observations as arising from some general continuous multi-dimensional
coordinate system and while we are not immediately interested in the
flexibility offered by Random Field Theory or indexing our observations
in 3 dimensional space we are interested in exploiting the tools used
by geostatisticians for the analysis of irregularly spaced data®. The geo-
statistical method differs in several important respects from econometric
time series analysis. In the first place the main emphasis is on the use
of the variogram rather than the autocorrelation function (acf). There
seem to be three reasons for this choice. In the first place the variogram
is well defined for a wider class of stochastic processes than the autocor-
relation function and hence allows us to legitimately consider the tem-
poral dependence of processes that are not second order stationary. The
variogram is well defined for all intrinsically stationary processes which
is a wide class which encompassses second order stationary processes
and a range of processes that are not second order stationary. Secondly
the approach allows us to consider generalised transformations to sta-
tionarity or extensions of simple differencing with regularly spaced data
to irregularly spaced data such as that generated from point processes.
The variogram cloud provides an indication of memory properties of the
process at all potential lags whether they be integer or real valued cor-
responding to irregularly spaced data. Finally the statistical properties
the variogram in terms of finite sample bias may be substantially better

3The following discussion is largely drawn from Matheron(1973), Cressie(1988)
and Cressie(1991),



than those of the autocorrelation function. For our purposes then the
variogram enables us to simulataneously consider the dynamic depen-
dence in the series given a range of stationary and non-stationary DGPs
for which the acf may not formally defined.

We start by considering a general stochastic process
{Z(s):se€ D}

defined in D a random set in Euclidean R¢. The ability to draw obser-
vations from a d dimensional space is not one that we need to exploit
but we shall use the fact that the data is indexed on the real line as op-
posed to a set of regularly spaced integers. We will also refer to irregular
spaced data as being observed at points {t; : i = 1,.....,n} rather than
the regular spacing of observations at {t; =i :i=1,...... ,n}.

The wvariogram is defined as the variance of the difference between
two values of the stochastic process separated by some potentially non-
integer valued distance h. Such increment processes have been stud-
ied for many years, see Kolmogorov(1941), Yaglom(55), Gel'fand and
Vilenkin (1964). More familiar to econometricians will be Whittle (
1983) and the classic Von Neuman Ratio (1941) apart from the recent
literature on the use of Variance Ratio statistics for determining the pres-
ence of a unit root and independence in time series data, see Cochrane
(1988),Poterba and Summers (1988), Diebold (1989), Richardson and
Stock (1989), Lo and McKinley(1988). None of this more recent litera-
ture has it seems realised the deeper potential offered by the variogram
in the analysis of irregularly spaced data and the power of the underlying
concepts of intrinsic stationarity and intrinsic random functions.

A process is defined as being intrinsically stationary if
ElZ(s+h)—Z(s)]=0 (1)

and
Var[Z(s+ h) — Z(s)] = 2v(h) (2)

In other words the variance of the h increment is simply a function of
h and not the time origin. The function (k) is known as the semi-
variogram. The important properties of an intrinsic stationary process
are defined in terms of the increments, (Z(s + h) — Z(s)). Comparing
this definition with second order stationarity we need to consider both
mean and variance stationarity.

The process is mean stationary, if

E[Z(s)] = p (3)
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and variance stationary, if
var[Z(s)] = o* = k(0) (4)

is well defined and constant and

Cov|Z(s), Z(s + h)| = k(h) (5)
is only a function of the lag interval. In this latter case we have
var[Z(s+h) — Z(s)] = var[Z(s + h)] +var[Z(s)] — 2Cov[Z(s + h) Z(s)]

Assuming second order stationarity and given
k(0) = var[Z(s + h)] = var[Z(s)] = o*

we may write
7 (k) = £(0) — K(h)

showing that all second order stationary processes are intrinsically sta-
tionary. Notice that only in the case of second order stationarity will
the autocorrelation function be well defined and there will be a simple
relation with the scaled semivariogram

The converse is not true however since as Cressie(1998) shows, if
{W; :t=1,2,..} isa Wiener process observed at t = 1,2, ... then 2y(h) =
o?h (h=1,2,....) but Cov(W;, W,) = ¢?min(¢,u) which is not a func-
tion of |t — w.| Similarly a fractional Brownian motion (see Mandlebrot
and Van Ness(1968)) where

27(h) =b|A]>  5>0,0< <2

is an intrinsically stationary process but not second order stationary.
The variogram is more general than the acf and enables the second mo-
ment dependence of a wider class of time series to be characterised.

We can also see that when the variance of the process is well defined
and limy,_.o, k(h) = 0 so the dependence in the process goes to zero as
the lag interval increases then

k(0) = lim v(h)
h—o0

and the asymptote of the semivariogram is the variance of the process
when second order stationarity holds.When the process is not variance
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stationary the variogram retains its usual interpretation unlike the acf
but does not tend to an asymptote. The autocovariance is obviously
not defined in this case. Diebold(1989), Cressie(1991) and Beran( 1994)
discuss the use of the variogram in detecting long memory and the direct
estimation of the Hurst exponent from an estimated variogram.

As we have emphasised above even if the process is not variance
stationary it may nevertheless be a valid intrinsically stationary process
which is an intrinsically random function of order 0.

Following Cressie(1988) we suppose

represent observations at irregularly spaced time points {¢; : i = 1.....n}.
The if we define an n x d matrix X with ¢'th row

Suppose that A is an n x 1 vector of real numbers satisfying X'\ = 0
then \ is called a generalised increment vector of order (d — 1) and \'Z
is a generalised increment of order (d —1). An intrinsic random function
of order (d — 1) is defined as any process, {Z; : t > 0} for which

‘/u = Z)\z’Ztﬂru u>0

i=1

is second order stationary for any {¢; : i = 1....n} and any generalised
increment vector, A of order (d — 1). Notice that with regularly spaced
data the first difference transformation provides the weights for the gen-
eralised increment process and this can now be generalised to irregularly
spaced data. What is effectively achieved in the irregularly spaced data
case above is that a particular weighted combination of the observations
, given by the generalised increment vector, generates a second order sta-
tionary process. The generalised increment vector annihilates both the
nonstationary mean (polynomials in time) and stochastic trends. The
parallels with integrated processes are clear and the intrinsic random
function idea appears to be more general and applicable to irregularly
spaced data. Using results from Gel'fand and Vilenkin (1964), Math-
eron(1973) showed that any intrinsic process of order d pocesses a gen-
eralised covariance matriz K(h) : h € R such that given data Z and
generalised increment vectors, A and v( of order d — 1)

cov( N Z,v'7Z) ZZ)\UJ t)

i=1j=1
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This result can be used when considering prediction directly from the
second moment structure of these intriniscally stationary processes (see
appendix 3).

3 The Autocorrelation Function with Irregular Ob-
servations

We now turn to consider the use of the autocorrelation function in mea-
suring the dependence in an irregularly spaced time series. The obvious
problem is that the easy interpretation of autocorrelation functions on
regularly spaced data is lost as we move to irregularly spaced data. Given
regular data we can calculate directly the effect of a shock today on some
variable h days ahead. However when we have irregular data we lose the
natural time scale and although we can compute autocorrelations in the
normal way we cannot easily interpret the results and will not know,
for instance, whether a shock will reach its half life in the next minute
or in the next day. Operational time autocorrelation will have different
implications in terms of calendar time depending on the time of day or
state of the market and it is difficult if not impossible to use operational
time autocorrelations on the clock time scale.

This issue has been considered by Quenouille (1958),Brillinger (1972)
and Clark (1975) amongst others. Autocorrelations computed in irregu-
lar operational time will be weighted averages of the autocorrelations on
a regular scale. There are two ways forward; the first and by far the most
common is simply to aggregate the irregular data into fixed intervals and
the second is to use some form of time deformation transformation to
extract a regular acf from the irregular acf. We need to emphasise here
that we are not dealing with an underlying continuous time process but
a discrete point process so the alternative of treating the realised data
as irregular observations on an underlying diffusion process is not one
we wish to exploit.

If we write the standard autocovariance estimator ( assuming a zero
mean for the moment) as

Ke() = —— 3 Z2(t)Z(tiy)

= J =1

based on the observed but irregular data Z(t;), then Clark(1975) shows
that this estimator is a mean square consistent estimator of

Bl ()] = [ w(0)dF;(w)



where the distribution function F;(At) of the operational time intervals
(ti+;—1t;) provides a weighting on the true autocovariance function ,x(v).
So in principle if the distribution of the durations,(t;;; —t;) was known
we could work back from this expression to an estimate of the underlying
autocovariance structure.

3.1 Time Deformation

The idea behind time deformation is to construct a suitable transfor-
mation of clock time into economic time so that each interval of clock
time captures the same quantity of information about the underlying
stochastic process. Brillinger (1972) proposed an estimator in which he
used the observed intervals between the observations, v;, to estimate the
autocovariance function for the stationary point process which gener-
ates the intervals which could then be used to improve the estimate of
the autocovariance function of the underlying transactions. This esti-
mator is relatively inefficient as the observations are not related to the
operational time gap between them. Clark proposed an estimator based
on specifying a poisson process which effectively mapped operational
time to clock time and enabled direct estimation of a continuous AR(1)
model from the irregular data. Ghysels, Gourieroux and Jasiak,(1996)
have approached the problem in a similar way by constructing a trans-
formation that effectively attempts to translate an irregular sample in
clock time into a regular spaced sample in economic time. They are
interested in measuring the autocovariance structure in economic time
and work from acf calculated on aggregated clock time to imply the acf
in economic time. In particular, given some directing process,IW, that
associates clock time with economic time

W:teRX — W, e R"
and that the process of interest is evolving in economic time as
X*:weR" — X! €R"
we may induce the process observed in clock time ¢ € N by considering
Xi=X"oW, =X,

Given an assumption regarding the nature of the time deformation
process, W, for instance if volume measuring information flow, deter-
mines the way in which the natural time scale can be stretched and
contracted, we can consider two autocorrelograms in terms of clock time
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and an irregular spaced intrinsic time. The autocorrelogram in an irregu-
larly spaced data set may then be computed through a kernel smoothing
procedure. Two different kernels were used by Ghysels, Gourieroux and
Jasiak to estimate the acf’s for daily returns on the NYSE with trading
volume used as a directing process.

lag  Standard acf Gaussian kernel Bounded kernel

0 1.00 1.0 1.0
0.25 - .96 989
0.75 - 71 .02

1 -0.07 0.556 -0.0566
1.5 - 0.29 -0.02

2 -0.03 0.126 -0.02

Table 2: Jasiak, Ghysels and Gourieroux Time deformed kernel acf’s

The lags for the standard acf are based on the daily observations and
for the kernel autocorrelations lag = corresponds to w = xm, , where
m, is the average daily trading volume. This approach works in the
opposite direction from that we are interested in, ie. it attempts to
move from an aggregated daily acf to the underlying irregularly spaced
autocorrelation structure. Never-the-less it is striking from the table (2)
how the daily acf can give quite a different impression of the underlying
autocovariance structure in real time from the time deformed acf’s with
the daily acf indicating relatively little time dependence while both time
deformed acf’s show significant autoregessive structure.

It is clearly important, given these results, to recognise the significant
effect temporal aggregation potentially has on the measurement of the
autoregressive structure. The critical uncertainty in this process lies in
the choice of time deformation transformation. It is alsoquite apparent
that the two different kernel choices deliver quite different estimated
autocorrelograms at specific discrete lags.

3.2 Regularly Sampled Autocorrelation

Let us now consider the issue of which value to take as representative
for an aggregated interval. The different first order autoregressive coeffi-
cients that could be drawn from our DM2000-2 data set with transactions
aggregated into 20 second intervals by selecting different representative
values is shown in the following table. The two figures below Fig(1) and
Fig(2) show how the choice affects the surrogate time path created for
the aggregated series. If the right hand value is used then that value
will be the value assumed for the aggregated series, shown with the cirl-
ces, until the next transaction occurs, similarly with the left hand value.
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Figure 1:

The solid line in the graphs provides the linear interpolation value which
assumes that there will be transactions continuously over any interval
between actual transactions.

The different time paths implied affect the estimated first order au-
tocorrelation coefficients as shown in table (3)

Figures
Time Period | LH INT | RH INT | LIN INT | DeJ-N

0-24 -0.22 -0.24 0.03

18-6 -0.28 -0.41 0.12 0.29
6-8 -0.09 -0.10 0.01 -0.15
8-10 -0.18 -0.12 -0.19 -0.14

10-12 -0.15 -0.07 -0.03 -0.38

12-14 -0.18 -0.12 -0.11 0.03

14-16 -0.18 -0.11 -0.08 -0.00

16-18 -0.08 -0.06 0.23 0.05

Table 3: First Order ACF Coefficients for Various Interpolation Methods
and De Jong and Nijman

This table shows clearly how inference regarding the existence of au-
toregressive structure could be seriously affected by a particular choice
of representative element in the aggregated interval*. We also note the

*We believe that the results reported in Danielsson and Payne(1999) and shown
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Figure 2:

radically different behaviour displayed by the DeJN method in this com-
parison and shows how sensitive even a consistent interpolation method
will be to these assumptions on selecting representative values if we seek
to aggregate the data into regular intervals.

Given these ambiguities and the different estimates of autoregres-
sive structure that could be generated by different choices of time de-
formation transformation, interpolation method or representative value
in aggregated interval we have chosen not to focus on the autocorrela-
tion function in our analysis. Instead we have decided to explore the
direct use of the variogram to measure autoregressive structure in the
irregularly spaced sample of transaction on the Dollar-Dmark exchange
rate.

4 The Variogram and Cross Variogram with Irreg-
ularly Observed Data

Under the intrinsic stationarity assumption the classic variogram esti-

mator ( defined here for the moment on regularly spaced data) is given
by

30) = 5= 0 S — )

above in table (1) used the right hand value as our acf results are similar to their
own in this case.
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and is unbiased. The unbiasedness follows since critically this estimator
only uses differences of the data and since it does not require estimates
of the mean unlike the autocorrelation. We will use a smoothed version
of the variogram estimated at different lags h

(0 = 5777 3 (als) = a(s)f (6

where the sum is over N(h) = {(i,j) : s;—s; = h} and |N(h)| is the num-

ber of distinct elements in N (h). In principle we could simply calculate
the value of 4(h) for every h that occurs in the data’, but we choose to
use h's defined on a regular grid. First we construct a tolerance window
around each increment,h, so that all pairs satisfying

|s; —s; — h| < tol
are found and
N(h) ={(i,j) : |si = s; — h| < tol}

Clearly we can only reliably estimate the variogram at lags for which we
have enough observations and so we use a cut off rule , similar to that
suggested in Cressie(1991), that N(h) > 30. We have also experimented
with different smoothing rules such as using a fixed number of neigh-
bours and the results are not dramatically different from those reported
below. More sophisticated variable bandwidth kernel and robust esti-
mators of the variogram could be considered, which we will explore in
the future.

As an example figure(3) shows the irregular variogram estimated
on the DM2000-2 data over one day between 16.00 and 18.00 using
steps of 20 seconds and 1 second and a tolerance of 0.02 seconds for
both. The horizontal axis shows the lag interval in seconds. We can
see that as the interval becomes large there are less observations in both
variograms but more easily in the 20 second variogram. Note that the
transactions in DM2000-2 are recorded on a one hundredth of a second
time scale. There is no interpolation or choice of representative value
involved in these calculations beyond the averaging implied in using a
form of smoothing estimator.The average is typically taken over several
thousand observations at each lag. Where insufficient observations exist
the variogram is simply not computed at that value. Basically the same
pattern is seen for the two variograms

5In the geostatistics literature this sort of plot is called the variogram cloud.
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1 and 20 Second Variogram Estimates: Hours 16 to 18
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Figure 3:

4.1 Discriminating Processes with the Variogram

The basic variogram we will work with given in equation 6, and we will
compare the estimated version with the distributions of the variogram
under different processes. There is some asymptotic theory available. In
particular Lo and MacKinlay (1988) derive the distribution for a scaled
version of the variogram, R(h) = V(h)/V (1) where V(h) = e h)’y(h)
Under standard normalization the resulting test statistic is distrubuted
standard normal. However, as Kormendi and Meguire (19 ) demonstrate
the finite sample distribution of such variograms can be seriously skewed,
making the symmetric asymptotic distribution less useful. We therefore
proceed by using simulated distributions. In order to facilitate easy
comparison of the plots we use a simple scaled variogram §(h)/4(hy). hy
is the minimum lag we distance we will estimate the variogram for. So,
for example if we use a 20 second interval, then h; is 20.

In the following plot, figure(4) we provide a simulation® where the
dashed lines are estimated normalised variograms for two autoregres-
sive processes together with the simulated empirical distributions ( 97.5
and 2.5 percentiles) for the unit root. We can see that the case with
an AR parameter p of 0.95 cannot be distinguished from a unit root
on this basis at the 95% level but p = 0.8 is clearly seen to be signifi-
cantly different from a unit root. The empirical distribution is seen to
be skewed, demonstrating the usefulness of using simulated distributions
with limited sample sizes. Figure 5 shows the empirical distribution from

OWe used a sample size of 200, and 100 replications of the experiment.
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Figure 4: The empirical distribution for the variogram for a unit root
process. The two dotted lines show the mean variogram over a simulation
for AR(1) processes with parameter 0.95 (upper line) and 0.8.

another simulation study where the data is simply the differences from
the unit roor process, i.e. i.i.d. normal errors. We will use these types
of simulated distributions to test hypotheses about the FX data later.

The Cross- variogram, which is useful in exploring cross tempo-
ral dependence, is defined for a vector of intrinsically stationary pro-
cesses {Z(s); (Z1(s), Za(s).....Zk(s))} defined on the continuous obser-
vation space

as

27,;(h) = var(Z;(s + h) — Z;(s)) h e R?

Similar estimators for the cross variogram as described for the variogram
above have been used in the calculations reported below. Figure(6)
shows the cross variogram betweeen two series generated from the fol-
lowing simulated processes;

p(t) ~ N(0,1)

q(t) = —0.8p(t — 10) + e(t)
e(t) ~ N(0,1)
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Figure 5: The empirical distribution for the variogram for i.i.d N(0,1)
errors. The dotted line show the mean variogram over a simulation for
AR(1) processes with parameter 0.2
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The calculated cross-variogram is normalised as above to take the value
of unity on zero cross-covariance. The 95% confidence intervals in this
case are calculated by bootstrap methods under independent resampling
yielding an approximate method for indicating interdependence. Note
that this empirical distribution is the same as that of the variogram
measureing dependence within a single i.i.d. process.

4.2 Sampling Properties of the Variogram and the
Acf.

The sample autocovariance can be hoplessly biased when the process is
not mean stationary and the autocovariance itself is not even defined
when the process is not variance stationary. The standard autocovari-
ance estimate is given by

n—h
k(h) = N (@isn — @) (2 — )
i=1

and the major problem with the use of the acf in practice is the need
to estimate the mean of the process. It is well known that the variance
of the sample mean for correlated data is not 0%/n and in consequence
k(h) will be biased in finite samples, see Fuller (1976, p 236). Even if
not explicitly realised a trend (z ) is implicitly estimated through the
mean and the acf is calculated using the effective residuals (x; — 7).
Since the residuals are linearly related through Y;(z; — Z) = 0 , even
if the {z;} are independent the residuals {x; — Zz} will be negatively
correlated and a finite sample bias induced in the estimated acf. Indeed
the more pronounced the autocovariation the more pronounced the bias
as shown for instance by Newbold and Agiakloglou(1993) in the case of
fractional noise.

The sampling properties of #(h) have been discussed and compared
with those of the variogram by Cressie and Grondona(1992) and Haslett
(1997). These results show that the classical variogram given above,
is unbiased when the process is only mean stationary and a natural
alternative estimator only has a small bias when the process even when
the process is neither mean nor variance stationary. The alternative
estimator, which is the sample variance of the differences where 4(h) is
the average of their squares, is given by Haslett as

- 1 —
50 = 2= 0= 1) Yl — @)
i=1

where dp; = Tj1p — @
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5 The Data Set: Reuters DM2000-2

The DM2000-2 electronic dealing system provides a continuous auction
market for dealers from major banks in which market and limit orders
input by participants are matched automatically by the system with the
orders of others. The data set was made available to us from Reuters
via the FMG and provides a direct feed from the system showing the
placement of orders, their price and volume and enabling the structure
of the order book (which is not available in real time to the dealers using
the system) to be calculated. Dealers using the system can observe only
the best current bid-ask spread and volumes. A fuller analysis of how
the raw data was transformed into a usable data set for analysis is
described in appendix 1. The data used covers all Dollar/DM trades
on DM2000-2 over the week 6th-10th October 1997. Unlike the Olsen
FXDX data set which is drawn from the Reuters FX page and shows
indicative quotes ( bid -ask advertising) rather than transactions the
data we have represents real transactions on what now represents some
40 to 50% of the market.

Some 30,000 transactions have been drawn from approximately 130,000
entries into the system which may either be a market order or a limit
order, on either the bid or offer side of the market. We also have the
entry and exit times of the order, the bid and ask prices, the actual
transactions prices and the reasons for the withdrawal of the order. We
do not have information on the identity of the banks making the order
although this is known to the traders dealing on the system. Over this
period the traded price ranges from 1.73DM/$ to 1.77DM/$. The av-
erage volume of the orders was2.283 million and the volume of trades
ranged from 1 million to 30 with a mean of 1.816. Total volume of
transactions was about $60 billion, 70,406 orders were cancelled before
being acted upon and 38,239 were removed partially filled. A market
emulation programme was written to extract the transactions data from
the full data set”. Figure 7 shows the movement in the exchange rate
over the entire week with the horizontal scale in seconds. The panels
in this graph indicate the period 6.00pm to 6.00am GMT each day and
although the system is open 24 hours a day obviously different behaviour
applies during the overnight. This data has had some 20 observations
(out of 30,000) removed. Several significant outliers could be seen in the
original data and these required some explanation. Reuter’s staff sug-
gest that these represent real transactions since they are recorded on the

" A number of difficulties were found when extracting the transactions data from
the continuous record and we are grateful for the help of Reuters personnel in resolv-
ing these problems.
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system but offer the following explanations for their presence; they may
arise when a trader has left a limit order in the system and forgotten
about it and it subsequently gets hit, or alternatively a trader simply
needs to trade as a customer demands it or near the end of the day a
trader has to close out their position and just takes what ever price he
can get immediately. Since we are not interested in such behaviour at
the moment we simply took these observations out of the series.

What is much more inportant for our purposes is to recognise the
impact of macro-economic news on the market during the week. The
general situation during the week can be described as uncertainty re-
lating to tension in the Gulf and the prospects for European Monetary
Union. The Italian government fell on Thursday (9/10/97) of this week
as it failed to secure a compromise with its communist coalition part-
ner on the proposed budget— aimed at satisfying the Maastricht criteria.
Rather more significant for the evolution of the Dollar Dmark exchange
rate was the uncertainty surrounding the Bundesbank’s repo rate. On
the same day as the Italian Government fell this central rate was in-
creased by 30 basis points for the first time in five years. The timing
was a surprise and the effect was dramatic, at least on the time scale
of figure(7). The Financial Times of that week indicates substantial
speculation surrounding such an increase and when it would occur. In
fact speculation apparently existed that such an announcement would
be made on the Tuesday (7/10/97) but the Bundesbank left the rate
unchanged on that day. There is a clear appreciation of the DM in an-

20



A Snapshot of the Order Book

1.756
1

1.754

Price

1.752

1.750

T T T T
5 10 15 20

Quantity

Figure 8: Sample Bid and Offer Curves

ticipation of a higher repo rate up to the time of announcement on the
7th which is unwound slowly during the afternoon trading. We analyse
the market around these two events in the last section of the paper.

Some stylised facts of the transactions prices and returns are re-
ported in the following figures. Typical bid and offer curves are shown
in figure(8) with limit orders placed in the system at particular prices
and for particular quantities shown on the vertical and horizontal axes
respectively. The inside spread in this particular case is relatively nar-
row but it can vary significantly during the day as shown in figure(9)
where the horizontal axis is in 30 minute intervals from 6.00am. There
is a spike at the middle of the day, though we suggest later this is in fact
driven by the events on one day, the 9th October.

We have also constructed some measures of depth and liquidity in
the market. The depth measure is simply the sum of all orders in the
order book on both the demand and supply side. This gives us the total
volume available on each side of the market. As a measure of liquidity
we have estimated the slopes of both the bid and the offer curves locally
to the market price and used their average as a measure of liquidity.
The curves are in fact often nonlinear and also we find that sometimes
there are a few orders sitting in the system that are at quite off market
prices. We simply consider a linear approximation to the first part of
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the curve, looking only at the curve up to the first 5 different prices®.

If we denote the different prices in the bid side as say bp1, bps, bps, etc.,
where bp,, < bp,—1, and bp; is the best bid, with corresponding quantities
bgy,, then our slope is (bp; — bps)/(bgs — bgy). This accords with a notion
of liquidity which implies that in a liquid market you will be able to
transact without substantial changes in the market price. We are also
interested in other shape measures of the bid and offer curves such as the
curvature but for the moment just concentrate on this simple measure.
Figure(10) provides some indication of how the average slope (over the
week) of the bid curve changes through the day (in 30 minute intervals).
Not surprisingly there seems to be a U shape with the demand getting
more elastic (shallower slope) during the busy part of the day. The offer
curve has a similar intra-day pattern. As a measure of volatility we
show the absolute return during the day in figure(11). Other seasonal
(or diurnal) patterns have been documentted by Daniellson and Payne
(1999). These patterns confirm general patterns regularly observed in
such transactions data.

6 Empirical Results

6.1 Variogram

SWe also tried up to 10 different prices, but it made very little differences. We
are currently considering more sophisticated ways to examine measures of market
liquidity over time.
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Variogram for 1 second Increments: Hours 6 to 8
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Figure 12:

We applied the scaled variogram to the DM2000-2 data set by splitting
the day into 2 hour intervals as we might expect some differing patterns
of dependence through the day. We used a lag interval of 1 seconds and
a tolerance window of 0.1 seconds. Because of the density of the data,
this means that even which such a small tolerance window we are using
thousands of pairs of obsevations for each lag interval. We report a se-
lection of results’ where we show 95% confidence intervals constructed
in the following way. We retain the same time-scale as in the actual i.e.
S1, S2, S3, ...SN, but our surrogate price series are generated by simulating
a unit root process with i.i.d. errors'’. We then plot the 2.5 and 97.5
quantiles from a simulation of 100 series all with the same sample size
as the priginal series. This is not less than 5,000 for any series. Plots
12, 13 and 14 show the results for three typical sub-samples. We can
see that the actual data appears to be inconsistent with that generated
by a unit root process, with most of the variogram lying outside the
confidence bands. The fact that the empirical variogram for hours 10 to
12 lies above the bands indicates that the sample is displaying explosive

9Results for other two hour segments are available from the authors. These results
were however typical, in all cases we rejected the null of a unit root in the levels, and
the null of independence in the returns.
10We have chosen to use simulated distributions for inference for the reasons ex-
plained earlier.
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Variogram for 1 second Increments: Hours 10 to 12
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Autocovariance for 1 second increments: Hours 6 to 8
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dynamics!!. Next we considered what kind of inferences we might make
if we looked at an autocovariance based measure of dependence instead
of the variogram. We estimated the sample autocovariance in the same
way as the variogram (using a tolerance window around each lag incre-
ment h, and normalizing by k(1) ), and also generated confidence bands
in the same way. Figures 15, 16 and 17 show the respective plots. In-
terestingly we do not see the rejection of the unit root hypothesis via
the autocovariance, suggesting the variogram is in fact uncovering some
deviation from unit root behaviour that the autocovariance is not pick-
ing up'?. These variograms are looking at very short term dependence,
it would be of great interest to look at longer term dependencies and in
particular how the apparent dependency patterns vary under aggrega-
tion. We know for example that it is hard to reject a unit root in the
exchange rate at the daily level,and we conjecture that the temporal de-
pendence (as measured by both the autocovariance and the variogram)
varies as we aggregate up to lower frequencies.

'We found with some exploratory simulations that a process with an AR(1) pro-
cess with a parameter of 1.01 is enough to generate the same sort of divergence from
the confidence band as in the data.

12We are currently pursuing further comparisons between the two measures for
investigating dependence using both real data and simulated processes.
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6.2 Cross Variogram

Figures 18 to 20 reports the cross variogram between three micro vari-
ables and returns. The returns series is simply the differences in the
consecutive (log) prices, so these do not correspond to the return over
the same time interval, but instead are best thought of as the incremen-
tal price process. These cross variograms are estimated on the main day
segment, between 6AM and 18PM. The confidence bands are generated
by sampling from replacement from the original series, therefore provid-
ing a null of independence between the two series. For all three variables
there seems to be evidence that each variables affects future returns for a
short period. This we used a lag interval used for the estimation was 20
seconds, and the x-axis on the graph gives the lags in seconds. We can
see that volume appears to have an effect on returns for up to 100 sec-
onds ahead. Liquidity appears most weakly related, only just breaking
out of the 95% confidence bands for about 60 seconds.

These variograms and cross variogram results seem to offer clear
indication of temporal structure and hence predictability in DM2000-
2, though clearly we are talking about very short term dependence.
Whether a trader could exploit these dependencies is uncertain. Cer-
tainly a trader could not calculate the microstructural variables in real
time as we have, but to the extent that liquidity is deterministically
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predictable (on time of day for example) there may be some scope for
exploiting the fact that short term dependencies may vary through the
day. One might also try and construct real time variables that might give
some indication of the depth of the market, like the number of transac-
tions in the last n seconds, or the volume available at the spread prices.
Of course traders themselves have a feel for the depth of the market, and
may in fact throughout the day enter limit orders at off-market prices
in order to guage the depth.

7 Regimes of Predictability associated with Macro
Events?

Finally we return to the issue raised in the introduction which was the
question of how micro and macro models of the exchange rate may be ra-
tionalised. In particular we want to consider what impact macro events
have had on the micro structure of the market, what persistence exists
and whether a greater degree of predictability can be found around such
events. In our one week sample we are fortunate to find two such events;
on the 7/10/97 the anticpated but unfilled market speculation of a re-
pro rate increase by the Bundesbank and then on the 9/10/97 when the
repo rate was in fact increased by 30 basis points for the first time in
five years. Regimes of predictability have been found in a number of ear-
lier studies including our own previous work, Guarda and Salmon(1997)
and Hillman(1998) and we believe the same ideas will hold on the trans-
actions time scale. In this earlier work we have emphasised that the
development of several local models with distinct regimes of behaviour
is a more profitable route to follow than any attempt to consruct a com-
plex global model that attempts to account for several different modes
of behaviour. Generally the study of such transitions is confused by
temporal aggregation of the data but with the current data set we have
market information down to the hundredth of a second.

Figure(21) shows the movement the exchange rate over the day of
7/10/97, the spread over the same period and the bid and offer slopes.
We expect these slopes to become very sensitive as traders form differ-
ing views regarding the future equilibrium exchange rate. Figure (21)
shows that the appreciation and subsequent depreciation of the exchange
rate takes place more gradually in this time scale than appeared from
figure(7). In the period prior to the usual announcement time we can
see that the offer slope in particular becomes much steeper as the ex-
change rate is appreciating and indicating we suggest substantially differ-
ent views emerging in the market regardng the probability of an interest
rate increase and ultimately the value of a new equilibrium exchange
rate. It is noticable that at the time of non-announcement the slope
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of the bid curve increases while the offer curve flattens outs. There is
considerably more uncertainty on the offer side of the market prior to
the event than immediately afterwards.

The increase of the repro rate on 9/10/97 clearly had an immediate
impact on the market which appears to have been largely unexpected
as can be seen from figure(22). It also seems to have taken the market
much longer, several hours in fact to digest the news and to find a
new equilibrium than suggested in the survey by Cheung, Chin and
Marsh(1999). It would seem to be clear from the subpanels in Figure(22)
that the repo announcement led to an immediate appreciation of the
DMark and an immediate substantial widening of the spread and again
a dramatic increase at the time of the announcemnt on the slope of the
offer curve with little or no change in the bid slope.The question now
arises of whether or not there is any increased predictability, to be found
immediately after the event. Figures(23),(25) and (24) show the cross
variogram results for 9/10/97 between the micro variables and future
returns. We can see immediately that there is much stronger rejection
of independence between these variables on this day, then there was over
the whole week. In particular there is now clear evidence of dependence
between the liquidity variable and future returns. Apart from the short
term dependence that last from between 1 and 2 minutes, there also
appears to be some evidence of more long term dependence (the spread
in particular) with longer lag estimates of the cross variogram falling
outside the confidence bands.

So, it appears that on the 9th there is somewhat more dependence
between the micro variables and future returns. Finally we ask a simple
question of the data. Is this dependence observed throughout the day,
or as we suspect, after the Bundesbank announcement takes place and
the market adjusts to the new equilibrium exchange rate? We split the
day into a pre and a post announcement segment, and restimated the
cross variograms. Figures 26 to 31 confirm our intuition. We can’t
reject the null of independence pre-announcement, but clearly can do so
post-announcement.

8 Conclusion

On the basis of the results presented above we find it very difficult to
believe that there is no predictability in the Dollar/Dmark transactions
data in DM2000-2. We feel the fact that we find this result is in part
due to the choice of statistical technique and this experience leads us
to suggest that the variogram may provide a better tool to explore the
issue of finding structure in irregularly spaced data rather than standard
autocorrelogram analysis. The next stage of this research may be to

31



Bid Slope Spread Price

-0.0008

Offer Slope

1.755

1.745

0.0015

0.0

-0.0002

0.0010

0.0

Exchange Rate

630000 640000

650000 660000 670000

Seconds

Spread

630000 640000

650000 660000 670000

Seconds

Bid Slope

630000 640000

650000 660000 670000

Seconds

Offer Slope

630000 640000

650000 660000 670000

Seconds

Figure 21: The Micro Variables on the 7th October 1997
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develop kriging procedures which develop MMSE forecasts point process
directly from the second order properties of the process as captured in
a fitted variogram model (see appendix 3). This geostatistical approach
differs substantially from standard time series method which attempts
to match linear time series models with implied acfs to the observed
acf and then forecast from these time series models. We also intend to
explore the use of the cross variogram in macro event study analysis
more deeply using more finely defined micro market based data and
to explore the potential of cokriging as a prediction procedure in high
frequency financial data. Given what we have learnt from the current
research we are also moving to a better position from which to develop
a structural micro market model probably as a non-homogeneous Cox
process that acccounts for the temporal dependence and both the macro
and micro influences described found above. At present the model
that suggests itself to us is one in which the market periodically, on the
advent of macro news, sets a new reference level or equilibrium view of
the exchange rate and in between these readjustments normal micro-
trading incentives apply. From this perspective it may not in fact be
too difficult to find an intellectually coherent transition from macro to
micro theories of exchange rate determination. We find it difficult to
infer any conclusion regarding the efficiency of the DM2000-2 market
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from this work at this stage.

39



Index | Entry Time | Exit time | Type Result Price | Q. rd | Q.t
807273 | 00:18:06.450 | 00:19:02.280 | EnterOffer | EntryRemoved | 1.7545 | 1 1
NA 00:19:02.240 | 00:19:02.280 | EnterTake | EntryTaken 1.7545 | 2 1
807606 | 00:54:50.920 | 00:54:53.180 | EnterBid | EntryRemoved | 1.7541 | 1 1
NA 00:54:53.080 | 00:54:53.180 | EnterHit | EntryHit 1.7541 | 1 1

Table 4: Some Typical Entries in the Data Set
9 Appendix 1:Data Preparation

Obtaining the transaction series used in the current paper takes some
effort. The original D2000-2 data set is a list of entries into the electronic
trading system. The entries are in consecutive order, beginning at the
end of the 5th October 1997 and ending around mid-afternoon (GMT)
on the 10th October 1997. There are two types of entry, either a market
order (to buy or sell at the current best price) or a limit order ( in which
the order is logged in the system t obe transacted at some later date or
withdrawn) . In Table 4 we give examples of four typical entries. rule.

Understanding the entries in this table will explain much of the struc-
ture of the data. The first and third entries are limit orders. In the first
entry someone has made an offer (an ‘ask’) to sell 1 million dollars at
1.7545DM /Dollar. The entry was entered into the system at 18 min-
utes past midnight. Within this entry we can also see when the order
exited the system and what happened to it. The entry was 'Removed’
at 19 minutes past midnight, and 1 million was traded. As the quantity
requested was 1 million the order was completely filled.

Inspection of the next entry shows that a market order to buy (which
does not have a system index number, hence the "NA”) was entered 40
hundredths of a second before the limit order was removed. In fact as
we can see that both the market order and the limit order leave the
system at precisely the same time, it’s fairly clear that it was in fact this
market order that filled the preceding limit order. The market order was
actually for 2 million, but we can see that only 1 million was traded, the
remainding 1 million does not enter the system.

The next two entries are a similar pair, except this time the limit
order is to buy (bid), and the corresponding market order is to sell (a
hit). So, in this example we can identify two transactions very easily.
The entry of the market order causes the limit order to be removed in-
stantly, and at exactly the same time as the market order itself. This
is a simple way to identify transactions, simply matching pairs. There
are other type of similar trades that can be similarly identified. For
example when a market order pairs with 2 limit orders, causing 3 en-
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tries to leave the system at the same time. However, only about 15,000
transactions can be identified this way. More difficult is to identify the
automatic ‘crossing’ of limit orders. This happens when the bid and ask
(offer) curves cross, and the system automatically trades. Some of these
seem easy to recognise, for example when an EnterBid for 1 million is
removed at exactly the same time as an EnterOffer for the same quantity
is removed. Other limit orders are not so easy to identify however,and
to extract these transactions we need to emulate the D2000-2 system.
This means maintaining the whole order book over time. In principle
this is not difficult, and we have written code in S-Plus that mimics the
D2000-2 entry processing. This way the program identifies when limit
crosses occur, and given we also have the corresponding removal entries
in the data set, we can fairly easily process the data set as if it were being
entered into the D2000-2 system itself. There is one particular difficulty
mentioned by Danielson and Payne(1999) which we have had to tackle.
This is when the emulation program signals a limit cross should occur,
but it doesn’t in the data set. This is due to the fact that the two par-
ties on either side of the transaction may not have agreed credit between
themselves. The difficulty from our pint of view is that there is nothing
to signal this ought to happen unless the order book becomes unbalanced
and successive trades fail. In some cases this is not too hard to identify.
For example suppose there is 2 million at 1.745 on the bid side. Next
someone enters a offer limit order for 2 million at 1.745. This ought to
cross and thus remove all quantities available at 1.745. Suppose however
the next entry in the data file is an EntryHit for 2 million at 1.745, and
this is recorded as succeeding immediately. We know then that the limit
offer must have failed, else the market hit would not have succeeded.
In this way we can simply recognise the inconsistency when it occurs,
restore the emulated order book to it’s state before the previous limit
order, block the next limit order, and restart the processing. In fact
we find that after all the matching pairs have been taken from the data
this method allows us to process the rest of the data robustly. Then
we can combine the transactions series and form our final transactions
series. Performing the processing on the whole data set (including all
the matching pairs) is more difficult as there are far more limit orders in
the system, and so proportionately more failed limit crosses that need to
be corrected. However the general principle of recognising ex-post that
a limit order must have been crossed wrongly, then backing up the sys-
tem and blocking past limit orders seems to work. The advantage from
processing the whole data set is that we can build up the entire order
book and thus retrieve micro-structural information like the spread, the
offer and bid curve shapes and so on.
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10 Appendix 2: Measuring Predictability with dif-
ferent information sets and models

Granger and Newbold (1986) emphasise that our understanding of
deterministic and hence predictability is conditional on the information
set used given that a random variable may be perfectly predictable given
one information set but not with another. In particular a series {X,}
is stb Deterministic if it can be forecast without error or with zero cost
given some information set, I, , eg.

lim E[C(Xpsn = fan) | {In: (@0 )0} =0

N—oo

If the limiting expected cost resulting from a forecast is less than that
from using a purely random or white noise process as the forecast then we
could say that the series contains a degree of predictability P, (conditional
on the information set).

o A BOKnsn — fon) [ U+ (ong)o]]
o E[C(Xon — )

alternatively a no-change comparison in which f,, , = x,, or a “certainty
equivalent” measure which might imply f,, = 0 could be used.In the
latter case the measure is similar to that proposed by Granger and New-
bold (1986, page 310) in which they use the forecast error variance to
represent the cost. cf. Messe and Rogoff (1971)

Measures of predictability such as those suggested by Diebold and
Kilian (1997) which rest on comparisons of forcast performance over
different horizons with a fixed informtion set

ElC(Xpsn = fan) | {In: (xn)} 0}]
EBlC(Xnsk — fur) | {Tn 1 (2n—s) 0}

may be inapplicable as the relevant information set, economic theory
and therefore model change as the forecast horizon changes.

1-— k<h
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Variogram and Fitted Function 16-18
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Figure 32:

11 Appendix 3:Kriging

In Figure (32) we show a variogram and a power function fitted to this
data. A number of different options as to the choice of model exist
and some systematic model selection procedures need to be employed.
However with an estimatted variogram function we may move directly
to develop MMSE predictions. It is also possible to use the estimated
variogram to determine the presence or not of long memeory, Deibold
(1989) and Cressie (1991).

The following algebra is for the simplest case of a constant mean.
Given a model

Z(s) = p(s) + (s)

where £(s) is an intrinsically stationary process we seek to predict the
value of Z(sg) at some point, sg, in the potentially continuous real line
given the values of observations on a sample {Z(s1).....Z(s,)} The or-
dinary kriging predictor given by Matheron(1971), is linear, uniformly
unbiased and minimises the mean square prediction error (BLUP)and is

given by
; (L-1T )\
Z(So) = <’y —+ ]_W F 1Z

where Z = (Z(s1),.....2Z(s,,))’

Y= (7(80 - 51)7 """" 7(80 - Sn))/
and I is an n X n matrix whose (7, j)'th element is given by v(s; — s;)
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The minimum mean-square prediction error can be simple derived as
0%(s0) =Ty = (IT™1y — 1)*/(1'T7'1)
and then we form the usual prediction (for example 95%) intervals
A= (Z(so) — 1.9602(s0), Z(s0) + 1.960%(s0))

This formula which gives us the optimal predictor for irregularly
spaced data for intrinsically stationary processes can be seen to depend
simply on the variogram of the process. We have no need to pass through
the intermediate step of fitting say ARIMA models to generate forecasts
given the estiamted variogram. Second order prediction theory can ob-
viously be generated directly from the autocorrelogram when it exists
but the real adavantage in our case is that the class of models we need
to consider when modelling irregular data generated from some point
process are much less well established than the ARIMA class for linear
time series with covariance stationarity and regular observations.

In terms of time series notation we can apply the above formulas
substituting ¢i, to, ...t,, for sg, s1, ...S,, and the prediction point sq is now
tnin where h is the forecast horizon.

In figure 33 we give an example of the kriging forecast where the

simulated process is a simple AR(1) model with a coefficient of 0.8. We
also plot the 95% confidence intervals. We use the data up to point 100,
to estimate the variogram, and then go direct from the variogram to
forecasting the next 50-steps out.

Plot 34 gives an example of out-of-sample forecasts on a sub-sample
of the D2000-2 series. We can see that some of the short-horizon forecasts
are somewhat erratic, and as the horizon increases we see a smoother
adjustmet of the forecast. We believe the erratic early forecasts are due
to the method of fitting the variogram. In particular the estimates of
the variogram at ahort lags are dependent on the bias or offset of the
variogram (i.e. where it meets the origin). In the kriging literature there
is a considerable attention paid to this issue, which is generally called the
'nugget effect’, because of the spatial mining context. We are currently
pursuing the usefulness of kriging forecasts further.
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Kriging Forecasts with an AR(0.8) Simulated Process
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Figure 33: Out-of-Sample h-step Forecasts from the Kriging Model, and
95% confidence interval.
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Kriging Forecast For a Sub-Sample of the D2000-2 Data
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Figure 34: Kriging Forecasts For a Sub-Sample of the D2000-2 Series
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