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CONDITIONAL GAUSSIAN MODELS
OF THE TERM STRUCTURE OF INTEREST RATES'

SIMON H BABBS

BANK ONE CORPORATION* and University of Warwick

Abstract: We present a new family of yield curve models, termed “Conditional
Gaussian”. It provides both simplicity and extreme flexibility in constructing
“market models”. Any conditional co-variance structure - including features
designed to capture volatility “skews” and/or GARCH effects - can be used, and the
model can be embedded into a continuous-time whole yield curve model consistent
with general equilibrium. Conditionally Gaussian increments in log one-plus-
interest-rates enable “vanilla” and path-dependent derivatives to be valued easily by
Monte Carlo without discretization error, whether or not their payoffs depend
solely on the particular market rates being modelled directly.

1. INTRODUCTION

We present a new, “Conditional Gaussian” (CG), family of yield curve models, capable of being
supported in general equilibrium. This family is significant in at least the following two respects,
as well as opening up further possibilities to be discussed briefly in our concluding remarks.

Firstly, it enables us to construct multi-factor “market models” in a simple but extremely flexible
manner. Moreover, “vanilla” and path-dependent interest-rate derivatives can be valued easily,
whether or not their payoffs depend solely on the particular market rates being modelled directly.
“Market models” carries here the general sense that the modelling focuses upon particular
observable market interest rates; rather than the narrower sense of requiring lognormal simple
rates. In many currencies, Black [1976] implied volatilities now exhibit “skews” with respect to
strike; thus fitting market option prices closely requires rich alternatives to lognormality. Our
models provide this through tremendous flexibility in the dependence of conditional covariances
of term structure movements upon both rate levels and maturity.

Secondly, our models allow direct incorporation of GARCH dynamics into the whole term
structure, within an arbitrage-free multi-factor model. This provides an alternative to existing
models, in which heteroskedasticity (other than dependence on rate levels) enters only through

stochastic volatility or GARCH dynamics of a single interest rate. Valuation remains easy under
GARCH.

The key to our approach is that, if increments in log one-plus-interest rates are conditionally
multivariate Normal under risk-adjusted probabilities, then a discrete-time no-arbitrage martingale
condition reduces to a simple condition linking the means and co-variances. Any conditional co-

' Views expressed in this paper are those of the author and not necessarily those of any organisation to which he is
affiliated.
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variance structure - including GARCH - can be used, and the model can be embedded into a
viable continuous-time model which, piecewise and conditionally, is multi-factor linear Gaussian.
All kinds of volatility skews can be produced, and/or rates kept positive to an arbitrarily
demanding confidence level, by appropriate combination of discrete time interval and co-variance
structure. The linear Gaussian nature of both the discrete-time increments and the embedding
model facilitates straightforward Monte Carlo valuations of derivatives.

The rest of this paper is organised as follows. Section 2 briefly reviews the existing “market
models” and stochastic volatility/ GARCH term structure literature, and sets our family of models
in that context. Following this material, Sections 3-7 comprise the heart of the paper, dealing with
Conditional Gaussian models in general.

Specifically, Section 3 begins by establishing a discrete-time martingale condition applicable to
the dynamics of a sequence of forward simple interest rates, observed at a sequence of discrete
observation dates. Reflection upon this condition motivates the construction of the discrete-time
“kernel” of our family of models.

In Section 4, we construct a continuous-time whole yield curve model, consistent with general
equilibrium, in which our discrete-time kernel is embedded, and in which spot rate changes over
intervals within single discrete-time periods are conditionally Gaussian.

Econometric estimation and testing of any model operates under objective probabilities. To this
end, Section 5 revisits the discrete time kernel, which we created in Section 3 under risk-adjusted
probabilities, and re-casts it in a tractable way under the objective measure. To our knowledge,
this is the first time that anything like such a rich class of term structure models has had available
an exact arbitrage-free discrete-time representation for multiple market interest rates.

With the abstract theory thus complete, but still at the level of the full generality of the family of
models, Section 6 addresses the valuation of what we term “kernel claims”, ie those whose
payoffs can be written as a function of the finite set of observations of forward simple interest
rates contained in the discrete time kernel of the model. Standard interest rate caps and European-
style swaptions, to which one would want to calibrate a model when carrying out derivatives
pricing, are leading examples of such claims. We show that all kernel claims are directly

amenable to Monte Carlo simulation, without discretization error.

At the same level of full generality, Section 7 shows that a broad class of “non-kernel” claims is
equally amenable to Monte Carlo simulation. This is because we are able to show that the whole
term structure at intermediate dates, like the particular rates and observations in the “kernel”, can
be simulated without discretization error using Normally distributed random numbers. The
practical significance of this is that, once a Conditional Gaussian model has been calibrated to
standard caps and swaptions, the resulting parameter values can be used directly in the valuation
of other trades involving arbitrary dates.

Section 8 suggests various examples of specifications of the key model input — the covariance
structure of discrete-time movements in the logarithms of forward one-plus-interest-rates. In
particular, one example illustrates incorporation of GARCH effects.

A concluding section summarises the paper, discusses various implementation issues, and outlines
some possible extensions. Proofs of any length are relegated to an appendix.
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2. “MARKET MODELS” AND STOCHASTIC VOLATILITY / GARCH MODELS

2.1. “MARKET MODELS”

A significant branch of the term structure literature has recently developed, concerning so-called
“market models” (Brace, Gatarek and Musiela [1997], Miltersen, Sandmann and Sondermann
[1997], Musiela and Rutkowski [1997], Jamshidian [1997], and Andersen and Andreasen [1998]).
Whereas the general continuous-time arbitrage-free framework developed independently by Babbs
[1990] and Heath, Jarrow and Morton [1992] models the term structure across a continuum of
maturities, without particular regard to any specific quoted interest rate, the “market models”
assign a special role to forward simple interest rates of some particular tenor underlying
commonly quoted interest rate cap or swaption contracts.” The main motivation for focusing on
these rates is to seek a model in which theoretical prices of caps and/or swaption contracts will
more closely mimic market prices. Considerable prominence is often given (eg Brace, Gatarek
and Musiela [1997], Miltersen, Sandmann and Sondermann [1997]) to the production of cap
and/or swaption pricing formulae which coincide with, or at least closely approximate, the
adaptations of Black [1976] frequently used by traders.

Until very recently, this prominence could be supported by pointing out that - at least for the
frequently traded contracts whose strike levels fell within about one percentage point of being at-
the-money — the dependence of market price upon strike level was well approximated by Black’s
formula with no volatility “smile” or “skew”. However, this approximation has now largely
broken down in favour of noticeable volatility “skews” across all frequently traded strike levels.?
Accommodating such a breakdown, Jamshidian [1997] and Andersen and Andreasen [1998], have
relegated lognormal behaviour of simple interest rates* to a special case of their models.’

The family of models we shall present shares some features with that of Jamshidian. As in his
framework, the dependence of volatility upon rate levels is at the user’s discretion, as are the
correlations between changes in different rates. Carefully engineered choices of his instantaneous
volatility and correlation functions would even imply a discrete-time “kernel” identical with ours.
However, there are also striking differences, stemming from different starting points. Unlike
Jamshidian, we commence with the discrete-time analysis, and only afterwards extend to
continuous-time, resulting in different continuous-time models. Our continuous-time model
covers the whole continuum of maturities — which Jamshidian expressly eschews. Moreover, our

? Earlier work by Goldys, Musiela and Sondermann [1994] and Sandmann and Sondermann [1993],[1994], using
“effective” or other discretely compounded rates, contributed significantly to the creation of “market models”.

> This was only to be expected in the light of empirical evidence (eg the application of the methodology of Nowman
[1997] to more recent data) that, at least since the ending, in the mid-1980s, of aggressive targeting of monetary
aggregates in the US, the amplitude of arithmetic changes in interest rates is not proportional to the level of rates,
contrary to the assumption of the adaptations of Black [1976].

* Jamshidian develops separate models in which the simple rates concerned are, respectively, (single period) LIBOR

rates, and (multi-period) swap rate. In general, two models using different tenors of LIBOR, or using LIBORs and
swap rates, are mutually inconsistent.

> Similar relegation of lognormality is evident in Hunt, Kennedy and Pelsser’s [1998] “Markov functional” models,
which share many of the goals of market models while using only a low-dimensional process. It is currently unclear
whether multi-factor versions of these models can be made tractable.
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approach permits the valuation of contingent claims outside the scope of Jamshidian’s model,
such as those depending on rates outside the finite set upon which modelling is focused.

Further differences arise in numerical valuation. Both in our framework, and in Jamshidian’s once
lognormality is dropped, closed-form valuation formulae are lacking, and Monte Carlo
simulation is the obvious technique for contingent claims without early exercise or other
discretionary features. In Jamshidian’s LIBOR-based models, each forward LIBOR follows a
continuous-time diffusion whose drift depends non-linearly on multiple LIBORs.” Hence, even to
value payoffs depending only upon observations made at discrete dates, accurate Monte Carlo
simulation will almost certainly require a finer mesh of timesteps, and it is non-trivial to decide
how the stochastic processes should be discretized. (Although Glasserman and Zhao [1998] report
significant work in this area, it remains not straightforward.) By contrast, Conditional Gaussian
models provide exact multivariate Normal bases for Monte Carlo simulation of these contingent
claims. This does not, of course, remove all performance and convergence issues; it does however
completely eliminate discretization questions, and avoids the need for a finer time mesh with the
higher dimensionality that entails.

2.2.  STOCHASTIC VOLATILITY AND GARCH MODELS

Longstaff and Schwartz [1992] (LS) and Fong and Vasicek [1991] model the short (ie
instantaneous spot) rate as having stochastic volatility imperfectly correlated with the rate itself.
Equally validly, by an invertibility argument, the volatility can be written as a function of the
short rate and some (arbitrarily chosen) other yield. Thus, when modelling interest rates, the
distinction between stochastic volatility — and perhaps GARCH - models — and, by contrast,
models in which volatility is a function of rate levels, becomes subtle and sometimes even
meaningless. The distinction is perhaps best drawn between models in which short rate volatility
can be written as a function of at most time and the current short rate, and models in which it
cannot.® The vast majority of existing models fall into the former category. In doing so, they go
against the conclusions of LS and Brenner, Harjes and Kroner [1996], that short rate volatility
exhibits stochastic variation inadequately explained by that rate itself.

The stochastic volatility models, LS and Fong and Vasicek [1991], offer fragile tractability, in the
sense that the availability of (a few) closed-form valuation formulae, and of an explicit transition
density for the state variables, depend upon the mean-reversion and diffusion parameters being
constant across time, and upon the overall diffusion coefficients being proportional to the square
root — rather than any other non-zero power - of the respective variables.

Brenner, Harjes and Kroner [1996] explore econometrically several short-rate models, in most of
which GARCH effects are present and appear to have significant explanatory power. They note
that they “do not use the correct arbitrage-free drift” which would be “very difficult to do”. We

% Andersen and Andreasen [1998] report analytic caplet and European-style swaption approximations for the special

case of a CEV formulation; these appear to work well except when Black [1976] implied volatilities are very high (as
currently in Japan).

7 See equation (13) in his Section 4, or equation (5) in his Section 6.

¥ We use “volatility” and “short rate” here in a widened sense to refer to the uncertainty attaching to instantaneous
movements in the short rate in a continuous-time model, or to next period’s shortest rate in a discrete-time model.
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conjecture that such difficulties would prevent extending their particular approach to analyse
multivariate time series of rates of various maturities. Duan [1996] constructs an equilibrium
asymmetric GARCH model for the one-period rate in discrete time, thereby overcoming arbitrage
problems; however, forward rates can only be solved for Monte Carlo valuation of bonds.

Against this background, the Conditional Gaussian framework offers attractive features. There are
explicit transition densities regardless of the functional form of the dependence of volatility upon
the current term structure, and despite possible GARCH effects. Moreover, arbitrage-free
expected increments in multivariate forward simple interest rates are known exactly.

3. DISCRETE-TIME “KERNEL”

We commence by considering the implications of no-arbitrage martingale conditions for the
dynamics of a sequence of forward simple interest rates, observed at a fixed sequence of discrete
observation dates. These observation dates include, but need not be restricted to, the rate
determination dates at which successive forward simple rates become spot rates.

We regard this “decoupling” of the observation frequency from the tenors of the forward rates as
significant. Firstly, it will permit econometric use of, say, daily or weekly observations without
the estimation of daily (weekly) forward rates and of their covariances. Secondly, it will permit
the model to capture more accurately both the dependence of volatility upon rate levels, and also
GARCH effects occurring on timescales shorter than the tenors of the interest rates in the
“kernel”. Thirdly, we conjecture that, by jointly varying the observation frequency, interest
frequency and covariance structures, one could approximate any diffusion model of the term
structure by a sequence of Conditional Gaussian models; each approximating model, of course,
would enjoy the benefits of the exact arbitrage-free means given by (11), and the convenience of
explicit multivariate Normal transition densities free of discretization error. We hope to confirm
this conjecture in future work.

Formalizing the “decoupling” mathematically, we fix any sequence of dates T, <7, <...< T, , and
denote the corresponding interest rate determination dates Tj < 7'<..<Ty_,.” We also fix a
second sequence 0=1¢, <t, <...<t, = Ty_, of observation dates, such that

Vn e{0L,...N -1}, Ji(n): 1, =T, (1)
Note that i(r) is uniquely defined for each n, since each sequence of dates is strictly monotonic. It

also has a converse in the form of a mapping:
k(i) = min{k: T} > ¢,} 2

 We distinguish with a prime the date on which rates are quoted, from the later “spot” date (in most currencies two
business days later) on which any initial transfer of principal occurs. In currencies where such a “rate fixing lag”
exists, “overnight” and “tom-next” interest rates spanning this interval are subject to different arrangements.

Since the final interest rate in our model kernel is determined at T, 1> We have no interest in 7, N
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Denoting the value at time # of unit pure discount bond maturing at M by B(M ,t), the value at any
observation date ¢, of a unit pure discount bond maturing at 7, > T, can be expressed ast!®

n-1 1

B(]:z:ti) = B("Z;c(i)’ti) H (1+Sm(ti)5m)_ (3)

m=k(i)

where: B(Tk(l_),ti) reflects the discounting attributable to very near-term interest rates; S, (o) is

the stochastic process of the forward simple interest rate from 7, to 7., ; and each &, is a strictly
positive constant “accrual factor”.

We normalise by dividing (3) through by the price of our numeraire, a discretely re-invested

money market account'' whose balance at any 7, is:"
k-1

H (1 + S"l (]:): )5”1 )

m=0

and whose present value at ¢, is therefore
k(i)-1
A(tl) = B(];\(l) ’ti) H (]‘ + Sln (]-I'I: )5111) (4)

m=0

and write the normalised pure discount bond price as

B(Gyoti) o

B (10 = (1 8.1 n2)5.)” ¥

Taking pure discount bonds maturing at the dates 7, < 7, <...< T, as the primitive securities of a
frictionless securities market with trading opportunities at 0=, <¢, <...<¢,, the model is
arbitrage-free if and only if the change in the normalised price of every bond, over every single
period has a conditional expectation of zero at the start of the period (ie ¢,): -

E;[B(T,.t.)]=B(T,.t,); n=k(i+1),...,N; i=01,..,J-1 (©)

where the conditional expectations are taken under any risk-adjusted probability measure, P,
corresponding to our choice of numeraire.

Substituting (5) into (6) and simplifying, provides the martingale condition formula which must
be satisfied:

. n-1 1+ Sm (t, )5"1 _ 1
: m=k(i+1) 1+ Sm(ti+1 )5111 - (7)

0 we apply the convention, throughout this paper, that a product (sum) — but not an integral - over a range of index
values is unity (zero) if the starting index value strictly exceeds the finishing value.

a2 very similar framework could be developed using a pure discount bond numeraire. However, this would result in
details of the model depending on the maturity date of the bond in question, which we regard as undesirable.
"> We assume that the account is initiated at date o by purchasing a unit pure discount bond maturing at 7 ; at each

successive 1, the shortly maturing balance (including interest) is re-invested in pure discount bonds due at T, -
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Reflecting on the form of the martingale condition formula, (7), leads readily to the thought that
one distributional assumption under which the mathematics of enforcing the martingale condition
would be especially tractable would be to suppose that the conditional joint distribution of the
various terms in the product inside the conditional expectation operator is multivariate
lognormal."”® That is to say, we define the increments in the log “one-plus-interest-rates”:

X, =I(1+8,,(t.,)8,) -In(1+8,(2)8,); m=k(i +1),..,N=1;i=0,1,...,J -1 ©)

and suppose that the distribution of {X min M=k +1),..,N — 1}, conditional on information up
to date #; is multivariate Normal with:

E;‘[X,,,,,.H] =p,;; m=k({+1),.,N-1 )
cov;[ X

m,i+1 2

Xn,i+l] = cm,n,i 5 m,n = k(l + 1)’ N - 1 (10)

where cov; signifies conditional covariance taken at time t; with respect to the risk-adjusted
probabilities.

This assumption is far less strong than might initially appear, since it is the date #, one-step
conditional distribution that is given an assumed form. We shall see that we have great freedom
in specifying the covariance structure, including dependence on the date ¢, term structure. Thus
the unconditional distribution of interest rate changes can take a vast variety of forms.

Given the assumed multivariate distribution, substituting (8)-(10) into (7) reduces the latter to:

n—1 n—1
1 —_
€Xpy — Z lumz + ZC" yE -
m=k z+1 Jj= k z+1

Taking logarithms of this equation, we see that the sum indexed by m is zero for any ». This will
be so if and only if the marginal contribution for each successive value of n is zero. This
determines the conditional means in terms of the conditional covariances:

n—1

/un,i = %Cn,n,i + Zcm,n,i 5 n= k(l + 1)""’N_1 (11)

m=k(i+1)
We summarise the argument of this Section so far in our fundamental discrete-time result:

THEOREM. 3.1 Suppose that the conditional distribution at each date t,:i=0,1,...,J —1, of the
increments over the next period in the log “one-plus-interest rates” defined by (8),

{ e = k z+ 1) ,N —1}, are multivariate Normal with conditional means and conditional

(co-)variances defined by (9)-(10). Then the model satisfies the martingale condition formula,
(7), if and only if the conditional moments are linked by (11).

Proof Immediate by the arguments immediately before the statement of the theorem. H

" We discuss briefly other possibilities, leading to Conditional Non-Gaussian models, in Section 9.
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Summarising formally the ingredients used in our argument up to this point leads to the following
definition of our concept of discrete-time kernel:

DEFINITION. 3.2 The discrete-time “kernel” of a Conditional Gaussian model consists of:

) a sequence, 1, <7; <...<T,, of fixed dates, together with corresponding interest rate
determination dates, Iy < T}’ <...< Ty_;

(1)  asequence, 0=1, <t <...<t, = Ty_,, of fixed observation dates, including T}, T,..., T} ;

(111)  aninitial, ie as at date 7, = 0, discrete term structure consisting of a discount factor for the

earliest “spot” date, B(7;,0), and forward simple interest rates, {S,,(0): m=0,...,N —1};"

(ivy for each i=0,1,.., a mapping, C,, from R to the space of

(N —k(i+1) ) X (N — k(i +1) ) covariance matrices, where d(i Z N —k(j

(v) the assumption that, for each i = 0,1,...,J —1, the conditional distribution under P* of the
increments, {X min M =k(i+1),..., N — 1}, in the log one-plus-simple-interest-rates, is
multivariate Normal with moments given by (9)-(10) and linked by (11), where ¢, . is the

m,n,i

(m —k(i+1)+Ln—k(i+1)+ 1) th element of C,, evaluated at the observation history so
far, ie Of G;(Sy(fo )ov-+s St (£0)s Sy (1 s-oos St (B oooos Sy (8 oveos S (1)) -

REMARK Note, from (3), that our “kernel” concept determines future discount factors B(7,,, )

n?

only up to scaling by the discount factor, B(T k) t.). This is perfectly adequate for pricing at ¢, of

payoffs due at some 7, and depending only on forward simple interest rates observed up to T".

n

We will amplify this point in Section 6, where we discuss pricing caps and European swaptions
based on the forward rates in the “kernel”.

COROLLARY. 3.3 Any “kernel” satisfies the martingale condition formula, (7).

Proof Immediate by Theorem. 3.1. B

It will be evident to the reader that Definition. 3.2 and Corollary. 3.3 open up a tremendously
flexible modelling framework. The “recipe” is simple: specify conditional covariances

{cm pimn=k(i+1),..,N-1;i> 0} however you wish; then the assumption that the increments

{ min =k +1),...,N—1;i 20} defined by (8) have the specified covariances, and have

means determined by (11), generates a model satisfying the martingale condition formula.

Note, in particular, that this “recipe” allows us to specify whatever conditional correlation
structure we want, and to have the conditional variances depend in whatever way we wish upon

' Or equivalently, B (];) ,0) and further pure discount bond prices {B (]:, ,0) n=1,..,N } .
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the evolution of the term structure up to date #,. Thus, for example, we could incorporate

GARCH effects by making the conditional variances depend on the magnitude of past
innovations. Moreover, whatever specification we adopt, the model will be directly amenable to

Monte Carlo simulation since, for each i, the increments {X,,.,,:m > k(i +1)} required to generate

forward rates at date ¢,,, from that at ¢, are conditionally multivariate Normally distributed.

4. CONTINUOUS-TIME WHOLE YIELD CURVE MODEL

It is certainly of theoretical interest to ask whether the conceptual framework set out above can be
embedded in a continuous time whole yield curve model of the kind independently pioneered by
Babbs [1990] and Heath, Jarrow and Morton [1992]. Moreover, embedding our discrete-time
“kernel” in a continuous-time whole yield curve model will enable us - see Section 7 - to price
consistently payoffs which depend upon the term structure at dates other than ¢,,t¢,,...,¢, and/or

upon rates other than the finite set of forward LIBORs {Sm(t,.) :m=k(i),.... N=1;i=0,1,...,J } )

In this section, we construct one way in which such an embedding can be achieved. In this
construction, the conditional risk-adjusted distribution at any #, of spot rates movements

occurring during the interval until z,,,, is multivariate Normal. This reinforces the motivation for
referring to our class of models as “Conditional Gaussian” (CG).

Before detailing our construction, we offer the following intuition.

Summing (8) over an appropriate range of values, and replacing simple interest rates by price
ratios of relevant pure discount bonds we obtain:

BlTt)  BlLurt) exp{_iX }
- n,i+l

B(T,.t,)  B(T,.t;)

n>"j

i=j

Observe that the first suffix on the X is n, throughout the summation on the RHS of the above
equation. Moreover, n appears as that suffix only when it is the nth forward simple interest rate
whose evolution we are considering. Observe also that, under our risk-adjusted probabilities, the
conditional distribution of X, ., as at #; is Normal, so that X, ,,, could be considered as the

n,i+l

increment of an Ito process whose drift and diffusion coefficients are known at ¢,.

These two observations prompt the conjecture that we are close to a multi-factor linear Gaussian
model, in which the gth factor impacts instantaneous forward interest rates applying only to the

period (];_1 , Tq] ; the only major point of difference being that the linear Gaussian behaviour holds
piecewise — ie over intervals (z;, tm] - with the coefficients being revised at each successive ¢, .
We now provide a detailed construction along the lines of the above conjecture, representing

innovations in each of the correlated factors by a linear combination of innovations in independent
Brownian motions.

13 “Spot rates” here carries the academic meaning of continuously compounding yields on pure discount bonds.
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The first task we undertake is to build a class of continuous-time models; our second task is to

show that discrete time “kernels” can be embedded in models from this class. We commence the
former task by adopting the following as primitive:

1) sequences of dates as in items (i) and (ii) of Definition. 3.2

(ii) a filtered probability space (Q,? , {Z ‘te [O, T; 1(1-1]}: P) satisfying the “usual conditions™',

and supporting /N independent standard Brownian motions, Z AW

(1)  a differentiable and non-vanishing initial term structure, B(0,0) , consistent with the initial

earliest spot discount factor B(7;,0) and forward simple interest rates, S,(0),...,S,_,(0);

(tv) for each i=0,l,...,J—-1, a mapping, éi , from R to the space of
(N —k(i+1)+ 1) X (N —k(i+1)+ 1) covariance matrices;’

(V) predictable “market price of risk” processes, 6,,...,0, .

Note that, whereas the discrete time framework set out in Section 3 requires covariances only for
m,n = k(i +1),...,N -1, the second “primitive” item above extends the covariance matrix to

m,n = k(i +1)—1,...,N —1. By this means, we provide for stochastic behaviour during (t;, ,+1] of
bonds maturing stnctly before 7, . For m,n= k(i+1)—-1,...,N -1, we define ¢,,, as the

m,n,i

(= k(i +1) +2,n— k(i +1) +2) th element of C;(So(fo)s+»Syoi (fo o--os Sy (1 oooos Ss (1))

Since the range of each é,. mapping consists of covariance matrices, we can decompose the
corresponding correlation matrices in terms of weightings to apply to uncorrelated increments.
Choosing one such decomposition for each i, we obtain mappings

@iy RO SR, m=k(i+1)-1,..,N-1; g=1,..,N
such that'®

q < k(i+1) > a,,,=0; m= k(z +1) L..,N-1
and, at (Sy(to)o-r+s Sy (b0 )y Sy (E1)owresSipcs ()5 Sy (1 )oooes S (81))
N c .
Z am,i,qan,i,q = %’ k(1+1) ”N_l (12)
q=k(i+1) cm,m,icn,n,i

We now proceed inductively. Trivially, our model is well-defined up to date ¢, with instantaneous
forward rates:

f(M,t,)= ~ailnB(M,O) ;0SS M<T,
m

16 see eg Karatzas and Shreve [1987] Definition 2.25 p10

'7 The notation Ci rather than Ci signifies the addition of an initial row and column to the latter.

'8 One effect of this is that interest rates applying to a date ¢ € (T ' T ] are deterministic after tim) = T! . This is

m>=m m

harmless for all obvious applications, but could be avoided at the cost of some rather fiddly extra complication.
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Assuming our model is well-defined up to date f,, with instantaneous forward rates f (O,t,.),
implying forward simple interest rates, Sy, (¢ ),---»Sy_(#;),"” we extend our model up to date #,,,

by setting, for any M >t €(z,,¢,,,],

F(M.0)= f(Mot)+ [ a,(s, M)ds + D [ b, (M)dZ, (5) (13)
where
a,(S,M)EzN:b,,q(M){Hq(S)+ by, () du}
=0 ; M< ];c(i+1)—-1
b (M A 14
ta(M) - Cuctacti Me(T_ T ;n=k(i+1),.,N (4

T _ ¢ —¢ n-1,i,q ’
1 . .

n n— i+1 i
Repeating this extension for successive values of i completes our construction.

We now establish the two main results of this section. The first of these, Theorem 4.1, confirms
that the above construction delivers an arbitrage-based continuous-time whole yield curve model
which is capable of being supported in general equilibrium:

THEOREM. 4.1 Construct a term structure model as just described. Then the price dynamics of
the pure discount bond maturing at any M>0 are given by:

%Af ; { +ieq (M,t)}dt+ZN: o, (0.1)dz, () 5

q= q=1

where

o (M1)=~[ "B (W) du; 1 (it ]si= 0L, T -1 (16)

and r( ) is the spot instantaneous interest rate process:

. —InB(M )
=

Moreover, straightforward sufficient conditions for the model to be viable (ie capable of being

supported in general equilibrium) are that each 9,]() and ¢ be essentially bounded.

m,n,j

Proof See Appendix. H

REMARK Necessary and sufficient conditions for viability could be derived from the trivial
multifactor extension of Theorem I on pp140-1 of Babbs [1990] (or equivalently, Theorem 3 on

B T i n+l
*” The relationship, of course, is 1+ S, (l‘,.)5n = B((TTl:,tlt,)) = exp{J.Tf f (u,t,.) du}
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pp262-3 of Babbs [1997]). However, essential boundedness can readily be met — or harmlessly
imposed - in practice, and, as pointed out in the Theorem, is straightforward.

Our second main result shows that a discrete-time “kernel”, as described by Definition. 3.2, can be
embedded in a continuous-time model such as we have constructed above. Firstly, however, we
make a convenient definition:

DEFINITION. 4.2 Say that the covariance mappings {CA', i=0,1..,J - 1} “extend”
{C,. i=0,1,...,J —1} if, for m,n = k(i + 1),...,N—1, the (m —k(i + 1)+ 2,n— k(z' + 1)+ 2)th element
of C, coincides with the (m—k(+1)+1,n- k(i +1)+1)th element of C,.

Clearly, at least trivial extensions exist.

THEOREM. 4.3  Take as given a discrete-time “kernel” as described in Definition. 3.2, and
assume that the earliest “spot” discount factor and forward simple rates are taken from a

differentiable and non-vanishing initial term structure, B(,0). Let {é, i=0,L...,J —1} be any
extension of {C,. i=0,L...,J —1}, and let 0,,...,0, be predictable processes on a filtered

probability space satisfying the ‘“usual conditions” and supporting N independent standard
Brownian motions, Z,,...,Z, . Then, taking these entities as primitive, Theorem. 4.1 holds.

Under risk-adjusted probabilities corresponding to using as numeraire the same discretely re-
invested money-market account as in Section 3, with continuous-time price process:

= B(T;,0) t=t,=0
A(;) k(i+1)-1 (17)
= B(Gpot) T1 (148,(T)8,) 5 i <t<ty3i=0,...,7-1

m=0

the variables {X,,, :m="k(i+1),..,N—1} defined for each j by (8) have a conditional

multivariate Normal distribution at time t, with means and (co-)variances given by (11) and (10)
respectively.

Moreover, under those risk-adjusted probabilities, the conditional distribution at t, of changes in

spot rates over any sub-interval of (t;,t,,,] is also Gaussian.

Proof See Appendix. W

Note that while, for the purposes of Theorem. 4.3, it suffices that C',. be any extension of C,, the

following lemma establishes that the additional elements of é’,. have a clearcut interpretation,
which can be used to guide their specification in contexts — eg when constructing models under

objective probabilities as in Section 5 below — where the additional elements are relevant to the
analysis.
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LEMMA. 4.4 The additional variance element, 6,((1.“)_1, k(1)1 is proportional to the
instantaneous variance of very short-term rates; thus setting n = k(i + 1) -1, we have:*°

M’ ue(tiv n’I;ﬁl] [t’,tﬁ_l) (18)

n n,i _( n+l pz)z(ti+1 _'tl)

and the additional implicit correlations equal the instantaneous correlations between forward
rates for dates in the relevant time segments:

A~

_;Ji—l:_con[df(s t) df‘(u t)]’ (]:n’]:)lﬂ]; u E(tiV];,Z;H_I] t E[tl’txﬂ) (].9)
C"l,lll Icﬂ 1,0
Proof A straightforward consequence of substituting (14) and (12) into (13). H

S. THE DISCRETE-TIME KERNEL UNDER OBJECTIVE PROBABILITIES

If instances of our framework — with or without GARCH effects — are to be fully amenable to
econometric testing, we must re-cast our discrete-time “kernel” (as defined in Definition. 3.2) in a
tractable form, under objective, as opposed to risk-adjusted, probabilities.

To achieve this, we embed the kemel in a continuous-time model as in Section 4, under the
restriction that the market prices of risk throughout each successive (z, ,t,+1] are known at ¢;:

THEOREM. 5.1  Under the conditions of Theorem. 4.3, and under the assumption that each 6, is

determined on each successive (t,t, | by the observation history to date,

(Sm (tj) me= k(j),...,N -1;j= 0,1,...,1'), the  conditional  distribution  at £, of

1

{X min:m=k(i+1),...,N — 1}, under the objective probabilities, P, is multivariate Normal with:

Bt +8]- T Ho =4} |, 5 (20)

Ei Xm’” o - Conk(i+ T 00 (ti+ _ti)cm,m,i
o (B - 72(,-+1)_1)(t,+1 t,) (1)1 1

cov; [Xl)t i+12 Xn 1+1] m n,i (21)
where t; =t,v T, , and
: m_6,(t)
= ———di
mt Zlaquj{‘ t —t ¢

q

Proof See the Appendix. H

2% Recall that forward instantaneous interest rates applying to dates in ( s ]:,) are modelled as being non-stochastic

after 7 = t,.(") for any 7 ; hence the ¢, v T( , in (18) and (19).

1+1
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A number of points need to be made about this result. Firstly, the apparent messiness of the

coefficient of am,k(i+1)—l,i in (20) is merely a consequence of the fact that distance between the

current observation date 7, and the next date, T,(;)» in the payment date sequence T, < T, <...<T,

varies from one observation date to another; in the simplified case where the observation dates
and payment dates coincide and are at perfectly regular intervals, the coefficient would reduce to

~

7 - Secondly, &, can be interpreted as the market price of the risk of changes to instantaneous

forward rates for dates in the interval (,,,T,,, ], averaged over the period of risk exposure from ¢,
to ¢,,,. Thirdly, in specifying a model under the objective probabilities, we can work directly with

the 5"”. ; this is most helpful, since it will be recalled that the orthogonalization of the covariance
matrix in Section 4 was chosen arbitrarily. The final point to note is the appearance in (20) of

A

Coui(i1)-1,» TEPrEsenting the covariance between the forward rates in the kernel, and very short term

rates — see Lemma. 4.4.

6. VALUING “KERNEL” CLAIMS

We define a “kernel” contingent claim as one having a single payoff, at a fixed date, 7,, say, in
the set {T - N} forming part of the discrete-time “kernel” of the model, in an amount, Y say,
which depends solely upon observations of the forward simple interest rate processes
{S,(e):m=0,...,N—1} at the observation dates 0=1, <, <...< tiony = T

Y= y(SO(tO)’""SN—I(tO)""’Si(M)(TA'/!)"“’SN—l(TA,/I)) 22)

We established, in Section 4, that discrete-time “kernels” of our Conditional Gaussian family of
models can be embedded in viable continuous-time models of the whole yield curve. So why pay
special attention to these “kernel” claims? Firstly, the interest rate caps and European swaptions to
which practitioners would wish to calibrate a term structure model, are all “kernel” claims (or
combinations thereof) if the dates T;,..., 7}, are chosen so as to include the cashflow dates of the
caps and underlying forward starting swaps concerned — see Examples below.” Secondly, in some
existing “market models” (eg Jamshidian [1997]), and in the “Markov functional model” of Hunt,
Kennedy and Pelsser [1998], only such “kernel” claims (or combinations thereof) are modelled.

For both these reasons, it is of especial interest to see what is involved in computing values of
such claims.

2! We should concede at this point that we, in common with the entire “market models” literature, finesse the point
that, under standard market conventions, the reference interest rate used to determine the caplet payoff at 7,, say

will not always relate to a period ending precisely at T, . The practical significance of this for option modelling

purposes is insignificant. This is fortunate, since picking at this seam would risk breaking the thread of abutting
interest periods upon which market models focus, whereupon the whole fabric would unravel.
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Adopting, as in Section 3, the discretely reinvested money market account as numeraire, it is
immediate from that Section that the usual martingale valuation formula will take the form:

V(O)=A(O)E*[ Y }

A(T)

= B(];,O)E*|:y(SO(O),...,SN_1(O) S0y (T Yovees Sy (Th) )H(1+S )5, )"‘} 23)

m=1

Thus, valuing the claim is precisely the task of computing the expectation of a function of the set
of variables { () :m=k(i),..,N-1;i= 0,...,i(M)}. But given (8),

1 i-1
Sm (Z ) 5 |:(]' + Sm( ) m) exp{.z(; ‘Xm,jH} - 1}
m Jj=

so this computation is equivalent to computing the expectation of a function of (the initial
forwards, §,(0), and) the set of variables {X,,,,, : m=k(i +1),...,.N-1;i=0 M)-1}.

As we noted at the end of Section 3, this is directly amenable to Monte Carlo simulation since, for
each i, the increments required to generate forward rates at the next observation date, ¢,,,, from
the forward rates at ¢,, are conditionally multivariate Normally distributed. The conditional
moments pose us no problem, since, by Definition. 3.2, the moments during the ith time period

are given by (9)-(11) as depending only on { el L= k(j+1),...,N—1;j:O,...,i—l} through
the covariance matrix C.(S (20 o> Swa (26 ) Sigry (81 - oos St (81 )+ Sy (B o ovvs Sy (t,.)). The

random drawings of the X, .., can be made, of course, using their exact multivariate Normal

distribution; this contrasts with the situation in many market models (eg Jamshidian [1997])
where sampling such increments requires discretizing a vector SDE, thereby introducing
discretization errors alongside statistical sampling issues.*

EXAMPLE. 6.1: cAP Consider a typical individual constituent caplet within a standard interest rate
cap. The payoff per unit notional principal occurs at 7,,, say, in an amount

maX{S i (TL’) -K, 0}5 . Where K is the fixed strike level. This payoff is obviously of the form (22).

EXAMPLE. 6.2: EUROPEAN-STYLE SWAPTION A standard European-style receiver’s swaption
contract gives the option hold the right, at a given interest determination date, 7 say, to enter an
interest rate swap commencing at the corresponding “spot” date, 7,, and having “fixed leg”
receipts at 7;, - <T},,....<T,,,, ata fixed interest rate K, against some sequence of “floating leg”
payments at LIBOR. Applying the commonplace valuation assumption that this underlying swap
can be valued as if decomposed into a notional fixed rate bond with coupon rate X and a floating
rate note worth par, the value at 7] of unit notional principal of this underlying swap is*

*? See Glasserman and Zhao [1998] for the complexities of addressing the discretization problem.

» We assume in (24) that fixed rate interest accrues in the swap on the same basis as floating interest. The
modifications required for alternative interest rate conventions are obvious.
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U= 2 (6L+(m—1)f + 5L+(m—1)f+1“'+5L+mf—1 )KB(Tme > TL,) + B(TL+nf > TL’)_B(TL ) TZ) (24)

Hence, the payoff per unit notional principal of the swaption is max{U ,O} at T/, or equivalently,
Y =max{U,0}/ B(T,,T;) due at the “spot” date T, . Substituting (24), we can re-write Y as:

: BT Tt) BT T2) 0}

Y= o +0 w0 K
max mz;;( L+(m-1)f L+(m=1)f+1 L+mf—1) B(TL, ]-Z) B(TL , ]-Z)

which takes the form (22) upon noting from (3) that

B(TL+mf , ]'Z) _ L+mf-1 , 4
W - H (1 + Sm(I'L)é‘m)

m=L

7. VALUING “NON-KERNEL” CLAIMS

In Section 6, we showed that the valuation of what we termed “kernel” claims - ie whose payoffs
occur at some 7, in an amount y(S(,(O),...,SN_1 (0),...,Si(M)(T}(I),...,SN_l(TA’l)) - is directly

amenable to Monte Carlo simulation, because the underlying variables requiring simulation are
precisely  the  successive sets of multivariate = Normal random  variables,

{Xm,,_+1 :m=k(i+1),..,N —1} for i =0,...,i(M). In the present section, we extend our analysis

to show that the valuation of a broad class of other, “non-kernel”, claims is equally directly
amenable to Monte Carlo simulation.

The practical significance of this is that, once a Conditional Gaussian model has been “calibrated”
to the prices of a set of “kernel” claims, the analysis in this Section will provide the means for the

valuation of claims depending upon interest rates other than those in the kernel, or upon
observations at other dates.

The class of “non-kernel” claims we consider consists of linear combinations of claims whose
payoff structure can be expressed as an amount Y at a single fixed date, L, say, where Y can be

written as a function of the term structures at a sequence of fixed dates L, <..<L,, ie:

¥ = y(B(O,L] ),...,B(O,L")). Obviously, interest rate caps and European-style swaptions are
among the simpler instruments in this class.

To avoid lengthening this paper unduly, we will leave the reader to explore the payoff structures
of individual instruments. The following results provide the keys to setting up the subsequent
Monte Carlo valuation, by showing that the term structure at an arbitrary future date can be
expressed in terms of the initial term structure and of discrete increments in processes that are
standard Brownian motions under relevant risk-adjusted probabilities. The first of the two results
is, in principle, quite sufficient. However, since it often turns out to be convenient to utilise a pure
discount bond numeraire, rather than a money market one, when computing valuations, we offer
the second result also, by way of alternative.
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THEOREM. 7.1  Given the covariance mappings, é :i=0,...,J =1, the term structure at an

arbitrary date, t €(t;,t,,,| say, is determined by the initial term structure, B(e,0), and the
increments:

*

Zy(t51) =2, (t;):q = k(i +1)=1,..,N; j=0,.0i=1 and Z,(t)-Z.(t,): ¢ = k(i +1)~1,..,.N

Specifically,
B(M,t-) N { M }2 Tyt 2
mB(M,t)=lIn————>-L(t -1t b dib — b, d
( ) B(t’ti) 2( l)r1=k%:1)—l ‘[Tk(iﬂ) ,,q(u) y {J.f "‘J(u) u}
N M . .
_ k(z) j by, (u) du {Z,(6)-2;(2,)} 25)
q=k(i+1)-1

Proof See the Appendix. H

REMARK It can readily be shown that the distribution of the RHS of (25) is independent of the
specific choice of orthogonalisation involved prior to the construction of the embedding
continuous-time model. For computational purposes, we consider the result to be most

conveniently expressed in the form stated. It is important to realise, moreover, that the functions
b, (-) are constant between successive interest payment dates 7, - see (14) — enabling the various

n

integrals, both in (25) and in the corresponding equation in Theorem. 7.2 below, to be carried out
analytically.

THEOREM. 7.2 Suppose we adopt the pure discount bond maturing at L as numeraire, in place

of the discretely re-invested money-market account, and that P® s q risk-adjusted probability
measure corresponding to the new numeraire. Then, given the covariance mappings,

é}:i=0,...,J —1, the term structure at an arbitrary date, te(t,.,t,.ﬂ] say, with t<L, is

determined by the initial term structure, B(O,O), and the increments:
Zt,0)-20(t,):q =k(j+1)—1,.,N; j=0,..,i=1 and Z(t)-Z(t,): g = k(i +1)—1,.., N

where Z®,...,Z) are independent standard Brownian motions under P, such that:

dZ,EL)(S)=_[L b,,(u)du ds+dZ,(s): se(t,t,,];i=0,.,J-1; ¢g=1,.,N

N i2%i+1
Tk(i+l)

Specifically, we may re-write (25) as:

B(M’t s ? Ti(in) 2
InB(M,t)=ln———=—-1(¢ -, d - b. d
( ) B(t’t:) i q=kz(':+1 {J-n('“) u} {J.' M (u) u}
N M L
7 b, (u)du b, (u)du - b, ZW()-z® t
(=0) 32 [ b pas - > > [, ) du {2000)-2()}
Proof Define the normalized bond price, with the new numeraire, as

B(L)(M ,t)E B(M ,t)+ B(L,t). Substituting on the RHS using (25), the result follows from the
fact that B)(M,¢) must be a P”)-martingale. W
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8. CHOOSING A SPECIFICATION

We provide here two sketches of how one might move from the general Conditional Gaussian
framework set out in previous sections, towards a specific concrete model. Both examples could
be made more complex, or varied in other ways, and their ideas could be combined — eg to
produce a derivatives valuation framework with GARCH effects.

EXAMPLE. 8.1: DERIVATIVES VALUATION, WITHOUT GARCH EFFECTS

We can re-arrange (8) as:

x _m{H<Sm<ff+1>—Sm<r,->)5m}

mi+l 1+ S (ti)é‘m

m

Now, except in extreme scenarios, the fraction inside the RHS of this equation will be small, so
~ (Sm (ti+1) - Sm (tl ))5111
e ]‘ + Sm (ti)5m

; mn=k(i+1),...,N-1

and hence

o o .
= m n 1S (2. )=S (2 , S(t..)=S (¢
cm,n,x 1+ S (t.)ésm 1+ Sn (ti )5" COV:[ m (tx+1) m( 1) n (tl+1) n( 1)]

m 1]

A common assumption for the conditional standard deviation of interest rate changes (cf Chan,
Karolyi, Longstaff and Saunders [1992] (CKLS) and Nowman [1997]) is that it is a power
function of the rate level. As regards the behaviour of rates of different maturities, evidence (cf
Litterman and Scheinkman [1991], Heath, Jarrow, Morton and Spindel [1992], Amin and Morton
[1994], Bliss and Ritchken [1996] and Goncalves and Issler [1996]) suggests either monotonic
decline of variance as maturity increases, or else a humped pattern. Correlations between
movements between one forward rate and another tend to decrease as the periods to which the
forwards relate are separated further, and to increase as the nearer period becomes increasingly
distant. Finally, option prices invariably tend to suggest that prospective variability in rates is
likely to be greater in some future periods than in others.

One formulation that captures all the above considerations, while not tying us to the power
function of CKLS is:**

C — 5mf(Sm (ti)’ :Z—I'): _ti) 5nf(Sn (ti)’]:x,_ti) (
TS, (8)e, 148,68, L

1

T - ]:,’l,min{T' I} - t,-) (t—t)o? (26)

n

In this formula, the function f captures the dependence of the conditional standard deviations of
increments in rates upon the levels of rates and upon their tenors. For example, it might be

supposed that f might be the product of a power function of rate with some monotonically
declining or humped function of maturity.

2 An alternative attractive formulation might substitute the rate of a particular tenor, eg the current nearest one-

period rate, S +(0) (l‘i) ,for S, (ti) and for S, (ti) on the RHS of (26).
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The function p captures the way in which the correlation between movements in forward rates
for different periods depends upon the gap between the periods and upon the tenor of the nearer
period. It might be set using values obtained from a principal components analysis of past
correlations. Alternatively, it could be assumed to take some parameterized functional form

designed to capture the general features of historic correlation patterns, and the parameter settings
chosen as part of a calibration to current cap and swaption prices.

The sequence of values of o reflects the anticipated pattern of the degree of interest rate
variability in different future epochs. The length of the period (Z;,%;,,] permits the value of o, to
be expressed in annualised terms, rather than depending on period length. Obvious simple ways of
specifying o,,0,,... include “bucketing” various periods together and using a step function, or
employing some simple functional form, o, = o(%;) .

i
EXAMPLE. 8.2: A SIMPLE GARCH MODEL UNDER OBJECTIVE PROBABILITIES

To model the covariance structure, we might proceed along the lines of Example. 8.1, adopting
the functional form suggestion for p, and replacing the suggested schemes for o, by the

following simple GARCH effects model, in which conditional variances depend on the most
recent past innovation in the current nearest one-period rate:

ol =a,+a, {Sk(i)(ti) - Ei—l[Sk(i)(ti )]}2 (27)

where «,,a, are positive constants to be estimated and Ei_l[Sk(,.)(t,.)] can be obtained from (20)

and the relation:?

1+E, [Sk(i) (t,. )]5/:(1') = (1 + Sk(i) (ti—l )51‘) exp{Ei—l [Xk(i),i] + %Ck(i),k(i),i—l} (28)

It remains to specify the market prices of risk, &

myi 2

whose stationary form is 6

m,i

=0(T -1,).

m

Setting & (s)= hy +he™” for some constants h,,h,,h, with h, >0 would seem a reasonably
flexible but simple choice.

9. CONCLUDING REMARKS

The key to this paper was the observation that the discrete-time martingale condition formula, (7),
could be enforced very straightforwardly if we imposed the Conditional Gaussian assumption, ie
that increments in log one-plus-interest-rates are conditionally multivariate Normal. Indeed, as
Corollary. 3.3 showed, we are free to select any covariance structure, while Theorem. 4.3 showed
that any choice could be embedded in a continuous-time whole yield curve model consistent with
general equilibrium. At the same level of generality, Theorem. 5.1 showed how to recast the
discrete-time “kernel” of a Conditional Gaussian model under the objective probabilities, for
econometric purposes; Sections 6-7 demonstrated how Conditional Gaussian models lend

i

% To establish (28), apply (8) to get 1+Sk(l.)(ti)§k(,.) = (1+Sk(i)(t,-_l)5k( ))exp{Xk(‘.),l.} and take conditional

expectations.
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themselves to Monte Carlo valuation of contingent claims without the issues of discretization
error arising in other “market models”. Finally, Section 8 sketched some possible ways in which
one might move towards specific concrete models within the Conditional Gaussian framework.

We acknowledge that we have not discussed calibration of Conditional Gaussian models to
market prices of caps and swaptions, nor the valuation of instruments with early exercise or other
discretionary features (eg Bermudan swaptions). We have nothing to report on these topics, save
that, like Andersen and Andreasen [1998] we regard calibration of models relying on Monte Carlo
valuation as “computationally feasible, albeit slow”.

We intend to extend the framework developed in this paper. While the Conditional Gaussian
assumption is a convenient way of enforcing the martingale condition formula, (7), it is certainly

not the only way. We are beginning to explore alternative assumptions, leading to “Conditional
Non-Gaussian” models.

APPENDIX

Proof of Theorem. 4.1 Define
a(t,M)=a,(t,M), b,(t, M)=b,,(M); te(t,t,]; i=01..,J-1

i27i+1

Then the versions of (13) for successive values of j can be chained together to give

F(M2)= £(M.0)+ [ als, M)ds+2i; ['b, (s, M)az, (s)

It is trivial to verify that a( ) and each b . ( ) satisfy the regularity conditions of the Theorem on pp115-6 of Babbs

[1990] (equivalently the Proposition and Theorem 1 on pp257-8 of Babbs [1997])26. The first part of the present
theorem follows immediately.

Viability flows from the results in Section 3 of Chapter 5 in Babbs [1990] (pp140-144), (equivalently pp259-263 of
Babbs [1997]), ?7 since essential boundedness of each 19(1() and each 5,",,”. ensures”® that (35) and (37) in

Babbs’[1990] (equivalently (21) and (23) in Babbs [1997]) define square integrable martingales under P and P i
respectively. |

Proof of Theorem. 4.3 The first part of the theorem is trivial.

For the second part, commence by noting that it is trivial to verify that (17) is indeed the continuous-time price
process of the same numeraire as that used in Section 3. We now define the normalised pure discount bond price
process B*(M,t) = B(M, t) + A(l‘) , apply Ito’s lemma, and substitute using (15) to obtain

dB"(M,t) &

Tty = 2o 00T P {0,000 B s 2,0

which (invoking Girsanov’s theorem and the fact that normalised security prices must be martingales under risk
adjusted probabilities) must be equivalent to

2% The cited result extends trivially to the multifactor case by summing over i in the obvious places.

7 Again extended trivially to the multifactor case.

28 To see this, simply apply the Novikov condition (see eg Karatzas and Shreve [1987] Corollary 3.5.13 p199).
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% = g{aq (M.,1)-o, (J;(M),t)} dz. (¢) (A1)
where
dz; ={0,(0)- 0, (Tgupt)}dt +dz,(); q=1...N (A2)

defines a set of independent standard Brownian motions under risk-adjusted probabilities corresponding to our
discretely-reinvested money market account as numeraire.

(A1) implies
B (M l‘ N ¢ 2
B'(M,t,) %ZH 1) =0, (Lo} d
(A3)
t
+;J't'_ {O-Q(M’u)_o-q (];c i+1) )}dZ
Setting M =T ,t =t,,, in this equation, and subtracting the corresponding equation with M = Lt =1
B( m’tz+1) B(Tnt, i+1
ln - ln = m i m ’ m+ 2 dZ (A4)
B(I;n 1> H-l) B("Z;n-i-l’tl) ZJ { : }
where

s = z [ {ouTist) =0, (Tapot)} ~{0u(Tut) =0Ty ) e

Now, the LHS of (A4) is simply X m, j+1> While the fact that each o g ( ) is conditionally (ie at date #;) deterministic

over each (t, »L; +1] implies that ,[lm,i is known at f; and that the RHS of (A4) is conditionally Normally distributed;
indeed, it tells us, moreover, that

N A
COV:[Xm,m > Xn,i+1] = Z J.:{O-q (I;n vt) —0, ("Z:n+1 ,t)}{O'q (]:x ’t) — 0y (]:z+1 ’t)}dt (AS)
g=1 "

If we can show that the RHS of (A5) equals Cpu i » We shall be done, since the knowledge that the model is consistent
with general equilibrium — and thus must satisfy the martingale condition (7), as per Theorem. 3.1— will then tell us
that ,&m,i = MU, ;- We proceed as follows.

Noting that the range of integration in (A5) implies ¢ € (t,. o +1] , the use of (16) followed by (14) gives us

Y;Il-(- c [
o, (T,.t)—0,(T,..t)= ; b, ,(u)du = t_t_ @i (A6)
" i+1 " ti

Substituting this into the RHS of (A5) and then applying (12) yields the required relation:

p:¢ Je
COVl- [ m,i+l 2 n l+1] m m,i n n,i Z am i,q n i q m n,i

For the final part of the theorem, subtract from (A3) the corresponding equation with M =t € (t, »L; +1] and exploit
the fact that B(M, )= B(M,t)+ B(t,t)= B (M ,t)+ B’ (t,t) to obtain
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InB(M,t) = —%ijt: {O'q(M,s) - O"q(Tk(,-H),S)}Z _{o‘q (t,5) - ‘Tq(T}c(,-H),S)}ZdS

q=1
(A7)
ZJ {0' M s q(t,s)}qu(s)
gq=1
whence the result follows from the fact that the functions in the integrands are known at ¢; . |

Proof of Theorem. 5.1 We substitute (A2) into (A4), noting from the proof of Theorem. 4.3 that the LHS of (A4) is
simply X, .., and that /’:lm i = M, > and the take conditional expectations to obtain:

B[ Xpi1] y,,,,+z [ oy (@t) =0, (L, )0, (0) - &, (Tiguy 1)}

Now, for ¢ € (t, ,tm] (16) and (14) give us not only (A6), but also:

T (i) Ty(in1) 1 Chis1)-1,k(i+1)-14
T\ Lot ) = b, (u) du=— O (i41)-15,g T
( el ) J" ! LVT"("*‘)“ ];c(m) - Il'c(i+1)—1 L~ (riytia
_ T(l+1) (t ¥ T(l+1) ) Chli+1)-1,k(i+1)-1, a
- k(i+1)-1,i,
Tl'c(i-i-l) - ];c(i+1)—1 Lin —F pliriiy
whence

fi Cn m,i liy
J M ouBt) oy (B}, ()i = |22 a6, (1)t

i+1 i

and, using (12) also, and setting l‘: =F R 1;(,. )17

A

—ij ,,M {0,(T,0) =0, (L))o, (T t)dt = | ,tm Ty {0 ];(M)'l)dt Cmost)-1s
g=1 "

i IIL(H—I) . ];c(i+1)—1 L =1
=\t -t — {T el H]} {
1

1) ~ i } Con ke (i+1)-1,i

I - 2ATigwy = D) fin i
_ _t.* - {];;(m) -7 [tm +& ]}{tm -t } Cr k(1)1
L "Z;c(i+1) - "Z;c(i+1)—1 L =L

1_{%[%1 ] k(i+1)- }{tm t}
(];c(m) ];c(i+1)—1)(t:+l ti) '”k(Hl)l

The result follows. |

Proof of Theorem. 7.1 We proceed inductively. The result holds trivially for £ = 0=1¢,. Now suppose that the
result holds V# <¢;, and consider any ¢ € (t, " +1] Now, InB (M N ) is given by (A7). From (16), we have:

0, (M.5) =0 (Tps) == b0 dus  0,(65) =0 (Tuyos) = [ by, (u) ds

k(i+1)

both of which are determined by the evolution of the term structure up to £, and independent of §. Hence the
integrands in (A7) are independent of S . The result follows. |
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