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Abstract

We characterize a multi-factor model of financial asset returns with
endogenously shocked time-varying beta coeflicients in a multivariate
framework, in which asset returns and the stochastic common factors
are jointly determined. A Cholesky decomposition of the conditional
covariance matrix guarantees its positive definiteness at each point
in time and is expressed in terms of conditional variances and betas.
Variances are allowed to follow any process from the ARCH family
and betas follow special discrete time stochastic processes conditioned
on the available information set, called ARCBeta processes. We derive
sufficient conditions for the existence of strictly stationary solutions to
the composite asset conditional variances and covariances. The model
is capable of generating time variation and persistence in betas and
such stylized facts as comovement between factor betas and variances
as well as between betas on the same factor. We present empirical
evidence from the EU11 stock markets as an evolving system. The
proposed framework has relevant implications for asset pricing, risk
management and can be used for out-of-sample forecasting.
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1 Introduction!

Multifactor models constitute a major class of models describing the depen-
dences and dynamics of financial asset returns. In this paper we characterize
a multifactor model as an evolving system, driven by endogenously shocked
random processes for factor beta coefficients. Given the strong evidence in
the literature on multivariate non-normality, a key question concerns the
sources of such a phenomenon in connection to the evolution of the entire co-
variance structure of financial asset returns. Thorough understanding of the
distributional and intertemporal characteristics of multivariate data would
lead to more accurate pricing and hedging of financial risks.

The literature has addressed these issues with the development of multi-
factor models under multivariate ARCH-type disturbances, see for example
Ng et al (1990), Engle et all (1992), Diebold and Nerlove (1989), thus ac-
commodating the evolution of the covariance structure over time. Yet, it
can be shown that time varying beta coefficients can lead to similar multiple
heteroscedasticity structures and there is extensive empirical evidence sup-
porting the time variation of factor coefficients as documented later in the
text.

In modelling the dynamics of a covariance structure as a function measur-
able on the information set available at time ¢, our principal objective would
be to ensure that such a matrix would be at each point in time positive semi-

definite. Further, its dynamics should be parsimoniously represented involv-
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ing the smallest possible number of unknown parameters. The first objective
has proven to be a very difficult task and various alternative parametrizations
of a multivariate GARCH have been proposed to secure the non-negative def-
initeness of the covariance matrix. These involve “constrained” optimization
in the sense that complicated parameter restrictions have to be imposed in
the estimation to ensure the covariance positive semi-definiteness. Such an
approach is computationally expensive and difficult to implement. On the
other side, an “unconstrained” optimization would involve parametrization
of the covariance matrix in such a way that would force positive definiteness
leaving parameters unrestricted. Such approaches have been proposed within
the Statistics literature for the modelling of longitudinal and other types of
data.

In this paper we will attempt an unconstrained modelling of the covari-
ance matrix originating from a multifactor model of stock returns. We adopt
the Cholesky decomposition of a covariance matrix proposed by Pourahmadi
(1999a,b). This ensures the positive definiteness of the covariance matrix at
each time and allows for a meaningful statistical interpretation of its para-
meters in terms of time-varying conditional variances and conditional factor
betas. The latter are modeled as unrestricted ARCH-like processes, leading
to interesting dynamic results for the entire conditional covariance matrix

which we characterize in detail.

2 Stylized Facts and Literature Review

The introduction of the seminal work of Sharpe (1964) and Lintner (1965)
on the Capital Asset Pricing Model and Ross (1976) on the Arbitrage Pric-
ing Theory has sparked several streams of studies examining the empirical

regularities and the implications of those models.. The interpretation of fac-



tor beta coefficient as a measure of the price of risk and its central role for
financial decision making has motivated a sequence of papers addressing its
intertemporal properties and a number of empirical stylized facts have been
reported in the literature.

Numerous studies in the early seventies, as Black, Jensen and Scholes
(1973), Blume and Friend (1973), Fama and MacBeth (1973) and Klemovsky
and Martin (1975) to mention but a few, report significant time variation of
factor beta coefficients. A common finding is the “regression tendencies”
of factor betas, in the sense that betas tend to regress towards the mean over
time. This stationary behaviour was initially attributed to selection bias but
Blume (1975) presents theoretical and empirical arguments that the observed
regression tendencies are due to “real non-stationarities in the underlying val-
ues of betas” and that the selection bias is not of dominant importance. The
mean-reverting behaviour of factor betas has also been documented in re-
cent studies such as Bos and Newbold (1984), Collins, Ledolter and Rayburn
(1987) and Rockinger and Urga (1999). Also, a co-movement between the
factor beta coefficient and the factor conditional variance has been found in
studies such as Schwert and Seguin (1990), Koutmos, Lee and Theodossiou
(1994) and Episcopos (1996). The sign of the co-movement seems to change
for different data sets and time periods. This phenomenon raises our intu-
ition that there may exist common or correlated shocks between the factor
volatility and beta coefficient, an issue that will also be addresses later in
the text. Also, a recent stream of papers presents evidence for deterministic
systematic variation of factor betas. Studies such as Ferson and Harvey
(1993), Ferson and Korajczyc (1995) as well as Bekaert and Harvey (1997)
and Christopherson, Ferson and Tamer (1999) present significant relation-

ships between economic macro- and micro-structure variables and varying



betas.

The literature has used various techniques to capture the temporal char-
acteristics of beta coefficients. Direct parametrization methodologies could
possibly be classified into four main categories. First, many studies have
modeled beta coeflicients as Hildreth-Houck (1968) random parameters in
that beta consists of a constant plus a noise term. This approach was followed
among others by Fabozzi and Francis (1978), Chen and Keown (1981), Chen
(1982) and Brooks, Faff and Lee (1992) who for monthly US and Australian
equity returns find strong evidence against constant betas. A second, more
recent strand of papers models beta coefficients as latent AR(1) or Random
Walk processes using Kalman Filtering techniques. Bos and Newbold (1984),
Collins, Lodolter and Rayburn (1987) as well as more recent studies such as
Rockinger and Urga (1999), Hall, Urga and Zalewska-Mitura (1998) present
empirical evidence supporting the time varying and mean reverting behav-
iour of betas using equity data for frequencies ranging from daily to monthly.
A detailed examination of this approach is given by Wells (1995). Also, a
related model is a doubly shocked process adopted by Ohlson and Rosen-
berg (1982) and Collins, Ledolter and Rayburn (1987) which augments the
Hildreth-Houck random coefficient with an additional autoregressive noise to
capture persistence in beta variation. Using weekly US equity data on specific
stocks and portfolios they report results suggesting that roughly one quarter
of the variation of beta is autocorrelated. A third class of papers models beta
coeflicients as functions of exogenous macro- or micro-economic variables to
capture regime shifts. This approach does not consider endogenous dynam-
ics in betas but presents significant association between betas and variables
such as dividend yields, interest rates, market capitalization and credit rat-

ing, see for example Ferson and Harvey (1993), Ferson and Korajczyk (1995),



Bekaert and Harvey (1995, 1997) as well as Kryzanowski, Lalancette and To
(1997) and Christopherson, Ferson and Turner (1999) for recent results. Also
Connor and Linton (2000) construct a characteristic-based factor model of
stock returns in which factor betas are smooth non-linear functions of ob-
served security characteristics. They perform joint estimation of betas and
returns by combining non-parametric kernel methods and parametric non-
linear regression. Finally, a number of studies model conditional betas as an
inverse function of factor conditional volatility. This is a simple approach
followed for example by Schwert and Seguin (1990), Koutmos et al (1994)
and Episcopos (1996) who in most of the cases report a significant positive
relationship between conditional beta and factor volatility.

Indirect approaches to modelling, consider the beta coefficient as the ra-
tio of the asset and factor conditional covariance over the factor conditional
variance and model the numerator and the denominator of the ratio sepa-
rately.. The vector of all the unknown parameters is then jointly estimated
using GMM (see Mark (1988), Harvey (1995)) or Quasi Maximum Likeli-
hood techniques (see Hall, Miles and Taylor (1989)). Empirical results using
foreign exchange, emerging market equity and UK equity data respectively

strongly support the time variation of factor betas.

3 AutoRegressive Conditional Beta Model

We construct an unconstrained parametrization of a (N + K) x (N + K)
covariance matrix by introducing the Cholesky decomposition of a positive
definite matrix. Pourahmadi (1999a,b) introduced this approach to study the
dynamics of longitudinal data by modelling the Cholesky decomposition of

the inverse covariance matrix. The corner stone of such an approach is that



a symmetric matrix? Q) is positive definite if and only if there exists a unique
upper (lower) triangular matrix M with units on its principal diagonal and

a unique diagonal matrix > with positive elements such that
MQM =%

As we shall see, such a decomposition admits a meaningful interpretation
in that it allows to model the elements of {2 in terms of variances and beta
coeflicients. Positive variances is sufficient to ensure the positive definiteness
of the matrix while leaving betas unrestricted. It is now a matter of model
design to make these elements measurable with respect to the generated o—
field.

A typical multifactor model would regress a vector of N financial asset
excess returns on K common factors. Under the classical linear model as-
sumptions one would obtain OLS estimates of betas; such an approach, while
highly popular among practitioners, ignores the stochastic properties of the
factors by assuming they are determined exogenously. Allowing for stochas-
tic factors determined within the system would lead clearly to biased OLS
estimates. A first step in our modelling strategy will allow for asset returns
and the factors to be jointly determined within the system. We will then ex-
amine how their joint stochastic properties can play a role for the evolution
of the whole covariance structure.

Let y; be an N x 1 vector of asset excess returns generated by the following

process

&
Yo = MKyt Zﬁj,t €5t T €t (1)
j=1

Tjt = [+ € for j=1,..k

2 As a notational convention, we will use capital letters to denote matrices, lower case
boldface letters for vectors and regular lower case letters for scalar variables.
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and

(&) e ((3) (3 5.))

where z;,,3,, is the j-th factor and NV X 1 vector of conditional betas re-
spectively, and , ,, for i = y,z;,7 = 1..k, are N x 1 vectors of conditional
means. The covariance matrices X 4, > ; are diagonal with dimensions N X N
and K x K respectively, but conditionally time-varying. We can express the

system more compactly in partitioned matrix notation as

E¢ ]N —Bt Yt — l‘l’y,t

(Nx1) _ (NxN) (NxK) (N x1) (2>
e 0 Ik Xe — Myt

(K x1) (KxN) (KxK) (K x1)

where x; is the K X 1 vector of common factors and B; the N x K matrix
of factor beta coefficients. Provided that B; is conditionally known, the

conditional covariance structure corresponding to equation (2) is

[ S 0 1 _ [ Iy =B, 1 [ VUt Dy 1 [ Iy =B, 1 )
0 Xy 0 g oyt Qawr | | 0 Ik

where ), and €),, are the asset excess return and factor covariance matrix
respectively and 2, = Q;y include the covariances between the N assets
and K factors. This is the Cholesky decomposition of €, the joint covariance
matrix of N assets and K factors, in terms of the diagonal matrix > with
positive elements as the conditional variances of asset idiosyncratic and factor
shocks and the matrix M, the off-diagonal block of which corresponds to
minus the factor beta coeflicients (—B;). The matrices ¥, ¥, and B; are
allowed to be time-varying but is conditionally known. Solving with respect
to 2 we obtain

ny,t Qym,t — Es,t"’/Btze,tB;g Btze,t (4>
Q:cy,t Q:csz:,t Ee,tBt Ee,t



As an example, let the number of assets be N = 2 and the number of factors
K = 3. Now €, will have as its diagonal elements the conditional variance

of the j-th factor shock, o2 ,, j = 1,2,3 and zero elsewhere, Q,,, will be

ej,t?

composite
!
2
o2 .0 ﬂll,t ﬂQl,t Oert 02 0 ﬂll,t ﬂQl,t
Qyye = [061’ 2 14‘ Brat Boos 0 O ot 02 Brot Boos
¢
£ ﬂl?),t ﬂ23,t 0 0 Oegt ﬂl?;,t ﬂ23,t

which in vech form can be written as

2 2 2

ng it ﬂll,t ﬂlQ,t ﬂl?),t Ugl,t

vech (Qy,) = 02 + ﬂ%l,tﬂﬂ,t ﬂ%ZtﬁQQ,t ﬂ%i’;,tﬁ%,t O_Sg,t
Ocot ﬂQl,t ﬂ22,t ﬂ23,t Oegt

Under this specification the variance of an asset excess return will be decom-
posed into its idiosyncratic variance plus a time-varying combination of the
factor conditional variances. The latter will appear as a common component
but with different time-varying combinations, in all asset variances and co-
variances. The off-diagonal block of (4) represents covariances between asset
excess returns and the factors.

The specification of (1), (2) and (3) provides a full multivariate framework
for the joint generating process of N asset excess returns and K common
factors. The Cholesky decomposition of the conditional covariance matrix
allows the unrestricted modelling of its elements in terms of conditional vari-
ances and factor betas which can be measurable with respect to the available
information set. Under the ARMA-ARCH modelling philosophy ¢2’s and
3,’s belong to the available information set I; | as they are assumed to be
functions of available information. It remains to specify how the conditional
covariance matrices Y., 2.; and the beta coeflicient matrix B; evolve over
time. A key issue is that the matrix ¥ in the Cholesky decomposition should

remain diagonal with positive elements. An immediate solution, which we
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adopt in the following, would be that each individual asset idiosyncratic and
factor conditional variance follow uncorrelated univariate GARCH processes,
although other solutions can be considered. The evolution of beta coefficients
will be analysed in detail in the following section. However, if 62’s and 3,’s
are latent variables in that they are shocked by idiosyncratic innovations,
the model can be seen as a Stochastic Volatility-type of model. In this paper
we shall follow the first approach assuming that all variables are measurable
with respect to Iy ;.

Rewriting equation (1) but with constant betas 3 one whould obtain
a typical factor model. Such a heteroscedastic structure, as pointed out
by Engle et al (1990) and Ng et al (1992) admits a further interpretation.
Considering that e;; = h;%tvj,t it can be seen as a time-varying beta process in
which 37, = 8 jh;%t and the factors v,; exhibit zero mean and unit variance.
Both interpretations lead to exactly the same conditional covariance structure
and therefore are observationally equivallent. However, the implied evolution
of betas in this structure is restricted to be proportional to conditional factor
volatility and most importantly it is restricted to exhibit either positive or

negative sign according to the sign of 3,.

3.1 ARCBeta Processes

Irom the specification of asset excess return generating process in (2) we

have that for asset ¢
k
e =vie— B Wi | 1) = Bige €1 + Si (5)
=1

fori=1,...,N and

i 1Eit
ﬂz‘,j,t =FE < 1(;2 ’ ]t1>

j!t
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Joint modelling of the first and second conditional moments in (2) make the
elements of ¥.; and ¥.; known at time ¢, thus providing a history of such

past errors as
* *
E4t—-165t-1 &5t 2€jt-2

5 , 5 Ly
O_ej,tfl O_ej,t72

that belong to the information set I; ;. It is now natural to make conditional
beta coeflicient f3,;, measurable with respect to this minimal information.

One possible functional form is

— B EiCit I _
Bije = 5 | le1 | = o+ iny o+ pliu,  (6)

e;,t

fort = 0,£1,...

el et . . .
where {,;, = -5 for asset i = 1,..., N and factor j = 1,..., k, which can be
’ es,t

called a ARCBeta process of order p. The term &;, as shown above contains
shocks form all k£ factors as well as the idiosyncratic shock of asset i. Be-

cause of independence, the conditional beta of asset i on factor j is effectively

2

e.
gt

T, ’
€.t

shocked by squared innovations on factor j only so that &, = 3,

making equation (6) be an unrestricted ARCH-like process. Thus, if the j-

th factor innovation 4+ = v, “D (0,1) we have that £ (;,|l;-1) = By,

Te..
€.t

Linearity for the conditional beta formulation has also been used by Shanken
(1990), Ferson and Harvey (1991, 1993) and Harvey (1995). Alternative
specifications of (6) can be considered to accommodate specific stylized facts

regarding the evolution of 3, ,, such as asymmetric responses of betas to pos-

23,69
itive or negative shocks. The latter approach is proposed by Braun, Nelson
and Sunier (1995), who build a bivariate framework for the market model
of excess asset returns and let 3, be generated by an asymmetric process

in the spirit of (6). They apply this to portfolios of US stocks for monthly
returns from July 1926 to December 1990. Although they report significant
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time variation for 3,, their empirical evidence does not support asymmetric
effects, however such results are period- and data-specific.

As a standard result in time series analysis, stability of the ARCBeta
stochastic difference equation should guarantee covariance stationarity of 3, ,
as a random variable. We summarize the relevant results in the following

straightforward theorem.

Theorem 1 The ARCBeta process of order p will be stable if and only if
all the roots of the associated characteristic polynomial are less than one in

modulus. Its steady-state mean is

E(B,,) = ij0 (Th.1a)

1 Qi1 — - — Qujp

Proof: see appendix.

Following standard results, an infinite order polynomial structure, = (L),
for an ARCBeta process under stability can always be written as the ratio
of two finite order polynomials, = (L) = %, provided that B (L) has all its
roots outside the complex unit circle, and thus

BijeB (L) = a0+ §A (L)
where
B(Ly=1-bL—---—0b,L7 and A(L)=a1L+ -+ a,L*

providing a usual parsimonious representation of a longer memory process,
called a Generalized ARCBeta(p,q) process.

As shown in Bollerslev (1986a,b) for GARCH variance processes, the au-
tocorrelation structure of the squared residual will mimic the behaviour of an
ARMA process but with a more restrictive admissable region for autocorre-
lations, due to the non negativity constraints on the parameters. ARCBeta
processes do not carry such parameter restrictions and thus &, will exhibit an

autocorrelation structure of ARMA form (see Brockwell and Davis (1987)).
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3.2 Estimation

The proposed model belongs to the broader class of multivariate models with
time-varying first and second conditional moments. The properties of the
Maximum Likelihood (ML) estimator of such models are in general unknown.
We rely on the arguments of Bollerslev and Wooldridge (1992) who, under
general regularity conditions, prove the consistency and asymptotic normality
of the quasi ML estimator for a multivariate structure with time-varying
second conditional moments. We pursue ML estimation of (1) under the
assumption of conditional normality although departures from normality can
also be considered as in the conventional multivariate GARCH models. For
a sample size T" of a vector of N + K assets and common factors the Gaussian

log-likelihood function will be

TN+ K) 1 & (=, 0
Inl = —fln(%r)—g;ln o =,
_1 XT: &t / Es,t 0 ! &t
2\ e 0 et €
where
& ]N —Bt Yyt — l‘l’y,t
(Nx1) _ (NxN) (Nxk) (Nx1)
e 0 I Xt — Myt
(kx1) (kxXN)  (kxk) (kx1)

as given by (2), and the covariance matrix, (3), is diagonal due to the indepen-
dence of the innovation processes. In spite of the diagonality of the covariance
matrix, the log likelihood function is highly non-linear because of the pres-
ence of time-varying conditional variances as well as beta coefficients. Thus
we estimate the unknown parameters by numerically maximizing the likeli-
hood. We find more effective to start iterations using the BHHII (Berndt,
Hall, Hall, Hausmann (1974)) algorithm and then switch to BFGS (Broyden

13



(1967)) for faster convergence. The fact that all innovation processes are
independent and factors are common to all assets allows the reduction of
the scale of the estimation problem from a system of N + K equations to N
systems K + 1 equations. That is, instead of estimating the whole system
simultaneously which for large N makes numerical maximization difficult,
one could estimate a sequence of smaller systems of one asset and K factors.
However in our empirical applications later, we provide estimates from the
full multivariate QML optimization.

We initialize ARCBeta and GARCH processes at the OLS beta and the
sample variances respectively. Also, a sensitive problem in estimating the
model is the choice of initial values for the ARCBeta parameters as these are
unrestricted parameters taking any sign. Because of the multivariate nature
of the problem and the corresponding dimensions of the parameter space, it
is not difficult that one obtains local rather than global maxima. We have
found that a helpful procedure is to start estimation with constant betas and
then relax the assumptions of constancy progressively, for one parameter at
a time and re-estimate the model, until all parameters are left to vary. An

empirical application is presented later in the text.

4 Persistence and the Steady-State

The north-west block on both sides of equation (4) provides the conditional
covariance matrix of the N x 1 vector of asset excess returns, which is a
composite process. It aggregates the conditional variances of the relevant
factors and the assets’ idiosyncratic shocks, the former being adjusted by the

square of the corresponding factor time-varying beta. Thus for asset i, &7, is
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given by equation (5) which is a zero-mean process with conditional variance
k
2 _ 2 2 2
Ot = § ﬂij,to_ej,t + 0.4
Jj=1
and the conditional covariance between asset 7 and asset k& will be
k
Okt = E ﬂ“tﬂk'tO_Q
) 27, T €4 )t
-1

When g
asset 1, Uzt reduces to the linear aggregate of k GARCH-type factor con-

;; 15 constant for all 4, j, the composite conditional variance of
ditional variances plus the idiosyncratic one. This case has been analyzed
by Karanasos, Psaradakis and Sola (1999) who provide expressions for the
unconditional moments of the process as well as conditions under which the
persistence of the composite variance is higher than that of the individual
variances. Also Zaffaroni (1999) studies the contemporaneous aggregation of
GARCH processes under either idiosyncratic or common shocks. He finds
that, unlike its components, strict stationarity, ergodicity and finite kurtosis
might fail for the aggregate. He also concludes that under no conditions,
for the cases examined, aggregation of GARCH induces long-memory condi-
tional heteroscedasticity. In our framework, the time variation of factor beta
coeflicients complicates the analysis and it is important to establish condi-
tions under which for each asset 7 the composite conditional variance and
covariances with asset j are stationary processes. Such conditions will place
joint restrictions on the values of the parameters of conditional variance and
beta processes.

Since the idiosyncratic volatility components are allowed to follow ARCH-
type processes, their stationarity and moment properties are known for many
cases, see Karanasos (1999) and He and Terasvirta (1999) for recent results.

We will therefore concentrate to the analysis of the composite term ﬂ?j’tazﬁt

15



which exhibits a level of complication due to non-linearities. The fact that
both 3;;, and Uzj’t share the same innovation process Uit will greatly facil-
itate the derivation of results. For the purpose of this analysis, it is con-
venient to represent both the conditional volatility and beta processes as
random parameter processes and then work with similar techniques as in
Nicholls and Quinn (1982) and Pham (1985). In particular, the general-
ized ARCBeta(p;,q1) process for asset i on factor j can be written® in its

state-space form as

[ ﬂt ] [ Qg ] i Oéﬂ)?,l + bl bQ Ce bp Qo ... Qyq 1T ﬂtfl
8, 0 1 0O ... 00 ... 0 By s
Byps |=|0 [+]0 0 ...10 0 ... 0 By,
§i1 0 VP 0 0 0 0 §is

&gl LO ] Lo 0 ... 00 .10 ]|¢,

which more compactly can be written as

By = Ay + A1 By (7)

mi1x1l mixl1 mi Xmimi x1

where my; = p1 + q1 — 1. Also the GARCH(pa, g2) process for factor j admits
a similar representation

it =T+ Ptflitfl (7a)
in which ¥, is (me = ps + g — 1) X 1 vector containing appropriate lags of
0? and Ty, Ty | contain the parameters of the process, sharing the same
innovations Uit with the generalized ARCBeta(p;,q;) process as shown in

the previous section. Now, ﬂ?j’t will be the first element of
vec (BtBé) == vec (A()A(/)) + [(At,1 (629) Ao) + (A() (629) Atfl)] Bt,1
+(Ar 1 @ A1) vec (Btleéfl) (8)

3We drop the 4 subscripts for simplicity.
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or equivalently

By=Ag+ Ay 1By 1+ At—lgtfl (8a)

Post-multiplying the above equation by i;t and then vectoring this product

we obtaln

vee (Bti;) = vec (AOP(/)) + <Pt71 @ Ao) itfl + (Po @ Atq) By
+ <Pt71 @ Atq) vec (Btfli;,l) + (Po @ Atq) By
+ (Pt,1 & Atfl) vec (Btfliéfl) (9>

where B, zvec<BtBt/>, Ay :V6C<A0A(/)>, A = (A1 © Ag) + (Ao @ A1)
and At,l = (A1 ® Ay_1). This equation is an m2ms X 1 vector process
with random parameters and its first element gives the ﬂ?j’tozﬁt component
of the composite conditional variance of asset i. If K factors are relevant
for the evolution of the conditional mean equation of asset i, then K such
components need to be stationary together with the idiosyncratic conditional

variance process.

4.1 A Set of Sufficient Conditions

We wish to establish sufficient conditions on the parameters of A; and I'
for the existence of a strictly stationary process conforming to the model
described by the above equation. Since this is a composite process we will
first examine convergence of its parts, that is it,l, B 4, VGC(BtBt/> and
vec (Bt,liéfl) and then for vec (Bt,liéfl) the first element of which is our
primal interest. Results on the former will be presented in the form of lemmas
which will subsequently be used in the proof of a theorem for the latter. The
form of equations (7) and (7a) allows the random parameter matrices Ay,
T;, A, and their kronecker products be iid sequances, which will facilitate

subsequant calulations.
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Lemma 2 (B, ~ARCBeta(pi,q1), > ~GARCH(ps, ¢2)) Let X, represent

either of By or ¢, v “D (0,1) with finite fourth moment. As in (7)

Xe=ADo+ A1 X (L21)

If A =FE (A @A) has all its eigenvalues within the unit circle, then

b3 | LR

i>1 j=1

will be absolutely convergent almost surely, and

Xe=20+ > J[ArA0 (L22)

i>1 j=1
will be a strictly stationary process conforming to (L21).

Proof: See Appendiz.

The above result provides a sufficient condition for the existence of a sta-
tionary solution of a process in the form of an ARCBeta(py,q1) or GARCH(ps,q2).
It is now trivial to see for a process of the form x; = 6¢ + ((511)?71 + C1> T 1,
the above suflicient condition requires that v; has finite fourth moment ~,,
and 7,67 + ¢} + 261¢; < 1 which, under Gaussian innovations (y, = 3), is
identical to the result of Bollerslev (1986, p 311) for the existence of the
fourth moment of a GARCH(1,1) process. Of course when z; represents an

ARCBeta process its parameters can take any sign.
Corollary 3 The steady-state x; is given by the first element of
E(X) = —E(A)) " Ao

1.€.




Proof: the result follows directly from Lemma 2 by taking expectations in

(L22) and taking into account Theorem 1.

Lemma 4 (vec(B.B,)) Let B, be generated as in equation (8a), B, follow
an ARCBeta(p1,q1) process, v, “ D (0,1) with finite up to the eighth mo-
ments and Lemma 2 holds. If £ (At ® At) has all its eigenvalues within the

unit circle, then B, has a strictly stationary solution conforming to equation

(8a).

Proof: See Appendiz.

As an example, the above sufficient condition for a strictly stationary

solution of the square of an ARCBeta(1,1) process states that
atye + (a?bl + Qa%b%) vy + 0]+ blag +4ab? < 1

where 7g, v, are the eighth and fourth moments respectively of the innovation

process which are required to be finite.

Corollary 5 For the ARCBeta(1,1), the steady-state 37 is given by the first

element of
B (vee (BuB))) = vee (Agdg) + A1~ A) " A
(1~ A)l A (wee (Aody) + AL = 4) Ao)
Proof: See Appendia.

For the gaussian ARCBeta(1,1) process we have

CL(Q) 1—|—a1—|—bl

E(5?) =
<ﬂt> 1-3@%—6%—20/161 . 1-@1—61
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Lemma 6 (vec (thi;,l)) Let B, and %y be generated by an ARCBeta(py,q,)

iid

and a GARCH(ps,q2) respectively as in equations (7) and (7a), ve ~ D (0,1)
with finite up to the eighth moments and Lemma 2 hold. Then vec(Bt,liéfl)
has a strictly stationary solution if & ((I'y @ Ay) @ (I'y @ Ay)) has all its eigen-
values within the unit circle.

Proof: See Appendiz.

In terms of the ARCBeta(l,1) parameters, (a1,b) and GARCH(1,1),

(say c1,d;) the above condition states that
a?ctyg + <2a%cld1 + 2alblc%> Yo (a%d% + alblcld1> v+ bl < 1
where v, is the j-th moment of the common innovation process.

Corollary 7 The steady-state 3,02 is given by the first element of
b (vec (Bti;))
— vec (Aor(’)) +Ta (I=T) 'To+ A, (I—A) " 4
F(I—T4) 'Tu [vec (Aor(’)) +Ta (I=T) 'To+ A, (I—A)" 4y
Proof: See Appendiz.

So far we have derived results for the ARCBeta and GARCH processes
and their products. We shall now make use of those results to derive sufficient

conditions for F2o?.

Theorem 8 (Vec(Bt,liéfl)) Let By_q, A follow ARCBeta(py,q1) and GARCH(py,q5)

processes respectively and vy has finite moments up to twelfth order. vec (Bt,liéfl)

has a strictly stationary solution if Lemmas (2) to (6) hold and

B((r 04 )o (10 4,)

has all its eigenvalues within the unit circle.
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Proof: See Appendix.
For ARCBeta(1,1) and GARCH(1,1) parameters, the theorem states that
in addition to Lemmas (2) to (6) restrictions, the processes should jointly

satisfy

aiciyi + (4ciaiby 4 2cidiat) vi0

+ (60%@%6% + 861d1b1a§ + d%a‘ll) Vg

+ (4¢iar b} + 12¢1d1aTb} + 4dTathy) g
+ (71 + 8erdyaybi + 6d7aiby) v,

+ (2c1d1b] + 4djarb7) v, + dib}

< 1

where «; denotes the j-th moment of a standard innovation process. For

by = dy = 0 the condition reduces to ajc?y;, < 1.

Corollary 9 The steady-stale 202 is given by the first element of
E (vec (Bti;)) = vec (AOP(/)) +(I—T4) " vec (AOP(/))
+(I-T4) "E(® )

Proof: See Appendiz.

A similar analysis provides suflicient conditions for the existence of a
strictly stationary solutions for the composite covariance processes between
assets. From the second equation of section 4, the covariance between any
two assets will be composed by a number (say k) of sub-processes equal to
the number of significant common factors between the two assets, thus k such
components need to be stationary. We summarize the relevant results for the
j-th component, when factor betas and variances follow ARCBeta(p;,q1) and

GARCIH(py,q9) processes respectively, in the following theorem.
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Theorem 10 Let B;,, By be ARCBeta(p,q1) processes and f]j,t be a GARCH (p2,92)
process, with common innovation vy ~ D (0,1) with finite moments up to the
twelfth order, and lemmas (2) to (6) hold. Then vec(Bil,ti;-’t) has a strictly

stationary solution if
B <<Pj,tfn ® Ah‘,pn) ® (Pj,tfn ® Ali,t%n))

has all its eigenvalues within the unit circle.

Proof: See Appendiz.

The steady-state covariance can now be computed using Corollary 9.

The preceding analysis presents a set of sufficient conditions for the ex-
istence of a strictly stationary solution for a number of processes formed as
products of time series processes. Although not necessary, they have the ad-
vantage that are easy to check. Derivation of necessay conditions is a more
difficult exercise and there are only a few studies in the literature addressing

this aspect, which we discuss in the following section.

4.2 On Sharper Conditions

Equations (7) and (7a) form a random parameter difference equation often
described as Generalized Autoregressive process. Vervaat (1979), Brandt
(1986) and Bourgerol and Picard (1992a) have studied the stationarity prop-
erties of such processes and have reached conditions that are both necessary
and sufficient. Recent applications of such ideas in finance are presented by
Bourgerol and Picard (1992b), Emrbechts et al (1997) who study ARCIH and
GARCH processes and Bond (2000) for the Semi-Variance GARCI model.
In particular Bourgerol and Picard (1992b) establish necessary and sufficient

conditions for Generalized Autoregressive processes with i.i.d. non-negative
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random parameter matrix. This is exactly the case of a GARCH volatility
process of the form of equation (7a).

In our framework the ARCBeta Generalized Autoregressive process (7),
exhibits an 7.i.d. random parameter matrix A;, which can be both positive
and negative since ARCBeta parameters are not restricted. For this case
Brandt (1986) provides general sufficient conditions and Bourgerol and Pi-
card (1992a) present necesssary and sufficient conditions for the existence
of a stationary solution by establishing the converse of Brandt’s theorem.
The analysis is similar to but more complicated of that applied to GARCH
processes in Bourgerol and Picard (1992b). We shall present the relevant

results preceded by two definitions which are necessary for the exposition.

Definition 11 (Bourgerol and Picard (1992a), Definition 2.2)

A non-anticipative strictly stationary solution of (7) is a strictly station-
ary process { By, t € Z} which is a solution of (7) such that, for any k € Z,
By, is independent of the random variable {A;,t > k}.

Definition 12 (Bourgerol and Picard (1992a), Definition 2.3)
An affine subspace H of R? is said to be invariant under the model (7)
if {Aof+ Aoy 8 € H} is contained in H almost surely. The model (7) is

called irreducible if R is the only affine invariant subspace.

Theorem 13 (Bourgerol and Picard (1992a), Theorem 2.5)

Suppose that the Generalized Autoregressive model (7) with i.i.d. co-
efficients is irreducible and that E (In"||Ao||) is finite. Then (7) has a
non-anticipative strictly stationary solution if and only if the top Lyapounov

exponent vy defined as

) 1
Y= inf {E <n 1 In HAtOAtl---Ath> ,n € N}

18 strictly negative.
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The theorem presents both necessary and sufficient conditions for strict
stationarity, but requires that {A;} forms an i.i.d. process. This is directly
applicable to an ARCBeta processes By such as (7). From a computational
point of view, Furstenberg and Kesten (1960) show that almost surely

Y = lim %111 1 AoAr 1 Ar |

n—o0

which can be estimated using monte carlo simulations. However the appli-
cation of this approach to product of processes such as B, zvec<BtBt/> and
vec (Bti;) is not straightforward and we leave this as a question for future

research.

5 On the Convergence of the European Stock
Markets

We illustrate the empirical relevance of our preceding theoretical arguments
by representing a set of Furopean stock market portfolios as an evolving sys-
tem. Since the inception of the Kuropean Fconomic Community, its member
states coordinate progressively their national economies with respect to both
the real and monetary sectors. This intended to that they all would sat-
isfy the Maastricht convergence criteria and eventually form the Furopean
Monetary Union. This raises questions on the evolution of integration be-
tween Furopean stock markets and their association with global factors. We
utilize the multivariate system of asset returns presented in section 3 to rep-
resent a set of Furopean stock market portfolios (UK, France, Germany) as

an evolving system with respect to three common global factors (KU, Japan,

Us).
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5.1 Data and Empirical Model Building

We use weekly data from DataStream-calculated (see DataStream (1990))
market price indexes in US dollars, covering a period of twenty seven years

from 03.04.73 to 15.03.00 (1409 obs).

The weekly return at time ¢ for each series F;; is calculated as In ( PZ: ) X
100. A preliminary analysis of the return series uncovers high unconditional
kurtosis and strong conditional heteroscedasticity for all cases but absence
of any serial correlation for the return levels.

We shall perform Maximum Likelihood (ML) estimation assuming condi-
tional normality. This is a convenient assumption which simplifies numerical
computations without harming the properties of the estimator. Bollerslev
and Wooldridge (1992) show under general regularity conditions that, the
Quasi ML estimator ( i.e. falsely assuming normality) of parameters for
models with varying first and second conditional moments will be consis-
tent and asymptotically normal as long as the first two conditional moments
are correctly specified. As possible excess kurtosis will result in understated
standard errors for the parameter estimates, we employ the White (1980)
heteroscedasticity-adjusted standard errors. Also we do not impose any re-
strictions on the estimation since, ARCBeta processes are restriction-free
and GARCH processes are estimated following the arguments Nelson and
Cao (1992). Numerical maximization has been performed on the GAUSS
matrix language and we initialize conditional variance and beta series at
their unconditional expectations.

As an empirical model building strategy, we shall first expose the data to
restricted versions of the full multivariate model and then relax the parameter
restrictions progressively. First we estimate the full system as a constant

factor beta model, allowing for factor time-varying volatility but constant

25



idiosyncratic volatility. Next we relax the assumption of constant betas for
one portfolio only (UK) keeping the remaining betas constant and re-estimate
the full model. We check the adequacy of the new, unrestricted specification,
in the light of the statistical significance of the parameters, likelihood ratio
tests and Bayesian information criteria. In doing so, we experiment with
various lag specifications for the conditional means, variances and betas.
Following we relax sequentially the constancy of betas for the second (France)
and third (Germany) portfolio by repeating the above analysis at each step
and allow for idiosyncratic volatility to vary as well. Finally we perform

further specification tests, such as conditional moment tests introduced by

Wooldridge (1990).

5.2 Results

First we estimate the model under constant factor betas and allow for time
varying conditional means and factor variances. At this stage we keep idio-
syncratic variances constant and reserve our right to relax this later. We
estimate a number of different specifications for the constant beta model and
present the final results in Table I in the appendix. For all series a constant
conditional mean and a GARCI(1,1) volatility processes seems an adequate
parametrization in the light of Information Criteria and Likelihood Ratio
tests. The beta coefficients of the three national portfolios on the EU factor
take significant values close to unity with the UK being the largest in mag-
nitude. All betas with respect to Japan and US take significant values but
close to zero.

Next we progressively relax the assumptions on constant betas and let
them be driven by ARCBeta processes. We first allow the beta coefficients
of the UK on the three factors to vary, keeping the rest of the beta parameters
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constant. Table II presents the estimation results which clearly support the
unrestricted form of the model. In particular most of the ARCBeta parame-
ters of the UK on the three factors are statistically significant and increase
the Likelihood ratio value sufficiently so as to reject the null of no ARCBeta
effects quite confidently. Parameters of lagged betas (by) take high values sig-
nifying persistence of shocks on betas, but in all cases the process seems to
be stationary. However Information Criteria are more conservative and just
approve the unrestricted specification. Graph I plots the estimated UK be-
tas on the corresponding three factors. In all cases the estimated ARCBeta
process implies a steady-state close enough to the constant beta estimate.
The elasticity of the UK portfolio with respect to EU varies substantially
taking values from unity to 1.6 and exhibits a “clustering” behavior but
much smoother compared to a volatility process. Elasticities with respect
to Japan and US factors are very close to zero but exhibit a statistically
significant variation around it. The sample around the 780-th observation
corresponds to the October 1987 crash period, in which we observe that
the UK portfolio elasticity sharply increased with respect to the EU factor,
sharply decreased with respect to the US factor and remained stable with
respect to the Japanese market.

Second, we relax the assumption of constant French betas, re-estimate the
entire model and present the results in Table ITI. The France to EU ARCBeta
process is highly significant, exhibiting high persistence and interestingly
the opposite fluctuations of those of UK to EU as Graph II shows. French
beta with respect to Japan appears constant as all attempts to estimate an
ARCBeta process have failed. Also, the process with respect to US presents
a questionable significance as the a; parameter does not defer from zero and

its contribution to the likelihood value is very small. Thus, likelihood ratio
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and information criteria are very close not to reject the null of constant
French betas overall, but when we consider only the France to UK elasticity
as ARCBeta and the rest constant model selection is in favor of ARCBeta.
Last, we relax the assumption of constant German betas and re-estimate
the entire model. Table IV presents the results which indicate strong and
significantly persistent fluctuations for all three parameter processes. Betas
with respect to UK and the US behave similarly to those of the French port-
folio. A new feature though is the negative sign of the ARCBeta parameter
with respect to Japan. Shocks are still highly persistent and the process
is stationary but estimated betas exhibit clusters of high and low values of
alternate signs. Last, we relax the assumption of constant idiosyncratic vari-
ances for UK, France and Germany and re-estimate the entire system, which
dramatically improves the likelihood value (Table V). As a final check, we
summarize the steady-state betas implied by the full system estimation (ta-
ble IV or V) in table VI in comparison with the constant estimated betas (of

table I), which appear remarkably similar.

5.3 Discussion and Conclusions

The model formally presents that various variables in the system experience
common shocks, thus generating common -to some extend- fluctuations. Us-
ing appropriate combinations of Corollaries 11, 13, 15 and 17 it is easy to
examine the comovement between several variables of the system. For exam-
ple, it is often reported in the literature that there exist a positive or negative
relationship between the beta coefficient and the corresponding factor con-
ditional variance. Under ARCBeta effects, the two variables share the same
innovation process and we would expect them to exhibit some comovement

the sign and the magnitude of which may depend on the respective process
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parameters. To see this we can easily calculate Cov (ﬂij’t, 0%) by combining
Corollaries 11 and 15. Assuming the two variables follow ARCBeta(1,0) and
ARCH(1) processes respectively and have a standard gaussian innovation

process in common, we can easily see that

a1,
1=3a17,) (1 =) (1 —a1)

ARCBeta parameters ag and a; are unrestricted and ARCH parameters

Cov <ﬂij,t7 U?,t) = 2’70%(

should satisfy v, > 0 and 7; > 0. The denominator of the above equa-
tion presents clearly the individual and joint conditions the two processes
should satisfy for this quantity to exist. Ignoring the two intercept terms
ag,vo we plot Cov (ﬂij’t, 0%) against a range of plausible values of a; and 7y,
in Graph IV (see appendix). It is clear that the sign and the magnitude of the
covariance depends on the trade-off between ARCH and ARCBeta effects. In
particular, positive covariance generally is generated for high negative val-
ues of the ARCBeta parameter and any values for the ARCH parameter as
well as for weak ARCH effects and any values for the ARCBeta parameter.
Also, the interaction of the intercept terms ap,7y, controls the scale of the
covariance and adjusts the position of the covariance surface on the vertical
axis.

As other example, we can examine the comovement between beta coeffi-
cients of different assets on a common factor, by calculating Cov (ﬂij’t,ﬂk j’t>.
Using Lemma 14 and Corollary 15, if 3, ; and 3, , both follow ARCBeta(1,0)
processes with common gaussian innovations, we obtain

2a1; — 6a3jas + 4ajias + 3a3al, — 1
(1 - 3a11a21) (1 - a21) (1 - an)

Cov <ﬂ1,t7ﬂ2,t> = Q10020

Ignoring the ajgagg, we plot in Graph V the covariance between betas as

a function of the ARCBeta parameters a1; and ag;. For a plausible range
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parameter values the covariance between factor betas is positive but, both
its scale and sign will also depend on the ajgagg factor.

The proposed model also implies time varying conditional correlations
between assets and /or factors that are guaranteed to be less than one in ab-
solute value. In particular, equation (4) in section 3 presents the conditional
covariance matrix €2; to be measurable with respect to the generated sigma
field as well as positive definite. Taking the decomposition €, = S R:S;
where S; :diag(Qt)%, we obtain R; = S; 'S, '. The north west block of R,

is the asset correlation matrix which (see equation (4)) can be written as

Ryy:=5,"

yy,t

Syl 4+ S )

yy,t

BY.:B,S,),

where Sy, ¢ :diag(ny,t)%.

In this paper we have presented a multivariate framework that jointly
parametrizes the evolution of N asset returns and K heteroscedastic common
factors. The model guarantees the positive definiteness of the covariance ma-
trix and is flexible enough to generate a number of reported empirical stylized
facts in the finance literature. This goes beyond the standard phenomena
of multivariate heteroscedasticity and non-normality and presents arguments
for the time variation of factor beta coefficients, their mean-reverting prop-
erties and the co-movement between factor betas and volatilities. The model
provides an explicit framework for asset variance, covariance, correlation and
factor beta out-of-sample forecasting and capable of accommodating the ef-
fects of exogenous variables. We provide sufficient conditions for the existence
of the implied asset covariance structure and present empirical evidence for

the three major European stock market portfolios as an evolving system.
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6 Appendix

6.1 Proof of Theorem 1

Consider the representation of the model

&, Qp Qp Qi Oy

& 0 1 .0 0

:t 1 | + : - :

Etpi 0 0 -1 0
or

& =Ao+ A& |+ vy

upon recursive backward substitution for s times, we obtain

s—1

L=+ A+ +A DA +AE +) Av

As s — oo, the process is stable if and only if A has all its eigenvalues
within the complex unit circle, or equivalently the associated characteristic

polynomial A —a X1 — ... — o, having all its roots inside the complex unit

circle. Then lim A® =0 and

§—00

i=0

E=U—-A) A+ Av

=0

The second term of the right-hand-side converges under the stability condi-
tions and the stochastic difference equation is well-defined. Taking expecta-

tions, it follows that the steady-state &, is ({ — A)fl Ap and thus the result

(Thl.a).
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6.2 Proof of Lemma 2

By Chung (1974, xi, p 42)

Y B

i>1

|

J=1

< o0
l

for all I (where (+) ; denotes the [-th element of a vector and (:) In denotes the

(I,n)-th elment of a matrix) implies that

pY | Y

i>1 j=1
is absolutely convergent almost surely. We are interested in its first element

(I =1) as the second is trivial, that is

ﬁAHAo =FE i(ﬁAm) (Ao), Si:E (ﬁAm‘> (Do),

7=1 1 s=1 \j= , = = Ls

E

by triangle inequality. The last term of the r-h-s of the above equation is not

grater than
27 3

Y |E (HAm) (Ao),

=1

by Cauchy-Schwartz inequality. Now we denote (X @ Y) the product

k,l:m,n

of the (+),; (), elements of XY and evaluate for s = 1,2

2

j=1 1,8 j=1 j=1

1,5:1,5
7
- H E (At7.7 ® At*ﬂ)l,s:lys - Al,s:l,s
=1

by independence. This quantity will be finite if all the eigenvalues of A =
E (A, ; @ Ay_;) are less than one in modulus. Q.E.D.
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6.3 Proof of Lemma 4

From equation (number) vec (BtBt/> = B, = Ag+A; 1B 1 —I—At,lgt,l. Upon

recursive substitution k£ times we obtaln

k-1 4 ki1
B, = Ao+ A 1B+ Z H AtfjAO + Z H AtfjAtfiBtfi (LA41)
i=1 j=1 =2 j=1
k
+ H A By g
=1

We shall examine of each component of this process separately.

1. By Lemma 2 and independence between A, | and 4, ;,j > 2 the term
Ay_1B,_1 is strictly stationary if v, has finite fourth moment and F (A @ Ay)
has spectral radius less than one.

2. For k — oo, by Chung (1974, xi, p 42)
[T
j=1

i>1
for all I, (where (-)l’ndenotes the I, n—th elment of a matrix), implies that

2 1144

i>1 j=1

< o0
l

is absolutely convergent almost surely. We establish the result for I = 1:

p (HAA> Yy (HA> ), sZE (HA) (),

s=1 1,s

by triangle inequality. The last term of the r-h-s of the above equation is not

grater than
4 i 213
> |6 ((IT4) G,

1,s

s=1 j=1
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by Caucky-Schwartz inequality. Now we denote (X @ Y) the product

k,l:m,n

of the (), ; (*),,, elements of XY and evaluate for s =1,2,3,4

2

j=1 1,5 j=1 j=1

1,5:1,5

which will be finite if £ (At, ;i ® At, j) has all its eigenvalues within the unit
circle.

3. Letting k — oo and by Lemma 2 the term

i1 i1 i1l r
Z H A A B = Z H AtfjAtfiAO‘l'Z H A A Z H A jAg
122 j=1 122 j=1 122 j=1 rzitl j=it+1

Repeating the arguments of the previous step and using L.emma 2 and the
independence between At, s A, and A, ; we see easily that the above term
also i1s absolutely convergent almost surely if F (At,j ® At,j) has all its

eigenvalues within the unit circle. Q.E.D.

6.4 Proof of Corollary 5

Let k — oo in I41 (see proof of Lemma 4) and take expectations.. The last

term of the r-h-s will vanish by stationarity and by independence we have
E(B)) = Ay+FE (A1) E(Biy)

+ZHE (AH) A,

i1 j=1

+y ﬁ B (Avs) B (Ais) B (Be-s)

i>2 j=1
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By Corollary 3 E(B,—;) = (I — A)fl Ao where A = F (A;_;), also let A =
E (At,z), A=F (At,j), then by Lemma 2

B(B) = Aot AU~ A Aot (1-4) A Ao+ A1 - 4)" A0)

6.5 Proof of Lemma 6

Consider

=2/

vec (Btié) = vec (Aol—‘(/)) + (T'y-1 ® Ag) vec (Etfl) + (To @ A1) vec (B_1)
+ (Pt,1 & Atfl) vece (Btfliéfl)
Upon recursive substitution k£ times we obtain

vee (Bti;) = vec (AOP(/)) + (T'eo1 ©@ Ao) itfl + (To® Ai1) Biq

k-1 r

+> 11Ty ® A ) vee (AOD/))

r=1 j=1
E r—1

+ Z H (T @ A ) (T © Ag) itfr (L61)
r=2 j—1
E r—1

+ 3 TI @@ A ) (To® Acy) Bios

r=2 j=1
k
+ H (T @ Ap_j) vec (Bt,kiéfk)
j=1
We proceed in steps.

1. Terms (I'y 1 @ Ao) Y, | and (To @ A1) By 1 have a strictly station-
ary solution by Lemma 2 and the independence of Iy ; and A; ; with
Ay, T gg 2 2,

2. Letting k — oo and using the same arguments as in step 2 of Lemma

3 st H;:1 (T @ At,j)vec<A01—‘(/)> will be absolutely convergent almost
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surely if all the eigenvalues of E ((I'—; @ A—;) @ (I'—; @ Ai—;)) lie within
the unit circle.

3. Letting kK — oo we have ) _, H;;} (T @A) (T © Ap) )Y
and Zr>2 H;;} (T © A;) (To @ A—y) Bi—r. By Lemma 2 and the inde-
pendence of A, ,, I'y , and I'y_;, A,_;,7 =1,..,.r — 1, both sequences will be

absolutely convergent almost surely if all the eigenvalues of
E(Te; @A) @ ([ © Ary))
lie within the unit circle. Q.E.D.

6.6 Proof of Corollary 7

Let kK — oo in L61 (see proof of Lemma 6) and take expectations. Then
the last term of the r-h-s will vanish by stationarity and by independence we

have

1D (VGC (Bti;)) = vec (Aol—‘(/)) +E(I 1@ A)E (it,l)
+E (Lo @ A1) E(B1)

+ Z H B (Ptfj & Atfj) vece (A()P(/))

r>1 j=1

+ ﬁ ET;© A ;) B[ @ Ao) B (it”)

r>2 j=1

r—1
+ Z H ETi ;@A ) E(To® Ar,) E(Br)
r>2 j=1
By Corollary 3 we have £/ (B;_,) = (I — A)fl Agand (it,r) = ([ — 1—‘)71 Lo,
(where A = E(A;), and T' = E(Ty;)), also let B (T, @ Ag) = Ty,
ETo®Ar)=A,, and F (I'_; ® A;_;) = T4. If ['y has all its eigenvalues

within the unit circle we have
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E (Vec (Bti;)) — vec (Aor(’)) +Ta (I=T) 'To+ A, (I—A) " 4
F(I—TW) Ty [Vec (Aor(’)) Y Ta (I —T) ' Ty
+(I=Ta) 'TalA, (I—A)" A

6.7 Proof of Theorem 8

Upon recursive backward substitution in equation (9) we obtain

k—1 2

vec (Btié) = vec (Aor(/)) + &1+ ;H (Pt,j ® At,j) vec (AOI‘(/))
+ Xk: ﬁ (Pt*j ® Atfj) Di (Th8&.1)
=2 j=1

k

+ H (Ptfj (629) Atfj) vec (Btfkiéfk)
7j=1

where

Dy = <Pt7k ® Ao) itfk + (Po ® At7k> By
+ <Pt7k ® Az%k) vec (Btfki;,k) + (Po ® Atfk) By

We proceed in steps.
1. For @, 1, both <Pt71 ® A()) ¥, 1 and (Fo 0% At,1> By 1 are strictly sta-
tionary by Lemma 2 and the independence of Ty 1, A, with Ty ;, A, ;, 7 >
2 respectively, if the conditions of Lemma 2 hold. Also, (Ft,l ® At,1>vec (Bt,liéfl)
is strictly stationary by Lemma 6 and the independence of (Ft,l ® At,1>
with (Ft,j ® flt,j>, j = 2, if the conditions of Lemma 6 hold and so is
(FO ® At,l) B; 1 by Lemma 4 and the independence of At,l with At,j,
j = 2, if the conditions of Lemma 4 hold.
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2. For k — oo and following the methodology of Lemma 2, the third

term of the r-h-s will be absolutely convergent almost surely if

B((reso i) o (nsoi)

has all its eigenvalues within the unit circle.

3. The term
E i1 ‘
Z H (Pt*j ® Atfj) D,
i=2 j=1
E i1 ‘ -
Z H (Ptfj ® Atfj) <Pt7k ® A0> Etfk
=2

=2 j=1
i—

|
—I—ZH(D ]®At ]) P0®At k Bt k
=2 j=1
|
‘I‘ZH(Ptfj@At ]) Ty @ A k vec (Bt kzt k)
i=2 j=1
|
—I—ZH(D ]®At ]) (P0®At k)Bt k
=2 j=1

3a. For k — oo and using L.emma 2 and the independence between
Tygy Ap and Tyy, Ay, 7 = 1,..k — 1 (exactly as in step 3 of Lem-
mas 4 and 6) the first two terms of the r-h-s will be strictly stationary if
B ((Pt,j ® At,j) ® (Pt,j ® At,j)) has all its eigenvalues within the unit
circle.

3b. For k — oo and Lemmas 4 and 6 respectively, and independence
as in (3a) the last two terms of the r-h-s are also strictly stationary if
1) ((Pt,j ® At,j) ® (Pt,j ® At,j)) has all its eigenvalues within the unit

circle.
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6.8 Proof of Corollary 9

Let &k — oo in Th8.1 (see proof of theorem 8) and take expectations. By
Theorem 8 the last term of the r-h-s will vanish and by independence we

have
E (VGC (Bti;)) = vec (14_101—‘(/)) + FE (Prq)

FSTTE (s de ) vee (A1)

i»l j=1
i—1

+ Z HE (Ptfj ® Atfj) E (D)
i»2 =1

Using corollaries 3, 5 and 7 and denoting I'j, = K (Ft,k ®/_10>, A, =

Yo

FE (Po ® At7k>7 ';=F <Pt7k ® At,k% Ay =E (Fo ® At,k) we have
E (D)
= T[4, (I-T) '"To+ A, (I-A4) "4
+A,

1

Ao+ A(I—A) " Mgt (I—A)IA%MU—A)IAO)]
40 [vee (Aol + g (1= 1) Ty + Ay, (- 4) 4y

T4 (1= Ta) " T (vee (Aolg) + Ty (1= T) ' To+ Ay, (1 = 4) " 4y ) |
Also denote I'j = E (Ptfj 2 At*j)v then by Theorem &

E (VGC (Bti;)) = vec (AOP(/)) + (=T, "vec (AOP(/))
(I =T4) " B (®s)

6.9 Proof of Theorem 10

The proof follows exactly the steps of Theorem 8. Thus we sketch the proof

primarily to establish the notation presented in the text and then make
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available a formula for the steady-state covariance. Let B, ¢, B, and ijyt be

generated by

By = Ao+ A 1B
B, = Ao+ A 1B
ij’t = o+ Pj,t—lij,tfl
and let Bil,t = vec (BMBZ/’J. Then
vec (Biz,ti;,t) = vec (Ail,or;"o) + U+ (Thm1 @ Apy1) vec (Bil,tfli;‘,tfl)
(Th10.1)
where
Uy = <Pjt 1®Alz> e 1+<30®Alt 1>Bu 1+<] © Ay ) i1
+ <Pj 1 © A pl) vee (Bz,tflzj,t,l) + ( i1 @ Ay ) ( iyt— 1E]t 1)

+< Tio® Aiy 1) ilt—1
and
B+ = vec (Bi,tBl/’t)
Ao = vec (Ai,OA;’())
A1 = (A1 @ Aip
Ai,tfl = (ALo® A
Aipr = (A1 @A)

)
)

Recursive substitution in Th10.1 yields
k-1 4
vec (Bil’tzj’t) = vec (Ail’()rj’o) + \Ijt,1 + Z <Pj,t7j & Ali,t7j> vec (Ail’()rj’o)
i=1 j=1
ko1

+ Z H (PJ}H ® Ali,t—j) W, g

i=2 j=1
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k
+ H <Pj,t7j & Ali,tfj> vec (Bil,tfki;',tfk)

j=1
which is of the same form as Th&8.1. The proof proceeds as in Theorem & for

appropriately defined matrices.
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6.10 Tables
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Table I : Constant Beta Factors/Constant Idiosyncratic Variances

Parameters | UK France | Germany | EU Japan US
Mean
.23 23 21 .23 .25 21
¢ (2.2) (2.6) | (2.5) (3.8) | (3.8) (4.1)
Variance
1.98 4.75 2.62 .53 .26 21
o (33) (51) | (27) (5.1) | (4.3) (3.3)
A7 12 12
g ) ) ) (6.1) | (6.4) (6.5)
5 i i i 71 .85 .82
! (18) (38) (30.1)
Beta EU Japan US
1.28 —.085 —.028
Uk (445) | (=34) | (-.94)
France .85 .06 .05
(23.5) (2.1) (1.4)
Germany .82 .07 —.05
(23.7) (2.5) (—1.6)
Log L —17,541
AIC 24.86
SIC 24.76

NOTES: Weekly data 05.04.1973 to 30.03.00 (N=1409 observations). Multi-
variate Quasi Maximum Likelihood estimates, heteroscedasticity robust t-statistics

in brackets. AIC = —2 (% + %), SIC = -2 (% + k;]lVN>, LR=2(InL, —InL,)
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Table IT : ARCBeta Factor (UK)

Parameters UK France | Germany | KU Japan US
Mean
c .30 27 .26 .28 .25 23
(3.1) (3.2) (3.2) (4.5) (3.9) (4.7)
Variance
1.92 4.77 2.6 .53 .26 .22
o (32.5) (50.8) | (26.6) (5.0) | (4.3) (3.3)
A7 116 128
g N N N 6.2) | (6.3) (6.4)
s - - - 71 85 82
! (18.1) | (38.9) (29.1)
ARCBeta EU Japan US
aop .0096 —.0018 —.0014
(1.9) (—2.5) (—3.3)
aq .0049 0246 3262
UK (12) (1.02) | (3.9
by 9872 .9508 6371
(155) (34.82) (8.3)
T 1.2 .036 —.038
France .85 .06 .046
(25) (2.0) (1.5)
Germany .82 067 —.05
(29) (2.7) (—2.37)
Log L —17,532
LR 18 [12.6]
AIC 24.83
SIC 24.71

NOTES: Weekly data 05.04.1973 to 30.03.00 (N=1409 observations). Multi-
variate Quasi Maximum Likelihood estimates, heteroscedasticity robust t-statistics
in brackets.brackets. XX? (6) critical value in square brackets. AIC' = —2 (% + ﬁ),

N
SIC = —2 (L 4y BUNY 1R — 9(InL,, —InL,)
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Table III : ARCBeta Factors (UK, FRANCE)

Parameters UK France | Germany | EU Japan US
Mean
) 31 28 25 28 25 23
(3.2) (3.3) | (3.2) (4.6) (3.9) (4.8)
Variance
1.92 477 2.6 53 26 22
o (34.1) (69.6) | (27) (5.0) (4.3) (3.3)
17 116 128
g N N N (6.2) (6.3) (6.4)
s B B B 71 85 82
! (18.1) (38.9) (29.1)
ARCBeta EU Japan US
o .0096 —.0014 | —.0013
. (1.8) (—1.8) | (3.3)
UK 0044 0405 3161
; (4) (1.1) (3.7)
! 98 93 64
o (70) (29) (8.1)
ag .0077 056 0011
(1.1) (2.28) | (.52)
a —.0026 | — —.0526
FR (—1.7) (—.99)
by .9936 - 1.0299
(131) (15.2)
T .85 056 048
8231 0669 —.0543
GEs (406) | (43) | (-26)
Log L —17,527
LR 10 (9.49)
AIC 24.82
SIC 24.68

NOTES: Weekly data 05.04.1973 to 30.03.00 (N=1409 observations). Multi-

variate Quasi Maximum Likelihood estimates, heteroscedasticity robust t-statistics

in brackets. X? (4) critical value in square brackets. AIC (Akaike), SIC (Schwartz)
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Table IV : ARCBeta Factors (UK, FR, GE)

NOTES: Weekly data 05.04.1973 to 30.03.00 (N=1409 observations). Multi-
variate Quasi Maximum Likelihood estimates, heteroscedasticity robust t-statistics
in brackets. X2 (6) critical value in square brackets. AIC = —2 (% + %),

SIC = —2(BF +258), LR=2(In Ly, —In L,)
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Table IV UK France | Germany | EU Japan US
Mean
c 33 .30 .28 .29 .25 .23
(3.3) (3.4) (3.3) (4.8) (3.8) (4.6)
Variance
1.92 4.77 2.6 .95 27 .23
o (31.1) (48.6) | (27) (3.3) (4.4) (3.4)
.05 12 12
" - - - (4.1) (6.5) (6.5)
s - - - 71 84 82
! (9.2) (38.3) (28.9)
ARCBeta EU Japan US
ag .0096 —.0020 —.0014
(1.9) (—2.3) (—3.0)
a1 .0049 .0190 3225
UK (10) (.75) (3.7)
by 9872 9534 .64
(83) (32.3) (7.9)
T 1.2 —.07 —.038
0 .007 .056 .0012
(1.1) (2.0) (.52)
aq —.0028 — —.0517
FR (—1.8) (—.99)
by 9936 — 1.0275
(128) (13.4)
T .8695 .056 .05
ap 101 1016 —.0106
(1.7) (2.8) (—1.1)
aq —.0025 .0936 —.0645
GE (2.9) (4.1) (—.84)
by 9931 —1.0518 9339
(14) —63.6 (7.12)
T 87 0571 —.0676
Log L —17,516
LR 22 (12.6)
AIC 24.8
SIC 24.64
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Table V : ARCBeta Factors (UK, FR, GE) & Idiosyncratic GARCH
NOTES: Weekly data 05.04.1973 to 30.03.00 (N=1409 observations). Multi-

variate Quasi Maximum Likelihood estimates, heteroscedasticity robust t-statistics

in brackets. AIC' = —2 (% + %), SIC = -2 (% + k;}g), LR=2(nL, —InL,)
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Table V UK France Germany | KU Japan US
Mean
. .26 . 24 .26 .25 .23
(3.1) (3.9) (3.2) (4.2) (3.7) (4.5)
Variance
.04 : .05 74 .26 .25
o (3.1) (4.6) (2.3) (5.2) (4.3) (3.7)
11 . .06 15 116 13
m (7.1) (11.2) | (5.1) (5.5) (6.3) (6.6)
5 .86 : .92 .69 .85 81
! (45.2) (107.2) | (60) (15.5) (39.7) (27.9)
ARCBeta EU Japan US
ag .0096 —.0075 —.0011
(1.8) (—1.8) (—2.3)
aq .0049 —.09 .3680
UK (6.0) (—2.2) (2.88)
by 9872 .96 5974
(70) (14.4) (5.2)
T 1.2 —.057 —.032
0 .0066 .06 .0012
(.48) (2.28) (.72)
aq —.0012 — —.0416
FR (—.59) (—1.2)
by 9939 — 1.0195
(72) (24)
T .8695 .06 .05
aop .0082 .0756 —.0052
(1.9) (2.6) (—2.26)
aq —.0025 .0883 —.2476
GE (3.4) (3.4) (—5.2)
b 9931 —1.0585 1.1549
(19) (—56) (43)
T 87 .039 —.056
Log L —17,114
AIC
SIC
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Table VI : Constant and Steady-State Betas

EU Japan Us
Constant ARC Beta Constant ARC Beta Constant ARC Beta
UK 1.28 1.22 —.085 —.060 —.028 —.030
FR 0.85 0.90 0.060 — 0.050 0.050
GE 0.82 0.86 0.070 0.04 —.050 —.050
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6.11 Graphs
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GRAPH 1
UK 1973-2000

weekly data, ARCBeta(1,1)
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GRAPH II
France 1973-2000
weekly data, ARCBeta(1,1)
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Germany 1973-2000
weekly data, ARCBeta(1,1)
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