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1 Introduction

The behaviour of portfolios during …nancial crises is an important element of risk management (Basle

Committees I and II). The goal of this paper is to construct a methodology to calculate risk measures

– as value at risk and expected shortfall – that directly come from the extremal dependence structure

between portfolio components. This is achieved by considering their multivariate extreme value (MEV)

probability distributions.

Extreme value theory (EVT) is now a well developed tool used to model maxima and minima

of …nancial returns. A seminal paper is Embrechts and Schmidli [1994] in an insurance context.

Longin [1996] provides a study of stock market extreme returns. An in‡uential book that provides

a “state of the art” of the subject is Modelling Extremal Events for Insurance and Finance by Em-

brechts, Klüppelberg and Mikosch [1997]. However, the extension to the multivariate modelling

is not obvious, as pointed out by Embrechts, de Haan and Huang [2000]. However, some examples

of applications of MEV theory can be found in the non-…nancial literature (for example Coles and

Tawn [1991], Coles and Tawn [1994], de Hann and de Ronde [1998]). For an overview of the

theoretical aspects of the subject, we refer to Resnick [1987].

In the …nancial literature, some measures for extremal dependence between returns can be found

in Straetmans [1999] and St¼aric¼a [1999]. Longin [2000] proposed an approach based on EVT for

computing value at risk compatible with extreme events. The author provides an ad hoc aggregation

formula to approximate the value at risk.

As we noted above MEV distributions often become analytically intractable. An interesting way

to avoid these di¢culties is to use a copula function that allows us to split the univariate extremes

from their dependence structure. A general introduction about the application of copulae to …nance is

Embrechts, McNeil and Straumann [1999] and Bouyé, Durrleman, Nickeghbali, Riboulet

and Roncalli [2000]. Concerning the application of copulae to joint extreme events, a bivariate case

– two assets – is presented in Longin and Solnik [2001] who use a Gumbel copula to study the

conditional correlation structure of international equity returns. However, as we will show in this

paper, there are many possible copulae to model the joint extremal dependence. These copulae may

exhibit di¤erent dependence structures. For example, the Gumbel copula induces clustering in the

dependence structure if the dimension is higher than two. Indeed, the higher dimensions are obtained

by compound method as we will further see in more details.

In the second section, we introduce univariate EVT and review the link between copulae and
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MEV distributions. Then, we present three copulae that can be used in an extreme value context.

In the third section, we describe our estimation methodology and provide an application to the joint

dependence of german, japanese and US market indices during extreme events. The empirical results

are also discussed. In the fourth section, we use the estimated parameters of the MEV distribution

to compute risk measures for multi-indices portfolios. Speci…cally, the risk of the portfolios is studied

from two directions: (i) multivariate stress testing and (ii) Monte-Carlo based risk measures. The

sixth section concludes.

2 Multivariate Extreme Value Theory

In this section, we …rst brie‡y introduce univariate EVT. We then state a theorem that tells us that

a MEV distribution can be built from univariate extreme value distributions and a speci…c family of

copulae. We present the three copulae that will be used through this paper. The results for maxima

are developed, although equivalent results exist straight forwardly for minima.

2.1 Preliminaries

The general context of univariate extreme value theory is easily explained. A very useful result is the

Fisher-Tippett theorem. It tells us that normalised maxima - under particular conditions - follow one

of only three (extreme value) distributions. For i.i.d. random variables (Xn), if there are constants

an > 0, bn 2 R and a non degenerate function G with a¡1n (Â+¡bn)
d¡! G where Â+ = max(X1;:::;Xn),

then G corresponds to:

Type I (Gumbel) G(x) = exp(¡e¡x) x 2 R

Type II (Frechet) G(x) =
½

0
exp(¡x¡®)

x · 0
x > 0 ® > 0

Type III (Weibull) G(x) =
½

exp(¡(¡x)®)
1

x · 0
x > 0 ® > 0

In practice the Von-Mises representation encompases this result and provides a unique distribution

for all extremes:

G(°; Â+) = exp

(
¡

µ
1 ¡ ¿

Â+ ¡ b
a

¶1=¿
)

(1)
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with
³
1 ¡ ¿ Â

+¡b
a

´
> 0 and ° = (¿; a; b). We recover the three cases as the ¿ = 0 (Gumbel), ¿ =

¡®¡1 < 0 (Frechet) and ¿ = ®¡1 > 0 (Weibull). This distribution is called Generalised Extreme

Value (GEV) distribution.

The theory of multivariate extremes was introduced by Gumbel [1960] and an overview can be

found in Resnick [1987]. The main reference given our current objective is Deheuvels [1978] which

contained a theorem that allows us to split the problem of characterising multivariate extreme value

distributions into two distinct problems:

1. the characterisation of the univariate extreme value distributions

2. the existence of a limiting dependence function (or copula) that links univariate extreme value

distributions in order to obtain the multivariate extreme value distribution.

This idea is summarized in the following theorem:

Theorem 1 (Deheuvels (1978)) Let Â+
n be such that

Â+
n =

³
Â+
1;n; : : : ; Â

+
d;n

´
=

Ã
n_

k=1

X1;k; : : : ;
n_

k=1

Xd;k

!
(2)

with (X1;n; : : : ;Xd;n) an i.i.d. sequence of random vectors with distribution function F, marginal

distributions F1; : : : ; Fd and copula C. Then,

lim
n!1

Pr

(
Â+
1;n ¡ b1;n

a1;n
· x1; : : : ;

Â+
d;n ¡ bd;n

ad;n
· xd

)
= G1 (x1; : : : ; xd)

8 (x1; : : : ; xd) 2 RN (3)

with aj;n > 0; j = 1; : : : ; d; n ¸ 1 i¤

1. 8j = 1; : : : ; d, there exist some constants aj;n and bj;n and a non-degenerate limit distribution

Gj such that

lim
n!1

Pr

(
Â+
1;n ¡ bj;n

aj;n
· xj

)
= Gj (xj) 8x 2 R (4)

2. there exists a copula C1 such that

C1 (u1; : : : ; ud) = lim
n!1

Cn
³
u1=n1 ; : : : ; u1=nd

´
. (5)
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If the conditions of the previous theorem are ful…lled, we have

G1 (x1; : : : ; xd) = C1 (G1 (x1) ; : : : ;Gd (xd)) (6)

The …rst condition is not speci…c to the multivariate case and is already present in univariate EVT. It

corresponds to an existence condition. The second condition directly informs us about the dependence

structure that allows us to obtain MEV distributions with given margins. The link between the one

dimensional extremes is obtained by applying them the function C1 that is called copula function.

This function is in fact nothing else but a multivariate distribution with uniform margins. The concept

of maximum domain of attraction (MDA) is sometimes alternatively used. In the theorem above,

each real-valued random variable Xj for j = 1; : : : ; d has its own univariate distribution function Fj .

And each maximum Âj (respectively corresponding to Xj) follows an extreme value distribution Gj

(amongst the three already presented: Gumbel, Fréchet and Weibull). We say that Fj belongs to the

maximum domain of attraction of Gj . This concept can be extended to the multivariate distribution

F that belongs to the MDA of the MEV distribution G1. By introducing copula - see Galambos

[1978] for more details - the theorem can be restated as follows:

Theorem 2 F o wse2m iat d t mo o o09  Tc (l) Tj3.12 0  TD 581  Tc (eD 0.0254  Tc0442.0254  Tc0442  0. 0  TD -0.0581  Tc (2  Tc (o) Tj6.245.0.012  (=j4.2 TD -0.c (o) Tj6.24 0  TD 0.05 (o) Tj6.24 0  TD 0.057  Tc (-) Tj700.047  4.0437  Tc (-) Tj782  Tc 16.6 0) TjEw-tD r) Tj4.32 0  TD 0.0182  Tc (e) Tj700.047  4.0437700.047  4.0437  Tc (-) Tjo) Tj6.96 0  TD -0.0163  Tc (s) Tj-4700.047  4.0437  Tc (-) Tj700.047 .5.00  TD 0.05 (o.2cTj4.3237700.047  4.0437  Tc (-) Tjo) Tj6.2cTj4.3237700.04  Tf0.0  TD -0.0163  Tc.0474  Tc (-) Tj782  Tc 16.6 0sa T D  0 . 0 4  0 . 0 4 4 2   T c  ( m )  T j  8 . 1 6  0   /  0 . 0 4 6 v 8   T c  ( m )  T j  8 . 1 6  0   /  0 . 0 4 6 v 8   T c  ( m )  T j  8 . 1 6  0   /  0 . 0 4 6 v 8   T c  ( m )  T j  8 . 1 6  0   /  0 . 0 4 6 v 8   T c  ( m v  ( 2 )  T j  1 1 . 7 6  0  w - t D  r )  T j  4 . 3 2  0   T D  0 . 0 1 8 2   T c  ( e )  T j  7 0 0 . 0 4 7   4 . 0 4 3 7 7 0 0 . 0 T D  0 . 0 1 8 2   T c  1 4 . 6 4  0 5  ( o )  T j  6 . 2 4  0   T D  0 . 0 5 7   T c  ( - )   ( w   ( m v  ( 2 )  T c  ( c  - 0 )  T j  6 . 2 4  5 - 8 7 . T j  1 1 . 7 6  0  w - t D  r ) 0   T D  0 . 0 1 8 T j  6 . 2 4  5 - 8 7 . 7 2 4 7   4 . 0 4 3 7   T c  ( - )  T j  7 0 )  T j  6 . 2 4  0   T D  0 . 0 5 7   T c  ( - )   ( w   ( m v  ( 2 )  T c 0 2 9 8   T c  ( s )  T j  T D  5 8 1   T c  ( e D  0 . 0 2 5 4   T c 0 4 4 2 . 0 2 5 4   T c 0 4 4 2 1 ( 2 )  T j  1 1 . 7 6  0   T D  / F 1 6  1 1 . 0 4   T f 5  T c  ( m )  T j  8 . 1 6  0   /  0 . 0 4 6 v 8   9 r (   T D  0 . 5 . 7 6  0   T D  0 . 0 1 )  T j  5 . 4  0  ( 2 )  T ( a )  T j  6 . 1 0 . 0 5  ( o )  T j  6 . 2 4  0   T D  0 . 0 5 7   5 w - t D  r ) 0   T D  0 . 0 1 8 T j  6 . 2 4  5 - 8 7 . 7 2 4 7 1 T j  7 0 0 . 0 4 7  / F 4  1 1 . 0 4   T f  0 . 0 4 8   T c  ( 3  5 . 0 . 0 1 2   ( = j  4 . 2  T D  - 0 .  4 . 3 2  0   T D  0 . 0 1 8 2   T c  ( e )  T j  7 0 0 . 0 4 7   4 j  6 . 2 4  0   T D  0 . 0 5 7   5 w - t )  s )  T j  E w - t T 2 4  0   T D  0 . 0 5 7   7 0 0 . 0 4 7  / F 4  1 1 . 0 4   T f  0 . 0 4 8 8 0 . 0 2 3 5  0   T D  - 0 . 0 2 9 8   T c  ( 5 6 2   ( = j  4 . 2  T D  - 0 .  4 . 3 2  0   T D  0 . 0 1 8 2   T c  ( e )  T j  7 0 0 . 0 2 9 8   T I f 0   T D  0 1 9 8    T c  1  6 . 6  0 )  T j  E w - t D  r )  T j  T j  1 1 . 7 6  0   T D  / F 1 6  1 1 . j  7 . 9 2  0 .  0   T D  W - 1 8 2   T c  ( e )  T j  7 0 0 . 0 2 9 8   0 . 2 4  0   T D  0 . 0 5 7   T c  ( - )   ( w   ( m v  ( 2 )  T c 0 2 9 8  T D  - 0 . 0 0 7 2   T c  ( d )  T j ( - )  T j  7 0 0 . 0 4 7  . 5 . 0 0 w 5   T c  ( a )  T j  6 . 6  0 )  s 5 w - t D  r ) 0   T D  0 . 0 1 8 T j  6 . 2 4  5 - 8 7 . 7 2 4 7 1 T j  7 0 0 . 0  w - t D  r ) C ( l )  T j 1 c . 0 4 7  4   T c  ( - )  T j  7 8 2   T c  0 )  sl -

m

l m mm e

- - -

- m m mm m-

- -
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A corollary of this condition is that extreme value copulae only model positive dependence and this

will in‡uence our modelling strategy as we will see further for the empirical estimation of the copulae

parameters. For an overview of extreme value copulae, we refer to Joe [1997]. However, many of them

are not tractable in high dimensions. For our study, we focus on three copulae: Gumbel, Hüsler and

Reiss, and Joe and Hu. Our choice is motivated by the fact that these copulae can be expressed in a

recursive form. This property is of special interest from a numerical point of view. Indeed, it means

that the copula of dimension d can directly be deduced from the copula of dimension (d ¡ 1). In the

following subsections, we will provide the functional forms of the chosen copulae, the formulae that

allow to extend them to higher dimensions and will discuss the dependence structure they exhibit.

Let us denote ud = (u1; : : : ; ud) = (G1 (x1) ; : : : ; Gd (xd)) the d-margins vector and ±d the extreme

dependence parameters vector whose dimension depends on the copula.

2.2.1 Gumbel

The bivariate Gumbel copula

C (u1; u2; ±) = exp
µ

¡
³
~u±1 + ~u±2

´1
±
¶

(9)

with ± 2 [1;1). This copula can be extended to higher dimension by compound method:

C (ud; ±d¡1) = C (C (ud¡1; ±d¡2) ; ud)

= exp

8
><
>:

¡

2
64

0
B@: : :

0
B@: : :

"³
~u±d¡11 + ~u±d¡12

´ ±d¡2
±d¡1 + ~u±d¡23

# ±d¡3
±d¡2

+ : : : + ~u±d¡n+1
n

´ ±d¡n
±d¡n+1 + : : : + ~u±2d¡1

! ±1
±2

+ ~u±1d

3
5

1
±1

9
>>=
>>;

(10)

and the dependence structure is given by ±d¡1 = (±1; : : : ; ±d¡1) as follows:

±d¡1 ! (Â1; Â2)
...

...
. . .

±n ! (Â1; Ân) ¢ ¢ ¢ (Â2; Â3)
...

...
...

. . .
±1 ! (Â1; Âd) ¢ ¢ ¢ (Ân; Âd) ¢ ¢ ¢ (Âd¡1; Âd)

(11)

6
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with 1 > ±d¡1 ¸ : : : ¸ ±3 ¸ ±2 ¸ ±1 ¸ 1. The parameter ±d¡1 characterizes the dependence of

one pair and the parameter ±1 of (d ¡ 1) pairs. The Gumbel copula employs a few parameters and

then induces clustering.

2.2.2 Hüsler and Reiss

The bivariate Hüsler-Reiss copula is given (Hüsler and Reiss [1989]) by:

C (u1; u2; ±) = exp
½

¡~u1©
µ

±¡1 +
1
2
± ln

µ
~u2
~u1

¶¶
¡ ~u2©

µ
±¡1 +

1
2
± ln

µ
~u1
~u2

¶¶¾
(12)

where ± ¸ 0 and ~ui = ¡ lnui = ¡ lnGi(xi). Although the Gumbel copula is characterised by (d ¡ 1)

parameters, the multivariate Hüsler-Reiss copula contains d(d¡1)2 parameters (±i;j ; 1 · i < j · d and

±i;j = ±j;i). It can be derived recursively2:

C (ud; ±d) = C (ud¡1; ±d¡1) £ exp
½

¡
Z ¡ lnud

0
©d¡1

¡
·d¡1 (ud¡1; q) ;½d¡1

¢
dq

¾
(16)

with

½d¡1=

0
BBBBB@

1
½d;1;2 1
½d;1;3 ½d;2;3 1

...
...

...
. . .

½d;1;d¡1 ½d;2;d¡1 ¢ ¢ ¢ ½d;d¡2;d¡1 1

1
CCCCCA

where ½d¡1;i;j = ±i;d¡1±j;d¡1
2

³
±¡2i;d¡1 + ±¡2j;d¡1 ¡ ±¡2i;j

´
and

8
>>><
>>>:

ud = (u1; : : : ; ud)
±d = (±i;j ; 1 · i < j · d)
·d¡1 (ud¡1; q) = (·1;d (u1; q) ; : : : ; ·d¡1;d (ud¡1; q)) with ·i;d (ui; q) = ±¡1i;d + 1

2±i;d ln
³
¡ q

lnui

´

for i = 1; : : : ; d ¡ 1

and ©k (:;½) corresponds to the multivariate gaussian cumulative function with correlation ½.
2The expression of this copula directly comes from the link between Multivariate Extreme Value (MEV) Distributions

and Min-Stable Multivariate Exponential (MSMVE). Indeed, with C an MEV copula, if one can write:

C (u1; : : : ; un) = D (~u1; : : : ; ~un) (13)

with ~ui = ¡ lnui then D is an MSMVE distribution. Let use the de…nition of the dependence with A = ¡ lnD, as in
Joe [1997] (p. 184), the Hüsler-Reiss is de…ned recursively:

A (yn; ±n) = A (yn¡1; ±n¡1) +
Z yn
0

©n¡1
¡
·n¡1 (exp (¡un¡1) ; q) ;½n¡1

¢
dq (14)

and equation (16) follows. In the trivariate case, we have:

C (u3; ±3) = C (u2; ±2)£ exp
½
¡

Z ¡ lnu3

0
©2 (·2 (u2; q) ; ½) dq

¾
(15)

where ½ = ½3;1;2 = ±1;3±2;3
2

¡
±¡21;3 + ±

¡2
2;3 ¡ ±¡21;2

¢
.
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2.2.3 Joe and Hu

Another interesting copula has been de…ned by Joe and Hu [1996]:

C (ud; ±d) = exp

8
><
>:

¡

2
4
dX

i=1

dX

j=i+1

·³
pi~uµi

´±i;j
+

³
pj~uµj

´±i;j¸
1
±i;j

+
dX

i=1

ºipi~uµi

3
5

1
µ

9
>=
>;

(17)

with pi = (ºi + d ¡ 1)¡1 and where ±d has the following elements: ±i;j the pairwise coe¢cients, ºi the

bivariate and multivariate asymmetry coe¢cients and µ a common parameter. To extend this copula

to higher dimensions, one only has to extend the sum components of the formula. The bivariate

margins are given by:

Cij (ui; uj) = exp

8
><
>:

¡

2
4
·³

pi~uµi
´±i;j

+
³
pj~uµj

´±i;j¸
1
±i;j

+ (ºi + d ¡ 2) pi~uµi + (ºj + d ¡ 2) pj~uµj

3
5

1
µ

9
>=
>;
(18)

3 Empirical estimation of copulae parameters

Estimation is a two-step procedure. First, the parameters of the marginal distributions are estimated,

then the original variables are mapped to uniforms using these estimated parameters and the depen-

dence parameters are estimated. A detailed description of this procedure can be found in Joe and Xu

[1996]. In practice, for each margin, a sample of size nT can be divided into T blocks of n observations.

Then, T maxima are available: Â+(t)
n = max(Xn(t¡1)+1;:::;Xnt) with t = 1:::T . The likelihood function

is:

L(°;Â+) =
TY

t=1

g(°;Â+(t)
n )1½

1¡¿ Â
+(t)
n ¡b
a >0

¾ (19)

with g(°;Â+) = 1
a

³
1 ¡ ¿ Â

+¡b
a

´ 1
¿¡1 exp

½
¡

³
1 ¡ ¿ Â

+¡b
a

´1=¿
¾

. The log-likelihood estimator for each

margin is:

°̂ = arg max
°2£

lnL(°;Â+(1)
n ; : : : ; Â+(T )

n )

°̂ = arg max
°2£

8
<
:¡T ln(a) + (

1
¿

¡ 1)
TX

t=1

ln

Ã
1 ¡ ¿

Â+(t)
n ¡ b

a

!
¡
TX

t=1

Ã
1 ¡ ¿

Â+(t)
n ¡ b

a

!1=¿
9
=
;

(20)

where Â+(t)
n is the maxima of the tth block. The score vector s(°) is as usual:

s(°) =
@ log g(°; Â+)

@°
(21)

8
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where the derivatives are developed in the Appendix. Finally, to compute the standard errors, an

estimator [Q(°)]¡1 of the asymptotic covariance matrix is used :

[Q(°)] = T¡1
TX

t=1

s(°)s(°)>

We apply this approach to daily returns for MSCI US (MSUS), MSCI Germany (MSGE) and MSCI

Japan (MSJP) indices. The dataset starts from 1/1/1981 to 1/1/2001. Estimation by blocks, as

described above, has been applied. Di¤erent block sizes have been tested to insure the consistency of

estimation. For a detailed discussion about the impact on the estimation of the block size and the

interpretation of the parameters of univariate asymptotic extreme distributions for …nancial series, we

refer to Longin [1996]. The results are presented for a block size equals to 21 that corresponds to one

month.

¡Â¡ MSGE MSUS MSJP
Location parameter b̂ 0.0263 0.0194 0.0255

(0.0014) (0.0013) (0.0018)
Scale parameter â 0.0094 0.0084 0.0109

(0.0012) (0.0011) (0.0015)
Tail index ¿̂ -0.2824 -0.3259 -0.3617

(0.1023) (0.0981) (0.1422)

Table 1: MLE for the parameters of the univariate GEV for the minima

Â+ MSGE MSUS MSJP
Location parameter b̂ 0.0281 0.0203 0.0315

(0.0014) (0.0013) (0.0018)
Scale parameter â 0.0103 0.0065 0.0118

(0.0012) (0.0011) (0.0015)
Tail index ¿̂ -0.0957 -0.2064 -0.2502

(0.1023) (0.0981) (0.1422)

Table 2: MLE for the parameters of the univariate GEV for the maxima

From tables 1 and 2, it appears that extreme returns follow a Fréchet distribution (the tail indices

are negative for all market indices). The degree of fatness is given by the absolute level of the tail

index. As con…rmed by the …gures 1 and 2, MSGE has the lower degree of fatness for both minima

and maxima, and MSJP has the greater degree of fatness for both minima and maxima. The second

9
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Figure 1: Estimated GEV distributions for minima

step of estimation consists of estimating the parameters for di¤erent dependence structures. The

log-likelihood ` of the multivariate extreme distribution is:

`(Â1; : : : ;Âd; °̂; ±) = lng (Âd; : : : ;Âd; °̂; ±)

=
TX

t=1

lnc(G(Â(t)
1 ; °̂1); : : : ;G(Â(t)

d ; °̂d); ±) (22)

10
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Figure 2: Estimated GEV distributions for maxima

where Âi =
³
Â(1)
i ; : : : ; Â(T )

i

´
for i = 1; : : : ; d, g the asymptotic MEV density and c the associated

copula density3. The ML estimator of the dependence parameters4 is:

±̂ =arg max
±2¢

lng(Â1; : : : ;Âd; °̂; ±) (24)

with ¢ the set of dependence parameters. As seen above, extreme value copulae can only model

positive dependence. Consequently, if one wants to model the minima and maxima simultaneously,

one needs to split the estimation problem. For example, if we are interested in estimating the bivariate

dependence parameters for the extrema of three variables, we will have to estimate twelve dependence
3Let g be the N-dimensional density function of G de…ned as follows:

g (x1; : : : ; xN ) =
@G (x1; : : : ; xN )
@ x1 ¢ ¢ ¢ @ xN (23)

With the notation un = Gn (xn) for n = 1; : : : ; N , we have

c (u1; : : : ; uN ) =
@C (u1; : : : ; uN)
@ u1 ¢ ¢ ¢ @ uN

with c the copula density of C.
4A criticism of this estimation methodology might arise from the fact that extrema may not occur simultaneously

(same day) in one month. However, we believe that this method is asymptotically valid since the asymptotic MEV
distribution is usually found by assuming componentwise extrema. An alternative estimation method called threshold
estimation method could be used. It would lead us to use a multivariate generalised pareto distribution that is directly
linked to a MEV distribution. We refer to Longin and Solnik [2001] for an application of this technique to …nancial
series. Moreover, the goal of our paper is to focus on risk management implications rather than estimation methods.
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structures – four for each pair –, as summarized in the following pictures:

(Â+
1 ; Â+

2 )

(Â+
1 ; Â¡2 )(Â¡1 ; Â¡2 )

(Â¡1 ; Â+
2 ) (Â+

1 ; Â+
3 )

(Â+
1 ; Â¡3 )(Â¡1 ; Â¡3 )

(Â¡1 ; Â+
3 ) (Â+

2 ; Â+
3 )

(Â+
2 ; Â¡3 )(Â¡2 ; Â¡3 )

(Â¡2 ; Â+
3 )

By extending this methodology, it will be necessary to estimate eight di¤erent copulae for the

trivariate case. The results for the three market indices are reported below. The subscripts 1, 2 and

3 are respectively used for MSGE, MSUS and MSGE.

G HR HJ
±̂1 ±̂2 ldv ±̂12 ±̂13 ±̂23 ±̂12 ±̂13 ±̂23 µ̂¡

Â+
1 ; Â+

2 ; Â+
3
¢

1.50 1.88 2 1.76 2.66 2.13 1.40 1.95 1.52 …xed
(0.14) (0.23) (0.31) (0.93) (0.39) (0.29) (0.52) (0.31) …xed¡

Â+
1 ; Â+

2 ;¡Â¡3
¢

1.32 1.42 2 1.72 1.84 1.67 1.25 1.71 1.20 …xed
(0.14) (0.19) (0.30) (0.41) (0.29) (0.25) (0.39) (0.24) …xed¡

Â+
1 ; ¡Â¡2 ; Â+

3
¢

1.49 1.91 2 1.69 2.84 2.45 1.23 2.25 1.72 …xed
(0.15) (0.24) (0.33) (1.15) (0.61) (0.24) (0.86) (0.40) …xed¡

Â+
1 ; ¡Â¡2 ; ¡Â¡3

¢
1.52 2.03 1 1.62 1.66 2.88 1.35 1.39 2.45 …xed

(0.15) (0.25) (0.30) (0.35) (0.65) (0.27) (0.28) (0.95) …xed¡
¡Â¡1 ; ¡Â¡2 ; ¡Â¡3

¢
1.51 1.77 2 1.69 2.53 1.34 1.45 2.06 1.29 …xed

(0.15) (0.22) (0.45) (0.81) (0.24) (0.31) (0.72) (0.26) …xed¡
¡Â¡1 ; ¡Â¡2 ; Â+

3
¢

1.53 2.00 2 2.70 3.28 1.39 2.12 2.19 1.10 …xed
(0.15) (0.24) (1.29) (0.93) (0.22) (0.80) (0.84) (0.18) …xed¡

¡Â¡1 ; Â+
2 ; ¡Â¡3

¢
1.26 1.81 2 1.60 2.79 1.51 1.22 2.31 1.12 …xed

(0.14) (0.23) (0.33) (0.91) (0.30) (0.21) (0.89) (0.19) …xed¡
¡Â¡1 ; Â+

2 ; Â+
3
¢

1.45 2.05 2 1.53 3.40 2.13 1.28 2.59 1.64 …xed
(0.14) (0.25) (0.28) (0.91) (0.44) (0.26) (1.04) (0.39) …xed

Table 3: MLE for the parameter of the trivariate copulae (G: Gumbel, HR: Hüsler-Reiss, HJ: Hu-Joe)

Let us comment the results of Table 3. The abbreviation ldv means “less dependent variable”.

This is motivated by the fact that only two parameters are estimated for the Gumbel copula. One

12
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parameter measures the dependence for one pair, the other one – corresponding to a lower dependence

– is common for the two remaining pairs. In most cases, the dependence is higher between the extrema

of MSGE and MSJP, except for the minima of MSUS and MSJP. The highest extremal dependences

appear for: (i) a long position in the MSJP and a short position in the MSGE, and (ii) a short position in

the MSUS and a short position in the MSJP. We note that these dependence measures are conditional

to the dependence with the extremes (maxima or minima) of the remaining indice. Not surprisingly,

the dependence hierarchy is the same for the three copulae. The Hüsler-Reiss copula is asymmetric,

three parametric dependences are possible. Indeed, the choice of the Hüsler-Reiss MEV distribution

depends on the two market indices that are …rstly selected. The dependence with the higher likelihood

has been selected and reported in the table. Some numerical di¢culties erose in …nding the maximum

likelihood for the Hu-Joe copula. This led us to constrain the common dependence parameter µ to 1.

4 Application to risk management

The results above can be applied to risk management in two ways. First, it is possible to compute stress

test values that would correspond to the evolution of the portfolio under extremal scenarii. Secondly,

the parametric estimates of the MEV distributions can be used to simulate the joint extrema of the

portfolio components.

4.1 Stress testing scenarii design

Draisma, de Haan and Peng [1997] de…ne a failure area as the set of extrema with a given prob-

ability that one of them is exceeded. We will adopt a di¤erent de…nition by considering the set that

corresponds to a simultaneous exceedence. Formally, this set Ap is:

As1:::snp = f(x1; : : : ; xn) 2 Rs1 £ : : : £ Rsn ;Pr (Âs11 > x1; : : : ; Âsnn > xn) = pg (25)

with for i = 1; : : : ; n, si = + for maxima or ¡ for minima. In the bivariate case, four sets need to be

de…ned: A++
p ;A+¡

p ;A¡+
p ;A¡¡

p : In the trivariate case, eight sets are necessary: A+++
p ; A++¡

p ; A¡++
p ;

A¡+¡
p ; A+¡+

p ; A+¡¡
p ; A¡¡+

p ; A¡¡¡
p . More generally, for an n-dimensional problem, the number of

sets equals 2n. The probability involved for the characterisation of the failure area is nothing else but

the survival distribution function that can be expressed with copulae (Joe [1997]) as:

Pr (Âs11 > x1; : : : ; Âsnn > xn) = 1 +
X

M2M
(¡1)jM jCM

¡
G

¡
xj; °j

¢
; j 2 M ; ±M

¢
(26)
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where jM j denotes the cardinality of M , an element of M the set of marginal distributions of C. For

n = 3, we have5:

Pr (Âs11 > x1; Âs22 > x2; Âs33 > x3) = 1 ¡ C12 (G (x1; °s11 ) ;G (x2; °s22 ) ; ±s1s212 )

¡C13 (G (x1; °s11 ) ;G (x3;°s33 ) ; ±s1s313 )

¡C23 (G (x2; °s22 ) ;G (x3;°s33 ) ; ±s2s323 )

+C (G (x1;°s11 ) ;G (x2;°s22 ) ;G (x3; °s33 ) ; ±s1s2s3) (28)

with Cij the marginal copulae.

From this de…nition, a natural question arises: which probability level should be chosen ? An

elegant answer – often used in the statistical literature and introduced by Gumbel [1958] for extreme

value distributions – is to associate a waiting period t to the probability level p such that t = 1
p . The

univariate daily stress test scenarii for di¤erent waiting periods are reported in table 4.

Minima Maxima
Waiting period MSGE MSUS MSJP MSGE MSUS MSJP
5 years ¡6:1% ¡5:2% ¡7:0% 5:8% 4:2% 7:3%
10 years ¡7:6% ¡6:8% ¡9:3% 6:7% 5:0% 9:0%
50 years ¡12:4% ¡11:9% ¡17:0% 9:2% 7:5% 14:3%

Table 4: Univariate daily stress testing scenarii

To illustrate the concept of failure area with two variables, we provide an example for the maxima

of two virtual indices with the same univariate stress testing scenarii (+9%) but with di¤erent degrees

of dependence (Figure 3). The higher the dependence, the lower the distance between the failure area

and univariate stress testing scenarii. We then build the trivariate failure areas under the hypothesis

of a MEV distribution obtained from the H½usler and Reiss copula. The associated probability level
5This formula comes directly as

Pr (Âs11 > x1; Â
s2
2 > x2; Â

s3
3 > x3) = 1¡ Pr (Âs11 · x1; Âs22 · x2)

¡Pr (Âs11 · x1; Âs33 · x3)
¡Pr (Âs22 · x2; Âs33 · x3)
+Pr (Âs11 · x1; Âs22 · x2; Âs33 · x3) (27)
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corresponds to a 50 years waiting period. The failure areas have been obtained by numerically solving

equation (25). The three dimensional space – each axis corresponds to one indice – is splitted into

two parts: a short position in the MSUS (Figure 4) and a long position in the MSUS (Figure 5). For

both …gures, each point of the discretized surface is a three dimensional stress testing scenario that

corresponds to values of the triplet (MSGE,MSUS,MSJP). The univariate stress testing scenarii (Table

4) are also represented. By de…nition, the trivariate failure areas are included in the parallelepiped

arising from these univariate scenarii.

Figure 3: Bivariate failure area A++
p with di¤erent parameter values for the Gumbel copula

4.2 Monte-Carlo based risk measures

Stress testing becomes intractable in higher dimensions because the number of points of the failure

areas increases very quickly. Moreover, the failure areas have to be re-built if one wants portfolio values

for di¤erent probability levels. Then, an alternative is to simulate the variables that follow a MEV

distribution. To illustrate the Monte-Carlo applications, we will consider the following portfolios:
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Figure 4: Trivariate failure areas A+¡+
p ; A+¡¡

p ;A¡¡+
p ;A¡¡¡

p for MSGE (Â1), MSUS (Â2) and MSJP
(Â3) with a 50 years waiting period (surface). Univariate stress test scenarios are also represented
(dotted line)

Portfolio positions MSGE MSUS MSJP
P1 0 1 1
P2 1 0 1
P3 1 1 1
P4 1 0 -1

The following algorithm, based on the conditional distributions, can be used to simulate extrema

with a given n-variate copula C:

1. Generate n independent uniform variates (t1; : : : ; tn);

2. The n uniform variates are given recursively for j = n; : : : ; 1:

uj = C¡1 (tj j u1; : : : ; uj¡1) (29)

where

C (uj j u1; : : : ; uj¡1) = Pr fUj · uj j (U1; : : : ; Uj¡1) = (u1; : : : ; uj¡1)g

=
@j¡1C (u1; : : : ; uj ; 1; : : : ; 1) =@u1 : : : @uj¡1

@j¡1C (u1; : : : ; uj¡1; 1; : : : ; 1) =@u1 : : : @uj¡1
(30)
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Figure 5: Trivariate failure areas A+++
p ; A++¡

p ;A¡++
p ;A¡+¡

p for MSGE (Â1), MSUS (Â2) and MSJP
(Â3) with a 50 years waiting period (surface). Univariate stress test scenarios are also represented
(dotted line)

3. The extrema are obtained by inverting the estimated GEV distribution: Âj = G¡1
j

¡
uj ;°j

¢
for

j = 1; : : : ; n.

Fortunately, this algorithm might be simpli…ed for speci…c copula families. A detailed description

for archimedean copulae can be found in Lindskog [2000]. From simulated data, two risk measures

are computed: value at risk (VaR) and expected shortfall (ES). Following Artzner, Delbaen, Eber

and Heath [1999], these measures are de…ned as follows:

De…nition 1 For a given probability space (;F ;P), the value-at-risk VaRp of the net worth X with

distribution P is such that

VaRp (X) = ¡ inf (x 2 R j P (X · x) ¸ p) (31)

with p 2 (0; 1) :

De…nition 2 The expected shortfall ESp is directly de…ned from V aRp as follows:

ESp = ¡E (X j X · ¡V aRp (X)) (32)
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ES is coherent – see the de…nition of a coherent measure of risk in Artzner, Delbaen, Eber and

Heath [1999] –, but VaR is generally not. Let us de…ne the empirical estimation of these quantities.

Let fXigi=1:::n be a vector of n realizations of the random variable X. The order statistics are such

that X1:n · X2:n · : : : · Xn:n. Then the empirical estimators of these measures are:

VaR(n)
p (X) = Xbnpc:n

ES(n)p (X) = ¡
Pbnpc
i=1 Xi:n
bnpc

with bnpc = max fj j j · np, j 2 Ng.
The estimated values of VaR and ES are reported in the Tables 5 (50000 simulations) and 6

(100000 simulations). Two probability levels are considered, respectively corresponding to 10 years

and 50 years waiting periods.

Copula G HR HJ
VaR ES VaR ES VaR ES

Portfolio 10y 50y 10y 50y 10y 50y 10y 50y 10y 50y 10y 50y

P1 -13 .4% -26 .3% -17 .1% -29 .6% -13 .4% -26 .4% -17 .3% -30 .1% -13 .0% -26 .7% -17 .2% -29 .4%

P2 -15 .4% -25 .1% -18 .4% -31 .5% -14 .9% -25 .0% -18 .7% -30 .7% -15 .2% -17 .9% -18 .4% -30 .6%

P3 -20 .6% -36 .0% -25 .1% -40 .7% -20 .4% -36 .4% -25 .5% -40 .5% -20 .8% -36 .2% -25 .4% -41 .0%

P4 -15 .1% -23 .0% -17 .9% -27 .2% -15 .5% -23 .0% -17 .6% -27 .1% -15 .4% -23 .5% -18 .4% -26 .9%

Table 5: VaR and ES with 50000 Monte-Carlo simulations

Copula G HR HJ
VaR ES VaR ES VaR ES

Portfolio 10y 50y 10y 50y 10y 50y 10y 50y 10y 50y 10y 50y

P1 -15 .2% -27 .3% -18 .3% -33 .8% -15 .3% -27 .2% -18 .1% -33 .3% -15 .3% -27 .5% -18 .2% -33 .6%

P2 -15 .9% -28 .5% -19 .2% -33 .9% -15 .8% -28 .2% -19 .0% -33 .6% -15 .5% -28 .1% -19 .0% -33 .8%

P3 -22 .1% -38 .0% -26 .4% -46 .1% -22 .2% -38 .2% -26 .6% -46 .5% -22 .0% -37 .6% -26 .3% -45 .5%

P4 -15 .8% -25 .4% -18 .4% -29 .4% -15 .9% -25 .9% -18 .6% -29 .5% -15 .5% -25 .4% -18 .2% -29 .1%

Table 6: VaR and ES with 100000 Monte-Carlo simulations

From the tables above, it appears that the three models provide similar results both for VaR and

ES. In other words, the clustering induced by the Gumbel copula does not seem to a¤ect the risk

measures dramatically. Moreover, the convergence looks quite acceptable for 50000 simulations. The

values are consistent with the univariate stress testing scenarii. Indeed, VaRs are lower than the sum

of the univariate values for all portfolios.
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5 Conclusion

A methodology based on the MEV parametric distributions has been investigated in two directions:

stress scenario design and Monte-Carlo based risk measures. It appears that the results are similar for

the three copulae examined. Two extensions might be interesting. First, it would be useful to know

which copula is the right one after the maximum likelihood estimation step by constructing speci…c

tests to discriminate the more robust copula. Indeed, since the models are non-nested, their likelihoods

can not be compared directly. Second, analytical formula might be developed by providing bounds for

the risk measures. This has been done in a non-extremal context in Durrleman, Nikeghbali and

Roncalli [2000] and Embrechts, Hoeing and Juri [2001].
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6 Appendix

SCORE VECTOR FOR GEV DISTRIBUTION

The score vector described in equation (21) is detailed:

@ log g(°;x)
@a

= ¡
a + (b ¡ x)

µ³
a+¿(x¡b)
a

´ 1
¿ ¡ 1

¶

a(a + ¿(x ¡ b))

@ log g(°;x)
@b

=
¿ ¡ 1 +

³
a+¿(x¡b)
a

´ 1
¿

(a + ¿(x ¡ b))

@ log g(°;x)
@¿

=
¿(b ¡ x)

µ³
a+¿(x¡b)
a

´ 1
¿ + ¿ ¡ 1

¶
+ (a + ¿(x ¡ b)) log

³
a+¿(x¡b)
a

´µ³
a+¿(x¡b)
a

´ 1
¿ ¡ 1

¶

¿2(a + ¿(x ¡ b))

TRIVARIATE DENSITIES

The density for the trivariate Gumbel copula is developed. The copula function can be obtained

by compound method:

C (u1; u2; u3; ±1; ±2) = C (u3;C (u1; u2; ±2) ; ±1)

= exp

0
@¡

"
~u±13 +

³
~u±21 + ~u±22

´ ±1
±2

# 1
±1

1
A (33)

By computing the three iterative derivatives, it follows that:

c (u1; u2; u3; ±1; ±2) = c (u1; u2; ±2) £ c (u3;C (u1; u2; ±2) ; ±1)

+ (@1C) (u1; u2; ±2) £ (@2C) (u1; u2; ±2) £ (@221C) (u3;C (u1; u2; ±2) ; ±1)

(34)
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where
8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

c (u1; u2; ±) = C(u1; u2; ±)(u1u2)¡1
(lnu1 lnu2)±¡1

#(u1;u2;±)2¡1=±

h
# (u1; u2; ±)1=± + ± ¡ 1

i

(@1C) (u1; u2; ±) = u¡11 C(u1; u2; ±)
³
1 + ( ~u2~u1 )

±
´1=±¡1

(@2C) (u1; u2; ±) = (@1C) (u2; u1; ±)
(@221C) (u1; u2; ±) = u¡11 u2¡2C(u1; u2; ±) £ ~u¡1+±1 # (u1; u2; ±)¡3+

1
± ~u¡2+±2n³

¡1 + ± + # (u1; u2; ±)
1
±

´
# (u1; u2; ±) ln(u2)

¡
³
~u±1 + ±2 # (u1; u2; ±) ¡ ~u±1# (u1; u2; ±)

1
±

+±
h
¡2 ~u±1 + ~u±1 # (u1; u2; ±)

1
±

+ ~u±2 ¡ 2# (u1; u2; ±)
1
± ~u±2

i

+ 2# (u1; u2; ±)
1
± ~u±2 ¡ # (u1; u2; ±)

2
± ~u±2

´o

with # (u1; u2; ±) =
¡
~u±1 + ~u±2

¢

We develop the Hüsler-Reiss copula density for the trivariate case.

@C (u3; ±3)
@u3

=
1
u3

C (u2; ±2) £ ©2 (·2 (u2; u3) ; ½) £ exp
½

¡
Z ¡ lnu3

0
©2 (·2 (u2; q) ; ½)dq

¾
(35)

Then,
@2C (u3; ±3)

@u2@u3
=

1
u3

(® (u3; ±3)+¯ (u3; ±3)+° (u3; ±3)) (36)

where
8
>><
>>:

® (u3; ±3) = @2C (u1; u2; ±12) £ ©2 (·2 (u2; u3) ; ½) £ µ (u3; ±3)

¯ (u3; ±3) = C (u1; u2; ±12) £ @·23(u2;u3)
@u2 £ ©

µ
·13(u1;u3)¡½·23(u2;u3)p

1¡½2

¶
£ µ (u3; ±3)

° (u3; ±3) = C (u1; u2; ±12) £ ©2 (·2 (u2; u3) ; ½) £ &21 (u3; ±3)

with
8
>>>>>><
>>>>>>:

@jC (ui; uj; ±) = @C(ui;uj ;±)
@uj

= C (ui; uj; ±) £ u¡1j £ ©
³
±¡1 + 1

2± ln
³
lnuj
lnui

´´
for (i; j) = (1; 2) ; (2; 1)

@·i3(ui;u3)
@ui = ¡ ±i3

2ui lnui for i = 1; 2

µ (u3; ±3) = exp
n
¡

R ¡ lnu3
0 ©2 (·2 (u2; q) ; ½)dq

o

&ij (u3; ±3) = exp
½

¡
R ¡ lnu3
0

@·i3(ui;q)
@ui ©

µ
·j3(uj ;q)¡½·i3(ui;q)p

1¡½2

¶
dq

¾
:

Note that this comes partly from @©2
@x (x; y; ½) = ©

µ
y¡½xp
1¡½2

¶
. The copula density can be deduced:

c (u3; ±3) =
@3C (u3; ±3)
@u1@u2@u3

=
1
u3

µ
@® (u3; ±3)

@u1
+

@¯ (u3; ±3)
@u1

+
@° (u3; ±3)

@u1

¶
(37)
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where
8
>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@®(u3;±3)
@u1 = c (u1; u2; ±12) £ ©2 (·2 (u2; u3) ; ½) £ µ (u3; ±3)

+@2C (u1; u2; ±12) £ @·13(u1;u3)
@u1 £ ©

µ
·23(u2;u3)¡½·13(u1;u3)p

1¡½2

¶
£ µ (u3; ±3)

+@2C (u1; u2; ±12) £ ©2 (·2 (u2; u3) ; ½) £ &12 (u3; ±3)
@¯(u3;±3)
@u1 = @1C (u1; u2; ±12) £ @·23(u2;u3)

@u2 £ ©
µ
·13(u1;u3)¡½·23(u2;u3)p

1¡½2

¶
£ µ (u3; ±3)

+C (u1; u2; ±12) £ @·23(u2;u3)
@u2 £ @·13(u1;u3)

@u1 £ 1p
1¡½2

£ Á
µ
·13(u1;u3)¡½·23(u2;u3)p

1¡½2

¶
£ µ (u3; ±3)

+C (u1; u2; ±12) £ @·23(u2;u3)
@u2 £ ©

µ
·13(u1;u3)¡½·23(u2;u3)p

1¡½2

¶
£ &12 (u3; ±3)

@°(u3;±3)
@u1 = @1C (u1; u2; ±12) £ ©2 (·2 (u2; u3) ; ½) £ &21 (u3; ±3)

+C (u1; u2; ±12) £ @·13(u1;u3)
@u1 £ ©

µ
·23(u2;u3)¡½·13(u1;u3)p

1¡½2

¶
£ &21 (u3; ±3)

¡C (u1; u2; ±12) £ ©2 (·2 (u2; u3) ; ½)

£
R ¡ lnu3
0

µ
@·23(u2;q)
@u2

@·13(u1;q)
@u1 ©

µ
·13(u1;q)¡½·23(u2;q)p

1¡½2

¶¶
dq £ &21 (u3; ±3)

with the bivariate copula density such that:

c (u1; u2; ±) =
C (u1; u2; ±)

u1u2

·
©

µ
±¡1 +

1
2
± ln

µ
~u1
~u2

¶¶
£ ©

µ
±¡1 +

1
2
± ln

µ
~u2
~u1

¶¶

¡ ±
2 lnu2

Á
µ

±¡1 +
1
2
± ln

µ
~u1
~u2

¶¶¸

The likelihood can then be numerically computed.

For the trivariate Joe-Hu copula, the analytical expression is simpler. For indication, the bivariate

copula density is

c (u2; ±2) = C (u2; ±2) ~u¡12 u1u¡12 » (u2; ±2)¡1+
1
µ

Ãµ³
p1~uµ1

´±
+

³
p2~uµ2

´±¶¡1+ 1
± ³

p2~uµ2
´±

+ p2q2~uµ2

!

with » (u2; ±2) =
µ³¡

p1~uµ1
¢± +

¡
p2~uµ2

¢±´ 1
± + p1q1~uµ1 + p2q2~uµ2

¶
; pi = (ºi + n ¡ 1)¡1 and qi = (ºi + n ¡ 2).
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