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Abstract

The purpose of this paper is to derive explicit formulae for the asset allo-
cation decision for the loss aversion utility function proposed by Kahneman
and Tuversky. We show that these utility functions exhibit constant absolute
risk aversion. We also give analytic results which interpret the assumptions
of risk-aversion with respect to gains but risk-a¤ection with respect to losses
in terms of changes of the optimal investment of equity when the proba-
bility that equity outperforms cash goes up. For the Knight, Satchell and
Tran (1995) family of distributions, it is straightforward to derive closed
form expressions for the optimal portfolio weights in all cases. Using UK and
US data, we con…rmed that the values of the parameters in the loss aver-
sion function suggested by many previous studies are compatible with the
observed proportions held in equity in both the UK and the US. The distri-
butional assumptions are not innocuous. However, whilst modelling upside
and downside returns by gamma distributions leads to plausible results, mod-
elling upside and downside by truncated normals does not.

Keywords: Loss Aversion, KST family, Downside Risk



1 Introduction
Modern …nance theory starts from a set of normatively appealing axioms
about individual behavior. That is, people are assumed to be risk-averse
expected utility maximizers and make rational choices based on rational ex-
pectations. However, the rational paradigm has been criticized by many
behavioral economists and psychologists such as Kahnemann and Tversky
(1979) and De Bondt and Thaler (1985).

In particular, dissatisfaction with power utility has been a re-occuring
theme in modern …nancial economics. From the equity premiumm puzzle
to the inability to explain the presence of gambling and holding insurance
simultaneously, power utility’s faults are numerous and well-documented;
see Mehra and Prescott (1985) and Campbell and Viceira (1999) for exam-
ple. New alternatives built around power utility have been put forward; loss
aversion (Kahnemann and Tversky, 1979, 1992) and disappointment aversion
(Gul, 1991 and Ang, Bekeart and Liu, 2000) may work better to name but
some of the alternatives.

The purpose of this paper is to concentrate on loss aversion (LA) utility,
…rst put forward by Kahnman and Tversky (1979, 1992) and used, among
others, by Barberis, Huang and Santos (1999), Berkelaar and Kouwenberg
(2000a, 2000b), and solve the asset allocation problem for an investor with
LA utility in a one period world. In doing so, we revisit the two piece
utility functions of Fishburn and Kochenberger (1979) who put forward this
structure of utility as an example of conventional expected utility theory.

For a very broad family of distributions, the KST family, see Knight,
Satchell and Tran (1995), it is possible to derive closed form expresssions for
the optimal proportion of wealth held in equity. Although one can compute
the optimal proportion fairly easily using numerical methods, the bene…ts
of explicit formulae are self-evident. Furthermore, inspection of the results
gives us a better understanding of the factors driving equity investment and
the delicate nature of the assumptions governing upward and downward risk
tolerance.

In section two, we present details of both the LA utility being consid-
ered and the KST distribution. Results are presented in section three, an
application to UK equity follows in section 4 whilst section 5 concludes.

2 The Optiml Portfolio with Loss Aversion
The version of LA utility we use follows other authors with some minor
modi…cations. Let W be …nal wealth, Wo initial wealth, B some appropriate
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benchmark. De…nes gains X =W ¡B; then LA utility is de…ned as

u(X) =
Xv1

v1
; if X > 0; (1)

= ¡¸(¡X)
v2

v2

; if X · 0;

where the parameters v1 , v2 and ¸ are assumed positive.
It is possible to distinguish several cases. The …rst case is that 0 < v1 < 1;

0 < v2 < 1: In this case u(:) is ’risk averse’ with respect to gains since
u00(X) = (v1 ¡ 1)Xv1¡2 which is negative. However, u(:) is risk loving
with respect to losses since u00(X) = ¡¸(v2 ¡ 1)(¡X)v2¡2 which is positive.
Another possibility studied in the literature is to let vi = 1, i = 1 or 2, so
that u(:) could be risk neutral with respect to gain or loss. For example,
Kahnemann and Tversky (1979) use v1 = v2 = 0:88 and ¸ = 2:25; Benartzi
and Thaler (1995) use v1 = v2 = 1 and ¸ = 2:25; Ang, Bekeart, and Liu
(2000) use v1 = v2 = 0:88 and a range of ¸ values, although some of these
applications are for multi-period optimisations rather than the one-period
problem we consider here.

However, other cases could be of interest. If v1 > 1 and v2 > 1; then
the investor is risk loving with respect to gains whilst risk averse to losses.
Which of these alternatives is the more plausible is not obvious. Several
risk control strategies, prevalent in the market, capture some aspect of these
alternative cases. For example, a stop-loss strategy controls downside risk
and is presumably consistent with v2 > 1: A take-pro…t strategy controls
upside risk and might be consistent with v1 < 1: Therefore, it is not clear
on a prior grounds or observed behaviour whether 0 < v2 < 1; v2 > 1; or
v1 > 1; and so we include all possibilities. These appear to be no theoretical
results in the literature that support any of the di¤erent assumptions about v1
and v2. However, Fishburn and Kochenberger (1979) present some empirical
evidence ¸ > 1 and that 0 < v1 < 1 and 0 < v2 < 1. They also refer to
other papers that present empirical support of these assumptions, namely
investors are risk-averse for gains and risk-loving for losses. In choosing B it
is customary to let B equal W0 or W0(1 + rf) where rf is the riskless rate of
return and we shall adapt the latter approach.

Asset allocation problems consider optimal portfolios taken over a small
number of asset classes. Suppose that there are two assets; a riskfree as-
set and a risky asset whose returns are denoted by rf and r, respectively.
Denoting µ to be the proportion held in equity, then …nal wealth is

W = W0(1 ¡ µ)(1 + rf) +W0µ(1 + r) (2)
= B +W0µy;
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where B =W0(1 + rf) and y = r¡ rf is the excess return of the risky asset,
and thus X = W0µy: In what follows, we implicitly assume that µ ¸ 0, i.e.,
short sales are not allowed.

In the following theorem, we show that under some condition, any utility
function of W ¡B becomes CARA class of utility functions.

Theorem 1 Suppose u is a utility function of the form u(W ¡ B) where
B = W0(1 + rf) and u does not depend upon W0 in any other way. Then it
follows that u is CARA.

Proof. For an investor whose utility function is u(W ¡B), the problem is
to solve

max
µ
E(u(µW0(r ¡ rf))):

The …rst order conditions are, putting y = r ¡ rf and h = µW0

E(u0(µW0y)W0y) = 0

or
E(u0(hy)y) = 0:

The solution bh depends only upon the form of u and the distribution of y
but not W0, since by assumption u does not depend on W0. So we …nd that
bµW0 = bh and result is proved.

Remark 1 Although this may appear restrictive, it is quite easy to reparametrise
this problem so that the utility function exhibits non-constant absolute risk
aversion. See Pedersen and Satchell (2001) for details of this approach. In
the context of this problem, let

u(W ¡B) = u1(W ¡B) if W ¸ B
= ¡¸u2(B ¡W ) if W < B;

where ¸ is some positive constant. If we let ¸ = ¸(W0) and if bµ is the
optimal solution to A, then bµ is, typically, decreasing in ¸: The dynamics of
bµ or bµW0 with respect to W0 can be deduced from the relationships bµ = bµ(¸)
and ¸ = ¸(W0):

The optimal portfolio can be obtained with an appropriate choice of µ:
Let u+ = E(yv1jy > 0), u¡ = E((¡y)v2jy < 0); p = prob(y > 0): Since X in
equation (1) is equivalent to W0µy; expected utility ULA is given by

ULA =
1
v1
(W0µ)v1u+p¡ ¸

v2
(W0µ)v2u¡(1 ¡ p):
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Thus the …rst derivative with respect to µ is

U 0LA =W v10 pµ
v1¡1u+ ¡ ¸W v20 (1 ¡ p)µv2¡1u¡: (3)

Inspection of (3) shows that if v1 = v2, the optimal solution for µ is 0
if W v10 u+p < ¸W

v2
0 u¡(1 ¡ p); or 1 if W v10 u+p > ¸W

v2
0 u¡(1 ¡ p): If the

inequality is an equality, µ is indeterminate since U 0LA is zero.
Setting U 0LA = 0 and solving for the case v1 6= v2, we see that

µ =
Ã
u+pW v1¡v20

¸u¡(1 ¡ p)

! 1
v2¡v1

(4)

=
1
W0

Ã
u+p

¸u¡(1 ¡ p)

! 1
v2¡v1

and
ln µ =

1
v2 ¡ v1

ln(u+p) ¡ 1
v2 ¡ v1

ln(¸u¡(1 ¡ p)) (5)

when W0 = 1:
In equations (4) and (5) the solution for µ is general. We have, therefore,

the following proposition.

Proposition 2 If the investor has an LA utility function with v2 6= v1 and
benchmark B =W0(1 + rf); then the optimal equity investment proportion µ
in equation (4) can be obtained for any arbitrary probability density function.
Furthermore, µW0 is constant so we have constant absolute risk aversion.

Proof. For the …rst part, the proof is given above. The second argument
can be proved with equation (4), since the dollar amount in equity is µW0;
and,

µW0 =
Ã

u+p
¸u¡(1 ¡ p)

! 1
v2¡v1

;

which is independent of W0: QED.

Proposition 3 If the investor has an LA utility function with v2 6= v1;
B = W0(1 + rf); and the proportion of wealth held in equity is an increas-
ing function of the probability that equity outperforms cash, then we have
v2 ¡ v1 > 0:

Proof. Since the proportion of wealth in equity goes up with the probability
of a gain, the partial derivative of ln µ with respect to ln p should be positive,
i.e., @ ln µ@ ln p > 0: Thus, from equation (5),

@ ln µ
@ ln p

=
1

(v2 ¡ v1)(1 ¡ p) > 0:
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The condition that satis…es the above equation is v2 ¡ v1 > 0: QED.
Proposition 2 is a sensible constraint since it implies that the proportion

of wealth held in equity goes up if the probability of a gain goes up (ceteris
paribus, other than that the probability of a loss goes down automatically).
We now ask what behaviour is ruled out? For example, if v1 > 1 and v2 < 1
so that we are risk loving for both gains and losses, this would be ruled out
by the obvious constraint. If v2 > 1 so that we are risk averse for losses we
can still be risk loving for gains as long as v1 < v2. Obviously risk neutrality
for losses and risk loving for gains is also excluded.

Remark 2 In the general case, if the investor is risk averse for gains and
losses, then v2 > 1, v1 < 1 and v2 ¡ v1 is positive, in this case @ ln µ

@ lnu+ is
positive and @ ln µ

@ lnu¡ and @ ln µ@ ln¸ are negative.

Remark 3 If W0 is set to 1 and 0 < µ < 1; then any positive v2 ¡ v1 would
imply from (4) that u+p < ¸u¡(1 ¡ p):

3 Empirical Tests
In this section, we suggest appropriate sets of v1, v2 and µ for the UK and
US markets under the assumption that the excess returns of risky asset in
(2) are normally distributed. However, in many cases, normality is not an
appropriate assumption. As an alternative to the normal distribution, we
use the KST distribution. Some additional explanation on our distributional
assumptions and our empirical results follow.

3.1 KST and Normal Distributions
Since the optimal µ can be obtained with any distribution, we can calculate
the optimal µ for the most widely used distribution, the normal distribution,
and an alternative, the KST distribution which we de…ne next. Let yt be the
excess return at time t,

yt = ¹+ "1tzt ¡ "2t(1 ¡ zt); (6)

where ¹ is the mean of yt; and zt is a binary indicator variable with probability
p, and "1t and "2t are independent non-negative randon variables. Then, the
pdf of yt is,

pdf(yt) = f pf1(yt ¡ ¹) for yt ¸ ¹
(1 ¡ p)f2(¹¡ yt) for yt < ¹;

(7)
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where f1 and f2 are pdf’s. In our study, ¹ is set to zero because the expec-
tations u+and u¡ are conditional on yt ¸ 0 or yt < 0:

The …rst case we consider is the KST distribution. The KST distribution
is designed to capture the asymmetry in upward and downward asset returns.
The pdf’s of the KST distribution, f1 and f2, are assumed in this paper to
be the scale Gamma distribution;

fi(x) = f
»®ii x

®i¡1

¡(®i)
exp(¡»ix) for x > 0

0 otherwise;
(8)

for i =1 and 2. Thus, when p = 1=2; »1 = »2 and ®1 = ®2; the pdf becomes
symmmetric. Although in this paper, we assume that rt is iid, it is straight-
forward to extend this model to make ¹ time dependent and let zt follow a
Markov process. See Bond (2001) or Damant, Hwang, and Satchell (1999)
for example.

With the KST distribution, we can obtain analytical results for u+ and
u¡ with the KST distribution. As explained above, the KST distribution
provides us with a closed form solution for u+ and u¡ in (4) as well as
capturing the asymmetric properties of asset returns. Note that in the case
of the gamma distribution,

u+ = E(yv1 jy > 0)

=
Z 1

0
yv1f1(y)dy

=
Z 1

0
yv1
»®11 y®1¡1

¡(®1)
exp(¡»1y)dy

=
¡(v1 + ®1)
»v11 ¡(®1)

Z 1

0

»v1+®11 yv1+®1¡1

¡(v1 + ®1)
exp(¡»1y)dy

=
¡(v1 + ®1)
»v11 ¡(®1)

;

since Z 1

0

»v1+®11 yv1+®1¡1

¡(v1 + ®1)
exp(¡»1y)dy = 1:

Likewise

u¡ = E((¡y)v2jy < 0)

=
Z 1

0
yv2f2(y)dy

=
Z 1

0
yv2
»®22 y®2¡1

¡(®2)
exp(¡»2y)dy

=
¡(v2 + ®2)
»v22 ¡(®2)

;
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since Z 1

0

»v2+®22 yv2+®2¡1

¡(v2 + ®2)
exp(¡»2y)dy = 1:

Therefore, for the KST distribution,

ULA = p
(W0µ)v1

v1
u+ ¡ (1 ¡ p)¸(W0µ)v2

v2
u¡;

where

u+ =
¡(v1 + ®1)
»v11 ¡(®1)

;

u¡ =
¡(v2 + ®2)
»v22 ¡(®2)

:

The second case we consider is the frequently used normal distribution
which is used for comparison purpose in this study. The normal distribution
function for a variable x is

f(x) =
1p
2¼¾

exp
"
¡(x¡ ¹)2

2¾2

#
for x > 0 (9)

where ¹ and ¾ are mean and standard deviation of the variable x. Note that
in the above normal distribution, we do not use di¤erent paramaters for the
negative and positive returns and thus it does not capture the asymmertic
property of the asset returns. In addition, analytical derivation for u+ and
u+ is di¢cult and in this study, we calculate them numerically. It is worth
noting that

u+ =
Z 1

0
yv1

1p
2¼¾1

exp
"
¡(y ¡ ¹1)2

2¾21

#
dy

and

u¡ =
Z 0

¡1
(¡y)v2 1p

2¼¾2
exp

"
¡((¡y) ¡ ¹2)2

2¾22

#
dy

3.2 Empirical Testing
For the two distributions above, we use UK and US …nancial data to capture
the asset allocation decisions of typical UK and US investors. That is, we
use equation (4) to obtain sensible sets of v1 and v2 for a given level of the
investment proportion on risky assets.

As pointed out in Damant, Hwang, and Satchell (2000), if we treat such
an investor as a pension scheme, it is necessary to consider at least several

7



di¤erent asset classes which need a great deal of data and information. In-
stead, as discussed earlier, we shall concentrate on a stripped-down version of
the problem, namely, two asset classes. This simpli…ed version which consists
of a riskfree asset and an equity (risky asset) is consistent with the setting
we used above for the optimal portfolio with loss aversion. Note that the
investment proportion in domestic and foreign equity in 1993 was 83% for
large pension funds in the UK, while in the USA it was 46%1.

For the riskfree and equity, we use the three month UK treasury bill and
the FT All-share for the UK market and the three month US treasury bill
and the S&P500 for the US market. Thus in the above loss aversion utility
the benchmark is represented by the three month treasury bill interest rate.

The monthly treasury bill rate and the market index return from January
1980 to February 2001 for a total of 254 monthly observations are used. In
addition, to investigate time-varying properties of the returns, we divide the
entire sample period into two arbitrary sub-samples; the …rst sub-sample from
January 1980 to December 1989 and the second sub-sample from January
1990 to February 2001.

We …rst report the statistical properties of the data in table 1. The mean
and standard deviation of the UK returns are similar to those of the US
returns. Because of last several years’ high economic growth in the US, the
US market outperformed the UK market in the second sub-sample period.
The table also shows that the UK market returns are more negatively skewed
and fat-tailed than the US market returns. But most of the non-normality
in the UK market comes from the …rst sub-sample period, and during the
second sub-sample period, the US market is more skewed and fat-tailed than
the UK market.

Overall, the monthly excess returns are not normal both in the UK and
US markets; Jarque-Bera statistics show that most excess returns are non-
normal. As is well-known, when empirical distributions are not normal, any
results obtained with the assumption of normality may be wrong. We need
to model the impact of asymmetry and fat-tail in returns.

We …rst use the double gamma distribution as in (8) proposed by KST.
The double gamma distribution can be combined with the regime switching
model introduced by Hamilton (1989), if we assume that the binary indicator
variable zt in equation (6) follows a two-state Markov process. In this case,
the probability density function becomes complicated. See KST for further
discussion on regime switching double gamma pdf. The autocorrelation co-
e¢cients reported in table 1 suggest that the excess returns are not serially

1These numbers were found in the following unpublished mimeos; MERCERS, Euro-
pean Pension Fund Managers (1993) and PDFM, Pension Fund Indicators (1991).
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correlated. Thus, we do not pursue this complicated version any more here.
Table 2 reports the estimates of KST parameters with the excess returns

for ¹ = 0. All estimates are signi…cant and similar to those reported in KST;
large values of »1 and »2; and ®1 > 1 and ®2 > 1. We can test symmetry by
the hypothesis »1 = »2; and ®1 = ®2: During the …rst sub-period, the excess
returns seem to be asymmetric, but the estimates of the second sub-period
show that excess returns may be symmetric. In addition, the density has
maximum value at (®i¡1)=»i when ®i > 1: In our case, the estimates of ®i are
all larger than one and thus has miximum value; for example, for the second
sub-period in the UK market, the conditional densities for both positive
and negative excess returns have maximum value at (b®1 ¡ 1)=b»1 = (1:244 ¡
1)=40:403 = 0:006, and (b®2¡1)=b»2 = (1:109¡1)=33:002 = 0:003, respectively.
In addition, the likelihood ratio tests with the maximum likelihood values
(not reported) suggest that there is no signi…cant di¤erence between the …rst
and the second sub-periods. Thus we use the estimates obtained with the
full samples.

Using the paramater values estimated in table 2, we …rst calibrated the
values of µ for given values of v1, v2, and ¸: The ranges of v1 and v2 were set
from 0.2 to 20, respectively, and ¸ was set to 1.5, 2.25, and 3. We used the
Newton-Raphson algorithm on equation (4) with the assumption of W0 = 1
to calculate µ.

Table 3 shows the investment proportion, µ, for the settings in the UK
market. We …rst investigate the results for the case of ¸ = 2:25 in panel
A, which shows that when v1 > v2, the values of µ were at least more than
2000%, which is too large to accept. The results con…rms the admissible
ranges suggested in Proposition 2. However, for the investors who are risk
averse for gains and losses as in Remark 1, we still have too large investment
proportions, i.e., 300% to 1600%. See bold numbers in panel A of table 3. The
table also suggests that when v2¡v1 > 0 and v1 and v2 are close to each other,
it is possible to explain the UK and USA investment proportions in equity
(i.e., 83% and 46% for large pension funds in the UK and USA, respectively).2
These results are roughly consistent with other multi-period studies where
v1 and v2 are assumed to have the same value. See Kahnemann and Tversky
(1979), Ang, Bekeart, and Liu (2000) and Benartzi and Thaler (1995), for
example. In addition, as expected, comparing panel A with panels B and
C shows that when the penalty to loss becomes larger, ¸ = 3, investment
proportions on equity decrease, and vice versa.

We now further investigate what may be appropriate sets of v1 and v2 to
2We do not report the USA cases which are similar to those of the UK. The results in

the USA market can be obtained upon request from the authors.
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explain the UK and USA markets. We …rst set v1 to a value between 0.1 to 2.
Other previous studies used 0.88 (Kahnemann and Tversky, 1979, and Ang,
Bekeart, and Liu, 2000) or 1 (Benartzi and Thaler, 1995). The choice of v1
is closely related with the admissible range of the coe¢cient of the CRRA.
Many previous studies, either theorectically or empirically, suggest that the
admissable range of the coe¢cient of the CRRA should be between one and
two. See Arrow(1971), Tobin and Dolde (1971), Friend and Blume (1975),
Kydland and Prescott (1982), and Kehoe (1984), for example.

Then, appropriate values of v2 are calculated with equation (4) for given
values of v1, µ, and ¸; and the results are reported in tables 4 and 5 for the
UK and USA markets, respectively. The Newton-Raphson algorithm is used
on equation (4) with the assumption of W0 = 1 to calculate v2. Since the
investment proportions in equity in the UK and USA are di¤erent, we use
di¤erent values of µ for the UK and US markets; for the UK market, we use
0:5 · µ · 1 and for the US market we use 0:3 · µ · 1:

The …rst panels of tables 4 and 5 shows the case of ¸ = 2:25 which is
used in most studies. In this case, we have v2 ¡ v1 > 0 for all given values.
However, we …nd evidence that the representative agents on both side of the
atlantic are risk averse for gains and losses. That is, v2 > 1 and v1 < 1 can
be obtained only when v1 is very close to one, since the di¤erence between
v1 and v2 is not large. In most cases, 0 < v2 ¡ v1 < 0:3: In particular, for the
representative UK investor (µ = 0:83) who is risk averse for gain (v1 < 1),
the di¤erence between v2 and v1 is less than 0.1, and a similar pattern is
found in the USA market. As explained above, these results do di¤er from
many other multi-period studies which simply use v1 = v2: However, to be
more precise, we need v2 to be larger than v1:

As explained in table 3, for a given value of v1; the values of v2 increase
as ¸ increases; see panels B and C in tables 4 and 5. Interestingly, when
¸ = 1:5, and for some ranges of v1, the values of v2 are less than those of
v1: See panel B of tables 4 and 5. Since we expect v2 > v1, these results
are unacceptable and suggest that the arbitrary value ¸ = 1:5 is too small.
Thus, our results indirectly indicate that ¸ = 2:25 which is widely used in
empirical …nance is in the admissible range. In fact, all three parameters
in the LA utility function, v1; v2 and ¸, are closely connected to each other
and a value of one parameter may not be justi…ed independently of other
parameters. Unfortunately, our study cannot reveal a unique set of v1 and
v2, but it does tell us what are appropriate sets of v1 and v2. If we assume
v1 = 0:88 as in Kahnemann and Tversky (1979) and others, then v2 should
be around one.

Finally we use normal distribution to …nd out the relationship between
µ; v1; v2 and ¸: The same method described above is used here for the UK
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market except the normal distribution.3 Using the estimates of mean and
standard deviation in table 1, we numerically calculated the values of µ for
given values of v1, v2, and ¸ and reported the results in table 6. We could not
obtain the values of µ when v2 ¡ v1 · 0 and v1 > 1 because of convergence
errors. Table 6 suggests that the values of µ for the admissable ranges of
v2 ¡ v1 > 0 are extremely large and unrealistic; i.e., at least 2600% when
¸ = 2:25! As explained in table 3, when ¸ = 1:5 or ¸ = 3; the equity
investment proportion increases or decreases.

We next calculate appropriate values of v2 with equation (4) for given
values of v1, µ, and ¸ under the normality assumption. The results in table
7 also con…rm that v2 and v2 are close. However, when tables 4 and 7 are
compared, the values of v2 obtained with normality are always less than
those with the KST distribution. As a result of this, when ¸ = 1:5; we
have v1 > v2 which contradicts proposition 2. In addition, when ¸ = 2:25
and v1 > 1, we also have v1 > v2: Only when ¸ is large enough, i.e., large
panalty for losses, proposition 2 is satistied. This is because normality does
not capture extreme events adequately and thus we need large value of ¸ to
compensate. For any distribution such as the KST distribution which can
explain fat-tails of returns, we do not need large ¸: Therefore, the results in
tables 6 and 7 indicate that we should be more careful when we use normality
for the LA utility function.

4 Conclusions
In this study we used the LA utility function to explain the asset allocation.
We …rst developed a few conditions that the LA utility function should sat-
isfy. We showed that under fairly general conditions, the LA utility function
becomes CARA class of utility functions. This is an interesting result in the
sense that bahavoural …nance such as prospect theory can be explained with
the expected utility theory. In addition, we also proved that the curvature
for the losses (v2) should be larger than that for the gains (v1). This result
is important because so far most studies such as Kahnemann and Tversky
(1979), Benartzi and Thaler (1995), and Ang, Bekeart, and Liu (2000) used
the same value for v1 and v2.

These results are supported by the empirical tests. In this study, we used
a fairly general asymmetric distribution, Knight, Satchell and Tran (1995)
distribution for the UK and US markets. We found that v1 and v2 are close to
each other and v2 ¡ v1 is positive for the ranges of parameter values used by
other previous studies. For comparison purpose, however, when we assume

3The results of the US market are available from the authors upon request.

11



normality for asset returns, our values of ¸ need to be larger since the normal
distribution does not capture the fat-tails of returns adequately. Thus under
normality, ¸ may be larger than 2.25 which is used by many previous studies.
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Table 1  Properties of FT All-share and S&P500 Index Returns

A. FT All-share Index Returns
Mean Standard Deviation Skewness Excess Kurtosis Jarque-Bera Statistic

Entire Sample Period FT All-share Index Returns 1.4778 4.7757 -1.0937 * 4.6576 * 280.23 *
(January 1980 - 3 Month Treasury Bill Returns 0.7706 0.2668 0.3514 * -1.0206 * 16.25 *

February 2001) Excess Returns 0.7071 4.7782 -1.1444 * 4.6906 * 288.30 *
Sub-period 1 FT All-share Index Returns 1.9545 5.4103 -1.6334 * 6.3792 * 256.83 *

(January 1980 - 3 Month Treasury Bill Returns 0.9449 0.1858 0.4593 * -0.7005 6.67 *
December 1989) Excess Returns 1.0096 5.4156 -1.6298 * 6.2323 * 247.33 *

Sub-period 2 FT All-share Index Returns 1.0509 4.0996 -0.1943 0.2596 1.22
(January 1990 - 3 Month Treasury Bill Returns 0.6146 0.2293 1.4753 * 1.0741 * 55.05 *

February 2001) Excess Returns 0.4363 4.1271 -0.2576 0.1899 1.68
Lags Entire Sample Period Sub-period 1 Sub-period 2

(January 1980 - (January 1980 - (January 1990 -
Autocorrelations February 2001) December 1989) February 2001)
of Excess Returns 1 -0.0267 -0.0805 0.0584

2 -0.1133 -0.1010 -0.1219
3 -0.1016 -0.0860 -0.1444
4 0.0240 0.0186 0.0125
5 -0.0032 -0.0448 0.0316
6 -0.1109 -0.1188 -0.1548

Notes: A total number of 254 monthly returns are used to calculate the above table. * represents significance at 90% level.



B. S&P500 Index Returns
Mean Standard Deviation Skewness Excess Kurtosis Jarque-Bera Statistic

Entire Sample Period S&P500 Index Returns 1.3398 4.4019 -0.6739 * 2.9716 * 112.68 *
(January 1980 - 3 Month Treasury Bill Returns 0.5620 0.2349 1.1985 * 1.1447 * 74.68 *

February 2001) Excess Returns 0.7777 4.4230 -0.6741 * 2.8098 * 102.79 *
Sub-period 1 S&P500 Index Log-returns 1.4721 4.7445 -0.7913 * 4.0931 * 96.29 *

(January 1980 - 3 Month Treasury Bill Returns 0.7307 0.2280 0.8750 * -0.1112 15.38 *
December 1989) Excess Returns 0.7414 4.7837 -0.7458 * 3.7082 * 79.88 *

Sub-period 2 S&P500 Index Log-returns 1.2213 4.0851 -0.5389 * 1.1294 * 13.61 *
(January 1990 - 3 Month Treasury Bill Returns 0.4110 0.0992 0.2801 0.2538 2.11

February 2001) Excess Returns 0.8103 4.0910 -0.5582 * 1.1411 * 14.23 *
Lags Entire Sample Period Sub-period 1 Sub-period 2

(January 1980 - (January 1980 - (January 1990 -
Autocorrelations February 2001) December 1989) February 2001)
of Excess Returns 1 -0.0290 0.0563 -0.1349

2 -0.0293 -0.0791 0.0349
3 -0.0365 -0.0672 -0.0141
4 -0.0733 -0.0311 -0.1355
5 0.1098 0.1571 0.0542
6 -0.0329 0.0361 -0.1005

Notes: A total number of 254 monthly returns are used to calculate the above table. * represents significance at 90% level.



Table 2  Estimates of KST Parameters for the UK Returns

A. FT All-share Index Excess Returns
Entire Sample Period Sub-period 1 Sub-period 2
(January 1980 - February 2001) (January 1980 - December 1989) (January 1990 - February 2001)

ξ1 42.256 (5.136) 48.420 (8.162) 40.403 (7.061)
α1 1.467 (0.150) 1.870 (0.275) 1.244 (0.178)
ξ2 27.751 (4.484) 23.495 (5.818) 33.002 (7.008)
α2 1.066 (0.136) 1.054 (0.206) 1.109 (0.188)

Probability of Positive Excess Return (p) 0.622 0.658 0.590
Maximum Likelihood Value 427.896 194.958 238.115

B. S&P500 Index Excess Returns
Entire Sample Period Sub-period 1 Sub-period 2
(January 1980 - February 2001) (January 1980 - December 1989) (January 1990 - February 2001)

ξ1 40.296 (4.968) 37.426 (6.868) 43.439 (7.225)
α1 1.395 (0.144) 1.394 (0.213) 1.410 (0.196)
ξ2 34.249 (5.384) 29.747 (6.698) 40.644 (8.917)
α2 1.173 (0.149) 1.022 (0.180) 1.388 (0.254)

Probability of Positive Excess Return (p) 0.610 0.583 0.634
Maximum Likelihood Value 437.035 199.495 239.119

Notes: The estimates are obatined with maximum likelihood estimation for the pdf function in equations (3) and (4).



Table 3  Proportion in Equity for Given Sets of v 1  and v 2  for the Entire Sample Period
for the UK Market with the KST Distribution

A. The Proportion in Equity (θ) for the Entire Sample Period (January 1980-February 2001) with λ =2.25 
v 2 \v 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 5.0 10.0 20.0

0.2 154.03 66.04 47.78 39.53 34.58 31.16 28.58 26.53 24.84 19.26 13.73 8.25 4.69
0.4 6.48 142.43 59.68 43.04 35.65 31.27 28.26 25.99 24.20 18.59 13.26 8.03 4.60
0.6 12.79 5.01 141.21 56.23 40.01 32.99 28.90 26.12 24.06 18.12 12.88 7.84 4.52
0.8 15.19 10.36 3.79 147.60 54.69 38.11 31.15 27.18 24.53 17.85 12.57 7.67 4.44
1.0 15.98 12.59 8.40 2.82 160.78 54.54 36.99 29.89 25.92 17.78 12.33 7.52 4.38
1.2 16.07 13.46 10.50 6.81 2.07 181.06 55.51 36.48 29.05 17.93 12.14 7.39 4.32
1.4 15.83 13.70 11.43 8.80 5.52 1.50 209.54 57.46 36.45 18.38 12.02 7.27 4.26
1.6 15.44 13.63 11.78 9.76 7.40 4.47 1.08 248.09 60.33 19.25 11.94 7.17 4.21
1.8 14.99 13.41 11.84 10.20 8.38 6.24 3.62 0.77 299.46 20.78 11.93 7.07 4.16
2.0 14.51 13.11 11.75 10.36 8.88 7.22 5.28 2.94 0.55 23.53 11.98 6.99 4.11
3.0 12.26 11.37 10.54 9.74 8.96 8.19 7.39 6.56 5.67 4.69 13.79 6.74 3.93
5.0 9.17 8.68 8.23 7.80 7.40 7.02 6.65 6.29 5.94 5.60 3.79 7.01 3.70

10.0 5.61 5.41 5.22 5.04 4.88 4.72 4.58 4.44 4.30 4.17 3.58 2.52 3.81
20.0 3.17 3.10 3.03 2.96 2.90 2.84 2.78 2.73 2.68 2.63 2.40 2.03 1.28

B. The Proportion in Equity (θ) for the Entire Sample Period (January 1980-February 2001) with λ =1.5 
v 2 \v 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 5.0 10.0 20.0

0.2 20.28 23.96 24.31 23.81 23.06 22.23 21.39 20.59 19.83 16.67 12.62 7.92 4.59
0.4 49.21 18.76 21.66 21.90 21.48 20.85 20.15 19.46 18.78 15.90 12.14 7.70 4.50
0.6 35.23 38.08 18.60 20.40 20.36 19.88 19.27 18.63 18.01 15.31 11.75 7.51 4.42
0.8 29.85 28.56 28.81 19.44 19.84 19.39 18.77 18.12 17.49 14.84 11.42 7.34 4.35
1.0 26.52 24.76 23.15 21.43 21.17 19.79 18.82 18.00 17.28 14.51 11.14 7.19 4.29
1.2 24.10 22.34 20.65 18.76 15.72 23.84 20.15 18.56 17.50 14.31 10.91 7.05 4.22
1.4 22.19 20.55 18.97 17.30 15.21 11.41 27.59 20.85 18.55 14.27 10.74 6.93 4.17
1.6 20.63 19.12 17.67 16.20 14.55 12.32 8.21 32.67 21.89 14.41 10.60 6.83 4.12
1.8 19.31 17.92 16.60 15.30 13.91 12.27 9.99 5.86 39.43 14.82 10.51 6.73 4.07
2.0 18.17 16.89 15.69 14.52 13.31 11.99 10.37 8.10 4.16 15.68 10.47 6.65 4.02
3.0 14.17 13.29 12.48 11.71 10.98 10.25 9.52 8.77 7.95 7.03 11.26 6.36 3.83
5.0 9.98 9.48 9.02 8.59 8.19 7.81 7.45 7.09 6.75 6.41 4.64 6.46 3.60

10.0 5.84 5.64 5.45 5.27 5.10 4.95 4.80 4.65 4.52 4.39 3.79 2.74 3.66
20.0 3.24 3.16 3.09 3.02 2.96 2.90 2.84 2.79 2.74 2.69 2.46 2.08 1.33

C. The Proportion in Equity (θ) for the Entire Sample Period (January 1980-February 2001) with λ =3 
v 2 \v 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 5.0 10.0 20.0

0.2 649.07 135.56 77.17 56.64 46.11 39.60 35.10 31.76 29.15 21.35 14.58 8.50 4.75
0.4 1.54 600.22 122.52 69.52 51.08 41.69 35.91 31.92 28.97 20.76 14.12 8.28 4.67
0.6 6.23 1.19 595.07 115.42 64.63 47.27 38.54 33.20 29.54 20.43 13.75 8.08 4.58
0.8 9.40 5.05 0.90 621.96 112.26 61.55 44.63 36.24 31.17 20.34 13.46 7.91 4.51
1.0 11.15 7.80 4.09 0.67 677.52 111.96 59.75 42.82 34.56 20.53 13.25 7.76 4.45
1.2 12.05 9.39 6.50 3.32 0.49 762.98 113.96 58.93 41.63 21.04 13.10 7.63 4.38
1.4 12.46 10.28 7.98 5.45 2.69 0.36 882.99 117.96 58.88 22.00 13.01 7.52 4.33
1.6 12.57 10.73 8.84 6.81 4.58 2.18 0.26 1045.43 123.84 23.64 13.00 7.42 4.27
1.8 12.52 10.92 9.32 7.65 5.85 3.86 1.77 0.18 1261.91 26.41 13.05 7.33 4.23
2.0 12.36 10.95 9.56 8.15 6.66 5.04 3.27 1.43 0.13 31.37 13.19 7.25 4.18
3.0 11.06 10.18 9.35 8.55 7.76 6.98 6.18 5.34 4.46 3.52 15.92 7.02 3.99
5.0 8.64 8.16 7.71 7.29 6.89 6.51 6.14 5.78 5.43 5.08 3.28 7.42 3.77

10.0 5.44 5.25 5.06 4.89 4.73 4.57 4.43 4.29 4.15 4.02 3.43 2.38 3.92
20.0 3.13 3.05 2.98 2.92 2.86 2.80 2.74 2.69 2.63 2.58 2.36 1.99 1.24

Notes: The proportions in the table are calculated with the estimates of the KST distribution for the entire sample period;
see tables 1 and 2. That is, ξ 1 =42.256, α 1 =1.467, ξ 2 =27.752, α 2 =1.066, and p =0.622.  Bold Values are the cases that 
investors are risk averse for gains and losses and v 2 -v 1  is positive as in Ramark 1.



Table 4  The Values of v 2  for Given Sets of v 1  and Investment Proportion in Equity for the 
Entire Sample Period (January 1980-February 2001) in the UK Market with the KST Distribution

A. The Estimated Values of v2 for Given Sets of v1 and θ with λ =2.25 
v 1 \θ 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.172 0.175 0.178 0.179 0.181 0.182 0.183 0.185 0.186
0.3 0.377 0.381 0.384 0.386 0.388 0.389 0.391 0.392 0.394
0.5 0.586 0.590 0.594 0.596 0.598 0.600 0.601 0.603 0.605
0.7 0.797 0.802 0.807 0.809 0.811 0.813 0.815 0.817 0.819
0.9 1.010 1.016 1.022 1.025 1.027 1.030 1.032 1.035 1.037
1.1 1.226 1.233 1.240 1.243 1.246 1.249 1.252 1.255 1.258
1.3 1.443 1.451 1.459 1.463 1.467 1.471 1.474 1.478 1.481
1.5 1.662 1.672 1.681 1.686 1.690 1.694 1.699 1.703 1.707
1.7 1.883 1.894 1.905 1.910 1.916 1.921 1.926 1.931 1.936
1.9 2.105 2.119 2.131 2.137 2.143 2.149 2.155 2.161 2.167
2.0 2.217 2.231 2.245 2.251 2.258 2.264 2.271 2.277 2.283

B. The Estimated Values of v2 for Given Sets of v1 and θ with λ =1.5 
v 1 \θ 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.078 0.077 0.076 0.076 0.075 0.075 0.075 0.074 0.074
0.3 0.278 0.277 0.276 0.276 0.275 0.275 0.275 0.274 0.274
0.5 0.482 0.481 0.480 0.480 0.479 0.479 0.478 0.478 0.478
0.7 0.688 0.688 0.687 0.687 0.686 0.686 0.686 0.686 0.685
0.9 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.896 0.896
1.1 1.108 1.109 1.109 1.109 1.110 1.110 1.110 1.110 1.110
1.3 1.322 1.323 1.324 1.325 1.325 1.326 1.326 1.327 1.327
1.5 1.537 1.539 1.541 1.542 1.543 1.544 1.545 1.546 1.547
1.7 1.754 1.757 1.760 1.762 1.763 1.765 1.766 1.768 1.769
1.9 1.973 1.977 1.982 1.984 1.986 1.988 1.990 1.992 1.994
2.0 2.083 2.088 2.093 2.095 2.098 2.100 2.102 2.105 2.107

C. The Estimated Values of v2 for Given Sets of v1 and θ with λ =3 
v 1 \θ 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.240 0.247 0.252 0.255 0.258 0.261 0.263 0.266 0.268
0.3 0.449 0.457 0.463 0.466 0.469 0.472 0.475 0.478 0.481
0.5 0.661 0.669 0.677 0.681 0.684 0.688 0.691 0.694 0.698
0.7 0.876 0.885 0.894 0.898 0.902 0.906 0.910 0.913 0.917
0.9 1.092 1.103 1.113 1.117 1.122 1.127 1.131 1.135 1.140
1.1 1.310 1.322 1.334 1.339 1.345 1.350 1.355 1.360 1.365
1.3 1.531 1.544 1.557 1.563 1.569 1.576 1.581 1.587 1.593
1.5 1.752 1.768 1.783 1.790 1.797 1.804 1.810 1.817 1.824
1.7 1.976 1.993 2.010 2.018 2.026 2.034 2.041 2.049 2.057
1.9 2.201 2.221 2.239 2.248 2.257 2.266 2.275 2.284 2.292
2.0 2.314 2.335 2.355 2.364 2.374 2.383 2.393 2.402 2.411

Notes: The values of v 2  are calculated with the estimates of the KST distribution for the entire sample period;
see tables 1 and 2. That is, ξ 1 =42.256, α 1 =1.467, ξ 2 =27.752, α 2 =1.066, and p =0.622. 



Table 5  The Values of v 2  for Given Sets of v 1  and Investment Proportion in Equity for the

Entire Sample Period (January 1980-February 2001) in the US Market with the KST Distribution

A. The Estimated Values of v2 for Given Sets of v1 and θ with λ =2.25 
v 1 \θ 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.9 1
0.1 0.172 0.177 0.179 0.181 0.183 0.184 0.186 0.188 0.191 0.194 0.196
0.3 0.373 0.378 0.380 0.383 0.384 0.386 0.388 0.390 0.393 0.396 0.399
0.5 0.576 0.581 0.583 0.585 0.587 0.589 0.591 0.593 0.597 0.600 0.603
0.7 0.778 0.784 0.786 0.789 0.791 0.793 0.795 0.797 0.801 0.805 0.809
0.9 0.982 0.988 0.991 0.993 0.996 0.998 1.000 1.003 1.007 1.011 1.015
1.1 1.186 1.193 1.196 1.199 1.201 1.204 1.206 1.209 1.213 1.218 1.222
1.3 1.391 1.398 1.401 1.404 1.407 1.410 1.413 1.416 1.421 1.426 1.430
1.5 1.596 1.604 1.608 1.611 1.614 1.617 1.620 1.623 1.629 1.634 1.640
1.7 1.802 1.811 1.814 1.818 1.822 1.825 1.828 1.832 1.838 1.844 1.850
1.9 2.009 2.018 2.022 2.026 2.030 2.033 2.037 2.040 2.047 2.054 2.060
2.0 2.112 2.121 2.126 2.130 2.134 2.138 2.141 2.145 2.152 2.159 2.166

B. The Estimated Values of v2 for Given Sets of v1 and θ with λ =1.5 
v 1 \θ 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.9 1
0.1 0.090 0.089 0.089 0.088 0.088 0.088 0.088 0.088 0.087 0.087 0.086
0.3 0.287 0.286 0.286 0.286 0.285 0.285 0.285 0.284 0.284 0.283 0.283
0.5 0.486 0.485 0.485 0.484 0.484 0.483 0.483 0.483 0.482 0.481 0.481
0.7 0.686 0.685 0.684 0.684 0.684 0.683 0.683 0.682 0.682 0.681 0.680
0.9 0.887 0.886 0.885 0.885 0.884 0.884 0.884 0.883 0.883 0.882 0.881
1.1 1.088 1.087 1.087 1.087 1.086 1.086 1.085 1.085 1.085 1.084 1.083
1.3 1.290 1.290 1.289 1.289 1.289 1.289 1.288 1.288 1.287 1.287 1.286
1.5 1.493 1.493 1.493 1.492 1.492 1.492 1.492 1.492 1.491 1.491 1.491
1.7 1.697 1.697 1.697 1.696 1.696 1.696 1.696 1.696 1.696 1.696 1.696
1.9 1.901 1.901 1.901 1.901 1.901 1.901 1.901 1.901 1.901 1.901 1.901
2.0 2.003 2.003 2.004 2.004 2.004 2.004 2.004 2.004 2.004 2.004 2.005

C. The Estimated Values of v2 for Given Sets of v1 and θ with λ =3 
v 1 \θ 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.9 1
0.1 0.232 0.240 0.244 0.248 0.251 0.254 0.257 0.260 0.266 0.271 0.277
0.3 0.436 0.445 0.449 0.453 0.456 0.460 0.463 0.466 0.472 0.478 0.484
0.5 0.640 0.650 0.654 0.658 0.662 0.666 0.669 0.673 0.680 0.686 0.692
0.7 0.845 0.855 0.860 0.864 0.869 0.873 0.877 0.881 0.888 0.895 0.902
0.9 1.051 1.062 1.067 1.072 1.076 1.081 1.085 1.089 1.097 1.104 1.112
1.1 1.257 1.269 1.274 1.279 1.284 1.289 1.294 1.298 1.307 1.315 1.323
1.3 1.463 1.476 1.482 1.487 1.493 1.498 1.503 1.508 1.517 1.526 1.535
1.5 1.670 1.684 1.690 1.696 1.702 1.708 1.713 1.718 1.728 1.738 1.748
1.7 1.878 1.892 1.899 1.906 1.912 1.918 1.923 1.929 1.940 1.951 1.961
1.9 2.086 2.101 2.108 2.115 2.122 2.128 2.135 2.141 2.153 2.164 2.175
2.0 2.190 2.206 2.213 2.220 2.227 2.234 2.240 2.247 2.259 2.271 2.283

Notes: The values of v 2  are calculated with the estimates of the KST distribution for the entire sample period;
see tables 1 and 2. That is, ξ 1 =42.256, α 1 =1.467, ξ 2 =27.752, α 2 =1.066, and p =0.622. 



Table 6  Proportion in Equity for Given Sets of v 1  and v 2  for the Entire Sample Period

for the UK Market with the Normal Distribution

A. The Proportion in Equity (θ) for the Entire Sample Period (January 1980-February 2001) with λ =2.25 
v 2 \v 1 0.1 0.3 0.5 0.7 0.9

0.1
0.3 34.72
0.5 40.71 37.20
0.7 40.57 38.72 38.86
0.9 39.05 37.37 36.78 39.46
1.1 37.22 35.59 34.64 34.82 39.09
1.3 35.43 33.84 32.75 32.26 32.85
1.5 33.77 32.25 31.11 30.36 30.15
1.7 32.27 30.82 29.69 28.85 28.31
1.9 30.93 29.56 28.45 27.58 26.94
2.0 30.32 28.98 27.89 27.02 26.36

B. The Proportion in Equity (θ) for the Entire Sample Period (January 1980-February 2001) with λ =1.5 
v 2 \v 1 0.1 0.3 0.5 0.7 0.9

0.1
0.3 263.67
0.5 112.18 282.48
0.7 79.74 106.69 295.08
0.9 64.82 73.45 101.35 299.60
1.1 55.83 59.08 68.10 95.98 296.73
1.3 49.67 50.76 54.37 63.41 90.66
1.5 45.11 45.21 46.67 50.41 59.26
1.7 41.58 41.17 41.62 43.27 47.03
1.9 38.75 38.08 38.01 38.67 40.41
2.0 37.53 36.78 36.55 36.91 38.10

C. The Proportion in Equity (θ) for the Entire Sample Period (January 1980-February 2001) with λ =3 
v 2 \v 1 0.1 0.3 0.5 0.7 0.9

0.1
0.3 8.24
0.5 19.83 8.83
0.7 25.12 18.86 9.22
0.9 27.25 23.14 17.92 9.37
1.1 27.92 24.84 21.45 16.97 9.28
1.3 27.88 25.38 22.86 19.97 16.03
1.5 27.50 25.37 23.33 21.19 18.66
1.7 26.96 25.10 23.36 21.64 19.77
1.9 26.36 24.69 23.17 21.70 20.21
2.0 26.06 24.47 23.03 21.66 20.29

Notes: The proportions in the table are calculated with the estimates of the normal distribution for the entire
sample period; see table 1 for the parameter values. Bold Values are the cases that investors are risk averse
for gains and losses and losses and v 2 -v 1  is positive as in Proposition 2.



Table 7  The Values of v 2  for Given Sets of v 1  and Investment Proportion in Equity for the

Entire Sample Period (January 1980-February 2001) in the UK Market with the Normal Distribution

A. The Estimated Values of v2 for Given Sets of v1 and θ with λ =2.25 
v 1 \θ 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.121 0.122 0.123 0.123 0.123 0.124 0.124 0.124 0.125
0.3 0.311 0.311 0.312 0.312 0.312 0.312 0.312 0.312 0.313
0.5 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502
0.7 0.694 0.694 0.694 0.694 0.693 0.693 0.693 0.693 0.693
0.9 0.888 0.888 0.887 0.887 0.887 0.887 0.887 0.886 0.886
1.1 1.084 1.084 1.083 1.083 1.082 1.082 1.082 1.081 1.081
1.3 1.282 1.281 1.280 1.280 1.279 1.279 1.279 1.278 1.278
1.5 1.480 1.479 1.478 1.478 1.477 1.477 1.477 1.476 1.476
1.7 1.679 1.678 1.677 1.677 1.676 1.676 1.676 1.675 1.675
1.9 1.879 1.878 1.877 1.877 1.876 1.876 1.875 1.875 1.874
2.0 1.979 1.978 1.977 1.977 1.976 1.976 1.975 1.975 1.975

B. The Estimated Values of v2 for Given Sets of v1 and θ with λ =1.5 
v 1 \θ 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.038 0.036 0.033 0.032 0.031 0.030 0.029 0.029 0.028
0.3 0.224 0.221 0.218 0.217 0.216 0.215 0.213 0.212 0.211
0.5 0.412 0.408 0.405 0.403 0.401 0.400 0.399 0.397 0.396
0.7 0.601 0.597 0.593 0.591 0.589 0.587 0.586 0.584 0.582
0.9 0.792 0.787 0.783 0.781 0.779 0.777 0.775 0.773 0.771
1.1 0.985 0.980 0.975 0.973 0.971 0.969 0.966 0.964 0.962
1.3 1.180 1.175 1.169 1.167 1.164 1.162 1.160 1.158 1.155
1.5 1.376 1.370 1.365 1.362 1.360 1.357 1.355 1.352 1.350
1.7 1.574 1.568 1.562 1.559 1.556 1.554 1.551 1.549 1.546
1.9 1.772 1.765 1.759 1.757 1.754 1.751 1.748 1.746 1.743
2.0 1.871 1.865 1.859 1.856 1.853 1.850 1.847 1.845 1.842

C. The Estimated Values of v2 for Given Sets of v1 and θ with λ =3 
v 1 \θ 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.181 0.184 0.187 0.189 0.190 0.191 0.192 0.194 0.195
0.3 0.373 0.376 0.379 0.380 0.381 0.383 0.384 0.385 0.386
0.5 0.566 0.569 0.572 0.573 0.574 0.575 0.577 0.578 0.579
0.7 0.761 0.764 0.766 0.768 0.769 0.770 0.771 0.772 0.773
0.9 0.958 0.960 0.963 0.964 0.965 0.966 0.967 0.968 0.969
1.1 1.155 1.158 1.160 1.162 1.163 1.164 1.165 1.166 1.167
1.3 1.354 1.357 1.359 1.361 1.362 1.363 1.364 1.365 1.366
1.5 1.554 1.557 1.559 1.561 1.562 1.563 1.564 1.565 1.566
1.7 1.755 1.758 1.760 1.761 1.763 1.764 1.765 1.766 1.767
1.9 1.956 1.959 1.961 1.963 1.964 1.965 1.966 1.967 1.969
2.0 2.056 2.059 2.062 2.063 2.065 2.066 2.067 2.068 2.069

Notes: The proportions in the table are calculated with the estimates of the normal distribution for the entire
sample period; see table 1 for the parameter values.


