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Abstract

The purpose of this paper is to derive explicit formulae for the asset allo-
cation decision for the loss aversion utility function proposed by Kahneman
and Tuversky. We show that these utility functions exhibit constant absolute
risk aversion. We also give analytic results which interpret the assumptions
of risk-aversion with respect to gains but risk-acection with respect to losses
in terms of changes of the optimal investment of equity when the proba-
bility that equity outperforms cash goes up. For the Knight, Satchell and
Tran (1995) family of distributions, it is straightforward to derive closed
form expressions for the optimal portfolio weights in all cases. Using UK and
US data, we con..rmed that the values of the parameters in the loss aver-
sion function suggested by many previous studies are compatible with the
observed proportions held in equity in both the UK and the US. The distri-
butional assumptions are not innocuous. However, whilst modelling upside
and downside returns by gamma distributions leads to plausible results, mod-
elling upside and downside by truncated normals does not.
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1 Introduction

Modern ..nance theory starts from a set of normatively appealing axioms
about individual behavior. That is, people are assumed to be risk-averse
expected utility maximizers and make rational choices based on rational ex-
pectations. However, the rational paradigm has been criticized by many
behavioral economists and psychologists such as Kahnemann and Tversky
(1979) and De Bondt and Thaler (1985).

In particular, dissatisfaction with power utility has been a re-occuring
theme in modern ..nancial economics. From the equity premiumm puzzle
to the inability to explain the presence of gambling and holding insurance
simultaneously, power utility’s faults are numerous and well-documented;
see Mehra and Prescott (1985) and Campbell and Viceira (1999) for exam-
ple. New alternatives built around power utility have been put forward; loss
aversion (Kahnemann and Tversky, 1979, 1992) and disappointment aversion
(Gul, 1991 and Ang, Bekeart and Liu, 2000) may work better to name but
some of the alternatives.

The purpose of this paper is to concentrate on loss aversion (LA) utility,
..rst put forward by Kahnman and Tversky (1979, 1992) and used, among
others, by Barberis, Huang and Santos (1999), Berkelaar and Kouwenberg
(2000a, 2000b), and solve the asset allocation problem for an investor with
LA utility in a one period world. In doing so, we revisit the two piece
utility functions of Fishburn and Kochenberger (1979) who put forward this
structure of utility as an example of conventional expected utility theory.

For a very broad family of distributions, the KST family, see Knight,
Satchell and Tran (1995), it is possible to derive closed form expresssions for
the optimal proportion of wealth held in equity. Although one can compute
the optimal proportion fairly easily using numerical methods, the bene..ts
of explicit formulae are self-evident. Furthermore, inspection of the results
gives us a better understanding of the factors driving equity investment and
the delicate nature of the assumptions governing upward and downward risk
tolerance.

In section two, we present details of both the LA utility being consid-
ered and the KST distribution. Results are presented in section three, an
application to UK equity follows in section 4 whilst section 5 concludes.

2 The Optiml Portfolio with Loss Aversion

The version of LA utility we use follows other authors with some minor
modi..cations. Let W be ..nal wealth, W, initial wealth, B some appropriate



benchmark. De..nes gains X = W — B, then LA utility is de..ned as

X
u(X) = Ul,ifX>0, )
_ =Y Lif X <0,
(%)

where the parameters v,, v, and A are assumed positive.

It is possible to distinguish several cases. The ..rst case isthat 0 < v; < 1,
0 < vy < 1. In this case wu(.) is ’risk averse’ with respect to gains since
u”(X) = (v — 1)X“*~2 which is negative. ~However, u(.) is risk loving
with respect to losses since u”(X) = —A(vy — 1)(—X)v2~2 which is positive,
Another possibility studied in the literature isto let v; = 1, i = 1 or 2, so
that u(.) could be risk neutral with respect to gain or loss. For example,
Kahnemann and Tversky (1979) use v; = v, = 0.88 and \ = 2.25, Benartzi
and Thaler (1995) use v; = v, = 1 and A = 2.25, Ang, Bekeart, and Liu
(2000) use v; = v, = 0.88 and a range of \ values, although some of these
applications are for multi-period optimisations rather than the one-period
problem we consider here.

However, other cases could be of interest. If v; > 1 and v, > 1, then
the investor is risk loving with respect to gains whilst risk averse to losses.
Which of these alternatives is the more plausible is not obvious. Several
risk control strategies, prevalent in the market, capture some aspect of these
alternative cases. For example, a stop-loss strategy controls downside risk
and is presumably consistent with v, > 1. A take-pro..t strategy controls
upside risk and might be consistent with v; < 1. Therefore, it is not clear
on a prior grounds or observed behaviour whether 0 < v, < 1, v > 1, Or
vy > 1, and so we include all possibilities. These appear to be no theoretical
results in the literature that support any of the dicerent assumptions about v,
and v,. However, Fishburn and Kochenberger (1979) present some empirical
evidence A > 1 and that 0 < v; < 1 and 0 < vs < 1. They also refer to
other papers that present empirical support of these assumptions, namely
investors are risk-averse for gains and risk-loving for losses. In choosing B it
is customary to let B equal W, or Wy(1 + ) where r; is the riskless rate of
return and we shall adapt the latter approach.

Asset allocation problems consider optimal portfolios taken over a small
number of asset classes. Suppose that there are two assets; a riskfree as-
set and a risky asset whose returns are denoted by r; and r, respectively.
Denoting ¢ to be the proportion held in equity, then ..nal wealth is

W = Wo(1-0)(1+rs) +Web(1+7) )
- B+W09?J,



where B = Wy(1+ ) and y = r — ry is the excess return of the risky asset,
and thus X = Wyfy. In what follows, we implicitly assume that 6 > 0, i.e.,
short sales are not allowed.

In the following theorem, we show that under some condition, any utility
function of W — B becomes CARA class of utility functions.

Theorem 1 Suppose « is a utility function of the form w(WW — B) where
B = W;,(1+rs) and u does not depend upon W, in any other way. Then it
follows that u is CARA.

Proof. For an investor whose utility function is u(W — B), the problem is
to solve
max E(u(0Wy(r —ry))).

The ..rst order conditions are, putting y = r —ry and h = W,
E(u' (0Woy)Woy) =0

or
E(u'(hy)y) = 0.
The solution % depends only upon the form of « and the distribution of y

but not Wy, since by assumption « does not depend on Wy. So we ..nd that
OW, = h and result is proved. ®

Remark 1 Although this may appear restrictive, it is quite easy to reparametrise
this problem so that the utility function exhibits non-constant absolute risk
aversion. See Pedersen and Satchell (2001) for details of this approach. In
the context of this problem, let

uW—-B) = w(W-B)ifW>B
—Aug(B—W) if W < B,
where A is some positive constant. If we let A = A(WW,) and if 6 is the
optimal solution to A, then 6 is, typically, decreasing in A. The dynamics of

6 or W, with respect to W, can be deduced from the relationships 6 = 6()\)
and A = A\(Wp).

The optimal portfolio can be obtained with an appropriate choice of 6.
Let ut = E(y"*|ly > 0), u= = E((—y)*|y < 0), p = prob(y > 0). Since X in
equation (1) is equivalent to W0y, expected utility Uy 4 is given by

1 v1,,+ A v2,,—
Upa = —(Wo0)" v p — — (W) ?u™ (1 — p).
V1 Vo
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Thus the ..rst derivative with respect to 6 is
Up 4 = Woph”™ tu™ — AWE2(1 —p)6”= ™. (3)
Inspection of (3) shows that if v; = wv,, the optimal solution for 6 is 0
if Wotutp < AWg2u= (1 — p), or oo if Wilutp > AW 2u (1 — p). If the
inequality is an equality, ¢ is indeterminate since U; 4 IS zero.
Setting U; 4, = 0 and solving for the case v; # vy, We see that

B u+pW0”1—v2 ﬁ
= (AU‘(l—p)> @
B 1 u+p ﬁ
B Wo )\u*(l — p)
and .
_ +) _ —(1 _
Inf = —— In(u™p) F—— In(Au=(1—p)) (5)
when W, = 1.

In equations (4) and (5) the solution for @ is general. \We have, therefore,
the following proposition.

Proposition 2 If the investor has an LA utility function with vy # v; and
benchmark B = Wy (1 +r¢), then the optimal equity investment proportion ¢
in equation (4) can be obtained for any arbitrary probability density function.
Furthermore, 61/, is constant so we have constant absolute risk aversion.

Proof. For the ..rst part, the proof is given above. The second argument
can be proved with equation (4), since the dollar amount in equity is 61/,

and,
B utp vp—v1
OWo = (Au(l—p)) ’
which is independent of W,. QED. B

Proposition 3 If the investor has an LA utility function with vy # vy,
B = Wy(1 + ), and the proportion of wealth held in equity is an increas-
ing function of the probability that equity outperforms cash, then we have
vy —v1 > 0.

Proof. Since the proportion of wealth in equity goes up with the probability
of a gain, the partial derivative of In # with respect to In p should be positive,
i.e., 26 ~ (. Thus, from equation (5),

' Olnp
dlng 1
Olnp  (vg —v1)(1 —p)

4
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The condition that satis..es the above equation is v, — v; > 0. QED. B

Proposition 2 is a sensible constraint since it implies that the proportion
of wealth held in equity goes up if the probability of a gain goes up (ceteris
paribus, other than that the probability of a loss goes down automatically).
We now ask what behaviour is ruled out? For example, if v; > 1 and v, < 1
so that we are risk loving for both gains and losses, this would be ruled out
by the obvious constraint. If v, > 1 so that we are risk averse for losses we
can still be risk loving for gains as long as v; < v,. Obviously risk neutrality
for losses and risk loving for gains is also excluded.

Remark 2 In the general case, if the investor is risk averse for gains and
losses, then v, > 1, v; < 1 and v, — vy is positive, in this case Z2E is
positive and 5% and 2% are negative.

Remark 3 If W issetto 1 and 0 < # < 1, then any positive v, — v; would
imply from (4) that u™p < Au= (1 — p).

3 Empirical Tests

In this section, we suggest appropriate sets of v;, v, and 6 for the UK and
US markets under the assumption that the excess returns of risky asset in
(2) are normally distributed. However, in many cases, normality is not an
appropriate assumption. As an alternative to the normal distribution, we
use the KST distribution. Some additional explanation on our distributional
assumptions and our empirical results follow.

3.1 KST and Normal Distributions

Since the optimal # can be obtained with any distribution, we can calculate
the optimal 6 for the most widely used distribution, the normal distribution,
and an alternative, the KST distribution which we de..ne next. Let y; be the
excess return at time ¢,

Y=+ ez —en(l —2), (6)

where p is the mean of y;, and z; is a binary indicator variable with probability
p, and e1; and eq; are independent non-negative randon variables. Then, the
pdf of y; is,
pfi(ye — p) for yp > p
d, 7
pdf(y) =1 (1 =p)folp —ye) for y, < p, "



where f; and f> are pdf’s. In our study, u is set to zero because the expec-
tations uw"and «~ are conditional on y; > 0 or ¥, < 0.

The ..rst case we consider is the KST distribution. The KST distribution
is designed to capture the asymmetry in upward and downward asset returns.
The pdf’s of the KST distribution, f; and f5, are assumed in this paper to
be the scale Gamma distribution;

& a;—1
) = { Ty op(=6@) for e >0 ®)
0 otherwise,

for i =1 and 2. Thus, when p = 1/2, £, = &, and a; = a», the pdf becomes
symmmetric. Although in this paper, we assume that r; is iid, it is straight-
forward to extend this model to make . time dependent and let z; follow a
Markov process. See Bond (2001) or Damant, Hwang, and Satchell (1999)
for example.

With the KST distribution, we can obtain analytical results for ™ and
u~ with the KST distribution. As explained above, the KST distribution
provides us with a closed form solution for «™ and »~ in (4) as well as
capturing the asymmetric properties of asset returns. Note that in the case
of the gamma distribution,

ut = E(y™y>0)

= /Oooy”lf( )dy

oel 1
= / Yy 1 eXp(—£1y)dy
,Ul_l_al / S'Ul“!‘al vita;—1
= exp(— d
() (o1 + o) p(—§1y)dy
F(Ul—i—&l)
' (an)

since

£v1+a1 v1tai—1
. exp(—&1y)dy = 1.

Ul + Oél
Likewise

um = E((-y)”ly<0)

= /Ooo y” f2(y)dy

1

_ w2 Y™
= /0 y F(az) exp(—&qy)dy

F(UQ + 042)
>’ I(ag)
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since

é-vngaz votag—1
/ exp(—&qy)dy = 1.

UQ + Oéz)
Therefore, for the KST distribution,

Upa = p(WOQ) ut —(1- )/\(WOQ) ,
(A (%)
where
+ F(’Ul + Oél)
u = im0
§7' T (an)
_ F(Ug + Oéz)
£y (a)

The second case we consider is the frequently used normal distribution
which is used for comparison purpose in this study. The normal distribution
function for a variable x is

1

B 2ro

f(z)

exp l—%l for x > 0 9

where ; and o are mean and standard deviation of the variable z. Note that
in the above normal distribution, we do not use dicerent paramaters for the
negative and positive returns and thus it does not capture the asymmertic
property of the asset returns. In addition, analytical derivation for »* and
u™ is di¢cult and in this study, we calculate them numerically. It is worth

noting that
[ (y—M1)2

= —=—\d

/ 271'0'1 b i 20% Y

e () )

YY)~ Ko

= ——= | d
/ 27ro'2 *Xp i 20‘% ] 4

3.2 Empirical Testing

For the two distributions above, we use UK and US ..nancial data to capture
the asset allocation decisions of typical UK and US investors. That is, we
use equation (4) to obtain sensible sets of v; and v, for a given level of the
investment proportion on risky assets.

As pointed out in Damant, Hwang, and Satchell (2000), if we treat such
an investor as a pension scheme, it is necessary to consider at least several



dicerent asset classes which need a great deal of data and information. In-
stead, as discussed earlier, we shall concentrate on a stripped-down version of
the problem, namely, two asset classes. This simpli..ed version which consists
of a riskfree asset and an equity (risky asset) is consistent with the setting
we used above for the optimal portfolio with loss aversion. Note that the
investment proportion in domestic and foreign equity in 1993 was 83% for
large pension funds in the UK, while in the USA it was 46%!.

For the riskfree and equity, we use the three month UK treasury bill and
the FT All-share for the UK market and the three month US treasury bill
and the S&P500 for the US market. Thus in the above loss aversion utility
the benchmark is represented by the three month treasury bill interest rate.

The monthly treasury bill rate and the market index return from January
1980 to February 2001 for a total of 254 monthly observations are used. In
addition, to investigate time-varying properties of the returns, we divide the
entire sample period into two arbitrary sub-samples; the ..rst sub-sample from
January 1980 to December 1989 and the second sub-sample from January
1990 to February 2001.

We ..rst report the statistical properties of the data in table 1. The mean
and standard deviation of the UK returns are similar to those of the US
returns. Because of last several years’ high economic growth in the US, the
US market outperformed the UK market in the second sub-sample period.
The table also shows that the UK market returns are more negatively skewed
and fat-tailed than the US market returns. But most of the non-normality
in the UK market comes from the ..rst sub-sample period, and during the
second sub-sample period, the US market is more skewed and fat-tailed than
the UK market.

Overall, the monthly excess returns are not normal both in the UK and
US markets; Jarque-Bera statistics show that most excess returns are non-
normal. As is well-known, when empirical distributions are not normal, any
results obtained with the assumption of normality may be wrong. We need
to model the impact of asymmetry and fat-tail in returns.

We ..rst use the double gamma distribution as in (8) proposed by KST.
The double gamma distribution can be combined with the regime switching
model introduced by Hamilton (1989), if we assume that the binary indicator
variable z; in equation (6) follows a two-state Markov process. In this case,
the probability density function becomes complicated. See KST for further
discussion on regime switching double gamma pdf. The autocorrelation co-
eCcients reported in table 1 suggest that the excess returns are not serially

1These numbers were found in the following unpublished mimeos; MERCERS, Euro-
pean Pension Fund Managers (1993) and PDFM, Pension Fund Indicators (1991).



correlated. Thus, we do not pursue this complicated version any more here.

Table 2 reports the estimates of KST parameters with the excess returns
for p = 0. All estimates are signi..cant and similar to those reported in KST;
large values of £, and &,, and «; > 1 and as > 1. We can test symmetry by
the hypothesis ¢, = &,, and «; = as. During the ..rst sub-period, the excess
returns seem to be asymmetric, but the estimates of the second sub-period
show that excess returns may be symmetric. In addition, the density has
maximum value at («;—1)/&; when a; > 1. In our case, the estimates of «; are
all larger than one and thus has miximum value; for example, for the second
sub-period in the UK market, the conditional densities for both positive
and negative excess returns have maximum value at (a; — 1) /€, = (1.244 —
1)/40.403 = 0.006, and (ax—1) /&, = (1.109—1)/33.002 = 0.003, respectively.
In addition, the likelihood ratio tests with the maximum likelihood values
(not reported) suggest that there is no signi..cant dicerence between the ..rst
and the second sub-periods. Thus we use the estimates obtained with the
full samples.

Using the paramater values estimated in table 2, we ..rst calibrated the
values of 6 for given values of v;, vy, and \. The ranges of v; and v, were set
from 0.2 to 20, respectively, and A was set to 1.5, 2.25, and 3. We used the
Newton-Raphson algorithm on equation (4) with the assumption of W, = 1
to calculate 4.

Table 3 shows the investment proportion, 6, for the settings in the UK
market. We ..rst investigate the results for the case of A = 2.25 in panel
A, which shows that when v; > vy, the values of 6 were at least more than
2000%, which is too large to accept. The results con..rms the admissible
ranges suggested in Proposition 2. However, for the investors who are risk
averse for gains and losses as in Remark 1, we still have too large investment
proportions, i.e., 300% to 1600%. See bold numbers in panel A of table 3. The
table also suggests that when v, —v; > 0 and v; and v, are close to each other,
it is possible to explain the UK and USA investment proportions in equity
(i.e., 83% and 46% for large pension funds in the UK and USA, respectively).
These results are roughly consistent with other multi-period studies where
v, and vy are assumed to have the same value. See Kahnemann and Tversky
(1979), Ang, Bekeart, and Liu (2000) and Benartzi and Thaler (1995), for
example. In addition, as expected, comparing panel A with panels B and
C shows that when the penalty to loss becomes larger, A = 3, investment
proportions on equity decrease, and vice versa.

We now further investigate what may be appropriate sets of v; and v, to

2We do not report the USA cases which are similar to those of the UK. The results in
the USA market can be obtained upon request from the authors.



explain the UK and USA markets. We ..rst set v; to a value between 0.1 to 2.
Other previous studies used 0.88 (Kahnemann and Tversky, 1979, and Ang,
Bekeart, and Liu, 2000) or 1 (Benartzi and Thaler, 1995). The choice of v,
is closely related with the admissible range of the coe€cient of the CRRA.
Many previous studies, either theorectically or empirically, suggest that the
admissable range of the coe€cient of the CRRA should be between one and
two. See Arrow(1971), Tobin and Dolde (1971), Friend and Blume (1975),
Kydland and Prescott (1982), and Kehoe (1984), for example.

Then, appropriate values of v, are calculated with equation (4) for given
values of v;, 6, and A, and the results are reported in tables 4 and 5 for the
UK and USA markets, respectively. The Newton-Raphson algorithm is used
on equation (4) with the assumption of W, = 1 to calculate v,. Since the
investment proportions in equity in the UK and USA are dicerent, we use
dicerent values of ¢ for the UK and US markets; for the UK market, we use
0.5 <60 <1 and for the US market we use 0.3 <60 < 1.

The ..rst panels of tables 4 and 5 shows the case of A = 2.25 which is
used in most studies. In this case, we have v, — v; > 0 for all given values.
However, we ..nd evidence that the representative agents on both side of the
atlantic are risk averse for gains and losses. That is, v, > 1 and v; < 1 can
be obtained only when v, is very close to one, since the dicerence between
vy and vy is not large. In most cases, 0 < vy —v; < 0.3. In particular, for the
representative UK investor (¢ = 0.83) who is risk averse for gain (v; < 1),
the dinerence between v, and v is less than 0.1, and a similar pattern is
found in the USA market. As explained above, these results do dicer from
many other multi-period studies which simply use v; = v,. However, to be
more precise, we need v, to be larger than v;.

As explained in table 3, for a given value of v, the values of vy increase
as A increases; see panels B and C in tables 4 and 5. Interestingly, when
A = 1.5, and for some ranges of v;, the values of v, are less than those of
vy. See panel B of tables 4 and 5. Since we expect v, > vy, these results
are unacceptable and suggest that the arbitrary value A = 1.5 is too small.
Thus, our results indirectly indicate that A = 2.25 which is widely used in
empirical ..nance is in the admissible range. In fact, all three parameters
in the LA utility function, v;, v, and ), are closely connected to each other
and a value of one parameter may not be justi..ed independently of other
parameters. Unfortunately, our study cannot reveal a unique set of v»; and
vy, but it does tell us what are appropriate sets of v; and v,. If we assume
v; = 0.88 as in Kahnemann and Tversky (1979) and others, then v, should
be around one.

Finally we use normal distribution to ..nd out the relationship between
0, v1, v and A. The same method described above is used here for the UK
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market except the normal distribution.® Using the estimates of mean and
standard deviation in table 1, we numerically calculated the values of ¢ for
given values of vq, v9, and X and reported the results in table 6. We could not
obtain the values of # when v, — v; < 0 and v; > 1 because of convergence
errors. Table 6 suggests that the values of ¢ for the admissable ranges of
vy —v; > 0 are extremely large and unrealistic; i.e., at least 2600% when
A = 2.25! As explained in table 3, when A = 1.5 or A = 3, the equity
investment proportion increases or decreases.

We next calculate appropriate values of v, with equation (4) for given
values of vy, 6, and A under the normality assumption. The results in table
7 also con..rm that v, and v, are close. However, when tables 4 and 7 are
compared, the values of v, obtained with normality are always less than
those with the KST distribution. As a result of this, when A = 1.5, we
have v; > vy which contradicts proposition 2. In addition, when A = 2.25
and v; > 1, we also have v; > vy. Only when X is large enough, i.e., large
panalty for losses, proposition 2 is satistied. This is because normality does
not capture extreme events adequately and thus we need large value of A to
compensate. For any distribution such as the KST distribution which can
explain fat-tails of returns, we do not need large \. Therefore, the results in
tables 6 and 7 indicate that we should be more careful when we use normality
for the LA utility function.

4 Conclusions

In this study we used the LA utility function to explain the asset allocation.
We ..rst developed a few conditions that the LA utility function should sat-
isfy. We showed that under fairly general conditions, the LA utility function
becomes CARA class of utility functions. This is an interesting result in the
sense that bahavoural ..nance such as prospect theory can be explained with
the expected utility theory. In addition, we also proved that the curvature
for the losses (v2) should be larger than that for the gains (v;). This result
IS important because so far most studies such as Kahnemann and Tversky
(1979), Benartzi and Thaler (1995), and Ang, Bekeart, and Liu (2000) used
the same value for v; and vs.

These results are supported by the empirical tests. In this study, we used
a fairly general asymmetric distribution, Knight, Satchell and Tran (1995)
distribution for the UK and US markets. We found that v; and v, are close to
each other and v, — vy is positive for the ranges of parameter values used by
other previous studies. For comparison purpose, however, when we assume

3The results of the US market are available from the authors upon request.
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normality for asset returns, our values of \ need to be larger since the normal
distribution does not capture the fat-tails of returns adequately. Thus under
normality, A may be larger than 2.25 which is used by many previous studies.
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A. FT All-share Index

Tablel Propertiesof FT All-share and S& P500 I ndex Returns

Returns

Mean Standard Deviation Skewness Excess Kurtosis Jarque-Bera Statistic
Entire Sample Period [FT All-share Index Returns 1.4778 4.7757 -1.0937 * 4.6576 280.23 *
(January 1980 - 3 Month Treasury Bill Returns 0.7706 0.2668 0.3514 * -1.0206 16.25 *
February 2001) |Excess Returns 0.7071 4.7782 -1.1444 * 4.6906 288.30 *
Sub-period 1 FT All-share Index Returns 1.9545 5.4103 -1.6334 * 6.3792 256.83 *
(January 1980 - 3 Month Treasury Bill Returns 0.9449 0.1858 0.4593 * -0.7005 6.67 *
December 1989)|Excess Returns 1.0096 5.4156 -1.6298 * 6.2323 247.33 *
Sub-period 2 FT All-share Index Returns 1.0509 4.0996 -0.1943 0.2596 1.22
(January 1990 - 3 Month Treasury Bill Returns 0.6146 0.2293 1.4753 * 1.0741 55.05 *
February 2001)|Excess Returns 0.4363 41271 -0.2576 0.1899 1.68
Lags Entire Sample Period Sub-period 1 Sub-period 2
(January 1980 - (January 1980 - (January 1990 -
Autocorrelations February 2001) December 1989) February 2001)
of Excess Returns 1 -0.0267 -0.0805 0.0584
2 -0.1133 -0.1010 -0.1219
3 -0.1016 -0.0860 -0.1444
4 0.0240 0.0186 0.0125
5 -0.0032 -0.0448 0.0316
6 -0.1109 -0.1188 -0.1548

Notes: A total number of 254 monthly returns are used to calculate the above table. * represents significance at 90% level.




B. S& P500 | ndex Returns

Mean Standard Deviation Skewness Excess Kurtosis Jarque-Bera Statistic
Entire Sample Period |S&P500 Index Returns 1.3398 4.4019 -0.6739 29716 112.68 *
(January 1980 - 3 Month Treasury Bill Returns 0.5620 0.2349 1.1985 1.1447 74.68 *
February 2001)|Excess Returns 0.7777 4.4230 -0.6741 2.8098 102.79 *
Sub-period 1 S& P500 Index Log-returns 14721 4.7445 -0.7913 4.0931 96.29 *
(January 1980 - 3 Month Treasury Bill Returns 0.7307 0.2280 0.8750 -0.1112 15.38 *
December 1989)|Excess Returns 0.7414 4.7837 -0.7458 3.7082 79.88 *
Sub-period 2 S& P500 Index Log-returns 1.2213 4.0851 -0.5389 1.1294 13.61 *
(January 1990 - 3 Month Treasury Bill Returns 0.4110 0.0992 0.2801 0.2538 211
February 2001)|Excess Returns 0.8103 4.0910 -0.5582 1.1411 14.23 *
Lags Entire Sample Period Sub-period 1 Sub-period 2
(January 1980 - (January 1980 - (January 1990 -
Autocorrelations February 2001) December 1989) February 2001)
of Excess Returns 1 -0.0290 0.0563 -0.1349
2 -0.0293 -0.0791 0.0349
3 -0.0365 -0.0672 -0.0141
4 -0.0733 -0.0311 -0.1355
5 0.1098 0.1571 0.0542
6 -0.0329 0.0361 -0.1005

Notes: A total number of 254 monthly returns are used to calculate the above table. * represents significance at 90% level.




A. FT All-share I ndex Excess Returns

Table2 Estimatesof KST Parametersfor the UK Returns

Entire Sample Period
(January 1980 - February 2001)

Sub-period 1
(January 1980 - December 1989)

Sub-period 2
(January 1990 - February 2001)

X1 42.256 (5.136) 48.420 (8.162) 40.403 (7.061)
a; 1.467 (0.150) 1.870 (0.275) 1.244 (0.178)
Xy 27.751 (4.484) 23.495 (5.818) 33.002 (7.008)
a, 1.066 (0.136) 1.054 (0.206) 1.109 (0.188)
Probability of Positive Excess Return (p) 0.622 0.658 0.590
Maximum Likelihood Value 427.896 194.958 238.115
B. S& P500 I ndex Excess Returns
Entire Sample Period Sub-period 1 Sub-period 2

(January 1980 - February 2001)

(January 1980 - December 1989)

(January 1990 - February 2001)

X1 40.296 (4.968) 37.426 (6.868) 43.439 (7.225)

a; 1.395 (0.144) 1.394 (0.213) 1.410 (0.196)

Xy 34.249 (5.384) 29.747 (6.698) 40.644 (8.917)

a, 1.173 (0.149) 1.022 (0.180) 1.388 (0.254)
Probability of Positive Excess Return (p) 0.610 0.583 0.634
Maximum Likelihood Value 437.035 199.495 239.119

Notes: The estimates are obatined with maximum likelihood estimation for the pdf function in equations (3) and (4).




Table 3 Proportion in Equity for Given Setsof v, and v, for the Entire Sample Period
for the UK Market with the KST Distribution

A. TheProportion in Equity (q) for the Entire Sample Period (January 1980-February 2001) with | =2.25

Vol 0.2 04 0.6 0.8 1.0 12 14 16 18 20 30 50 100 200
0.2 15403 66.04 4778 3953 3458 3116 2858 2653 2484 19.26 1373 825 4.69
0.4 6.48 14243 59.68 43.04 3565 3127 2826 2599 2420 1859 1326 8.03 4.60
06 |1279 501 141.21 56.23 40.01 3299 2890 2612 2406 1812 1288 7.84 452
0.8 | 1519 1036 3.79 14760 54.69 3811 3115 2718 2453 1785 1257 7.67 444
10 | 1598 1259 840 282 160.78 5454 3699 2989 2592 17.7/8 1233 752 438
12 | 1607 1346 1050 6.81 207 181.06 5551 3648 29.05 1793 1214 739 432
14 | 1583 1370 1143 880 552 150 20954 5746 3645 1838 1202 727 4.26
16 | 1544 1363 11.78 976 740 447 108 24809 6033 1925 1194 717 421
18 | 1499 1341 1184 1020 838 624 362 077 29946 20.78 1193 7.07 4.16
20 (1451 1311 1175 1036 888 722 528 294 0.55 2353 1198 699 411
30 | 1226 11.37 1054 974 89 819 739 6.56 5.67 4.69 13.79 6.74 3.93
5.0 917 868 823 780 740 702 665 6.29 5.94 560 3.79 701 3.70

10.0 561 541 522 504 488 472 458 444 4.30 417 358 252 3.81
20.0 317 310 303 29 290 284 278 273 2.68 263 240 203 128

B. The Proportion in Equity (q) for the Entire Sample Period (January 1980-February 2001) with | =1.5

Vol 0.2 04 0.6 0.8 1.0 12 14 16 18 2.0 3.0 50 100 20.0

0.2 2028 2396 2431 2381 2306 2223 21.39 2059 1983 16.67 1262 7.92 4.59
0.4] 49.21 1876 2166 2190 2148 2085 20.15 1946 1878 1590 12.14 7.70 4.50
0.6 35.23 38.08 1860 2040 20.36 19.88 19.27 1863 1801 1531 1175 751 442
0.8 29.85 2856 28.81 1944 1984 1939 1877 1812 1749 1484 1142 734 435
10| 26.52 2476 23.15 2143 2117 1979 1882 1800 17.28 1451 1114 719 429
12| 2410 2234 2065 1876 15.72 2384 2015 1856 1750 1431 1091 7.05 422
142219 2055 1897 1730 1521 1141 2759 20.85 1855 14.27 1074 6.93 4.17
16[ 2063 19.12 1767 1620 1455 1232 821 3267 2189 1441 1060 6.83 412
18} 1931 1792 16.60 1530 1391 1227 999 586 3943 1482 1051 6.73 4.07
20[ 1817 1689 1569 1452 1331 1199 1037 8.10 4.16 1568 1047 6.65 4.02
30] 1417 1329 1248 1171 1098 1025 952 877 7.95 7.03 1126 636 3.83
50[ 998 948 902 859 819 781 745 7.09 6.75 6.41 4.64 6.46 3.60
100 584 564 545 527 510 495 480 4.65 4.52 439 379 274 3.66

200] 324 316 309 302 29 29 284 279 2.74 269 246 208 133

C. TheProportion in Equity (q) for the Entire Sample Period (January 1980-February 2001) with | =3

Vol 0.2 0.4 0.6 0.8 1.0 12 14 1.6 18 20 30 50 100 20.0

0.2 649.07 13556 77.17 56.64 4611 3960 3510 3176 29.15 21.35 1458 850 4.75
04| 154 600.22 12252 6952 51.08 4169 3591 3192 2897 20.76 1412 828 4.67
06| 623 119 595.07 11542 64.63 47.27 3854 3320 2954 2043 1375 808 4.58
08 940 505 090 621.96 112.26 6155 4463 3624 3117 2034 1346 791 451
10 11.15 780 4.09 0.67 67752 111.96 59.75 4282 3456 20.53 1325 7.76 445
12[ 1205 939 650 332 049 762.98 11396 5893 4163 21.04 1310 7.63 4.38
14| 1246 1028 798 545 269 0.36 88299 11796 58.88 22.00 1301 7.52 433
16f 1257 1073 884 681 458 218 0.26 104543 123.84 23.64 13.00 742 4.27
18} 1252 1092 932 765 58 38 177/ 018 1261.91 26.41 1305 7.33 4.23
201236 1095 95 815 666 504 327 143 0.13 31.37 1319 725 4.18
30[ 11.06 1018 935 855 776 698 618 534 4.46 3.52 1592 7.02 399
50( 864 816 771 729 689 651 614 578 543 508 3.28 742 377
100 544 525 506 489 473 457 443 429 4.15 4.02 343 238 3.92

200 313 305 298 292 28 280 274 269 2.63 258 236 199 124

Notes: The proportions in the table are cal culated with the estimates of the KST distribution for the entire sample period;
seetables1 and 2. That is, x 1 =42.256, a ; =1.467, X ,=27.752, a ,=1.066, and p=0.622. Bold Values are the cases that
investors arerisk averse for gains and losses and v, -v; is positive asin Ramark 1.




Table4 TheValuesof v, for Given Setsof v, and Investment Proportion in Equity for the
Entire Sample Period (January 1980-February 2001) in the UK Market with the KST Distribution

A. The Estimated Values of v, for Given Setsof v, and g with | =2.25

vi\g 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
01 0.172 0.175 0.178 0.179 0.181 0.182 0.183 0.185 0.186
0.3 0.377 0.381 0.384 0.386 0.388 0.389 0.391 0.392 0.394
0.5 0.586 0.590 0.594 0.596 0.598 0.600 0.601 0.603 0.605
0.7 0.797 0.802 0.807 0.809 0.811 0.813 0.815 0.817 0.819
0.9 1.010 1.016 1.022 1.025 1.027 1.030 1.032 1.035 1.037
11 1.226 1.233 1.240 1.243 1.246 1.249 1.252 1.255 1.258
13 1.443 1451 1.459 1.463 1.467 1471 1474 1478 1.481
15 1.662 1.672 1.681 1.686 1.690 1.694 1.699 1.703 1.707
1.7 1.883 1.894 1.905 1.910 1.916 1.921 1.926 1.931 1.936
19 2.105 2.119 2131 2.137 2.143 2.149 2.155 2.161 2.167
2.0 2.217 2.231 2.245 2.251 2.258 2.264 2.271 2.277 2.283

B. The Estimated Values of v, for Given Sets of v, and q with | =1.5

vi\g 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.078 0.077 0.076 0.076 0.075 0.075 0.075 0.074 0.074
0.3 0.278 0.277 0.276 0.276 0.275 0.275 0.275 0.274 0.274
05 0.482 0.481 0.480 0.480 0.479 0.479 0.478 0.478 0.478
0.7 0.688 0.688 0.687 0.687 0.686 0.686 0.686 0.686 0.685
09 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.896 0.896
11 1.108 1.109 1.109 1.109 1.110 1.110 1.110 1.110 1.110
13 1.322 1.323 1.324 1.325 1.325 1.326 1.326 1.327 1.327
15 1.537 1.539 1.541 1.542 1.543 1.544 1.545 1.546 1.547
17 1.754 1.757 1.760 1.762 1.763 1.765 1.766 1.768 1.769
19 1.973 1.977 1.982 1.984 1.986 1.988 1.990 1.992 1.994
2.0 2.083 2.088 2.093 2.095 2.098 2.100 2.102 2.105 2.107

C. The Estimated Values of v, for Given Sets of v, and q with | =3

vi\g 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
01 0.240 0.247 0.252 0.255 0.258 0.261 0.263 0.266 0.268
0.3 0.449 0.457 0.463 0.466 0.469 0.472 0.475 0.478 0.481
0.5 0.661 0.669 0.677 0.681 0.684 0.688 0.691 0.694 0.698
0.7 0.876 0.885 0.894 0.898 0.902 0.906 0.910 0.913 0.917
0.9 1.092 1.103 1.113 1.117 1.122 1.127 1131 1.135 1.140
11 1.310 1.322 1.334 1.339 1.345 1.350 1.355 1.360 1.365
13 1531 1544 1.557 1.563 1.569 1576 1.581 1.587 1.593
15 1.752 1.768 1.783 1.790 1.797 1.804 1.810 1.817 1.824
1.7 1.976 1.993 2.010 2.018 2.026 2.034 2.041 2.049 2.057
19 2201 2221 2.239 2.248 2.257 2.266 2.275 2.284 2.292
2.0 2.314 2.335 2.355 2.364 2.374 2.383 2.393 2.402 2411

Notes: The values of v, are calculated with the estimates of the KST distribution for the entire sample period;
seetables1 and 2. That is, x ; =42.256, a ; =1.467, X ,=27.752, a ,=1.066, and p=0.622.



Table5 TheValuesof v, for Given Setsof v, and Investment Proportion in Equity for the
Entire Sample Period (January 1980-February 2001) in the US Market with the KST Distribution

A. The Estimated Values of v, for Given Setsof v, and q with | =2.25

vi\g 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.9 1

01 0172 0177 0179 0181 0183 0184 0186 0188 0191 0194 0.196
0.3 0373 0378 0380 0383 0384 038 038 039 0393 0.39% 0.399
05 0576 0581 0583 058 0587 0589 0591 0593 0597 0.600 0.603
0.7 0778 0784 0786 0789 0.791 0.793 0.795 0.797 0801 0.805 0.809
0.9 0982 0988 0991 0993 099% 0998 1000 1003 1007 1.011 1.015

11 1186 1193 119 1199 1201 1204 1206 1209 1213 1218 1222
13 1391 1398 1401 1404 1407 1410 1413 1416 1421 1426 1430
15 159 1604 1608 1.611 1614 1617 1620 1623 1629 1634 1.640
17 1802 1811 1814 1818 1822 1825 1828 1832 1838 1844 1850
1.9 2009 2018 2022 2026 2030 2033 2037 2040 2047 2054 2.060

2.0 2112 2121 2126 2130 2134 2138 2141 2145 2152 2159 2.166

B. The Estimated Values of v, for Given Setsof v, and q with | =1.5

vi\g 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.9 1

01 0.090 0.089 0.089 008 0088 0.088 0.088 0.088 0.087 0.087 0.086
0.3 0287 028 028 028 028 028 028 0284 0284 0283 0.283
05 0486 0485 0485 0484 0484 0483 0483 0483 0482 0481 0481
0.7 0.686 0.685 0684 0684 0684 0.683 0683 0682 0682 0.681 0.680
0.9 0.887 0886 088 088 0884 0.884 0884 0883 0883 0.882 0.881

11 1088 1087 1087 1.087 1086 108 108 1.08 1.085 1084 1.083
13 1290 1290 1289 1289 1289 1289 1288 1288 1287 1287 1286
15 1493 1493 1493 1492 1492 1492 1492 1492 1491 1491 1491
1.7 1697 1697 1697 169 169 169 1696 169 1.696 1.696 1.696
1.9 1901 1901 1901 1901 1901 1901 1901 1901 1901 1901 1.901

2.0 2003 2003 2.004 2.004 2004 2004 2.004 2.004 2.004 2004 2.005

C. The Estimated Values of v, for Given Sets of v, and qwith | =3

vi\g 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.9 1

01 0232 0240 0244 0248 0251 0254 0257 0260 0266 0271 0.277
0.3 0436 0445 0449 0453 0456 0460 0463 0466 0472 0478 0484
05 0.640 0.650 0.654 0658 0662 0.666 0.669 0673 0680 0.686 0.692
0.7 0.845 0855 0860 0864 0869 0.873 0877 0881 0888 0.895 0.902

0.9 1051 1062 1067 1.072 1076 1081 108 1089 1.097 1104 1112
11 1257 1269 1274 1279 1284 1289 1294 1298 1307 1315 1323
13 1463 1476 1482 1487 1493 1498 1503 1508 1517 1526 1.535
15 1670 1684 1690 1.69% 1702 1708 1713 1718 1.728 1738 1.748
1.7 1878 1892 1899 1906 1912 1918 1923 1929 1940 1951 1961
1.9 208 2101 2108 2115 2122 2128 2135 2141 2153 2164 2175

2.0 2190 2206 2213 2220 2227 2234 2240 2247 2259 2271 2.283

Notes: The values of v, are calculated with the estimates of the KST distribution for the entire sample period;
seetables1and 2. That is, x ; =42.256, a 1 =1.467, X ,=27.752, a ,=1.066, and p=0.622.



Table6 Proportion in Equity for Given Setsof v, and v, for the Entire Sample Period
for the UK Market with the Normal Distribution

A. The Proportion in Equity (q) for the Entire Sample Period (January 1980-February 2001) with | =2.25

Volvg 0.1 0.3 0.5 0.7 0.9
0.1
0.3 34.72
0.5 40.71 37.20
0.7 40.57 38.72 38.86
0.9 39.05 37.37 36.78 39.46
11 37.22 35.59 34.64 34.82 39.09
13 35.43 33.84 32.75 32.26 32.85
15 33.77 32.25 3111 30.36 30.15
17 32.27 30.82 29.69 28.85 28.31
19 30.93 29.56 28.45 27.58 26.94
2.0 30.32 28.98 27.89 27.02 26.36

B. The Proportion in Equity (g) for the Entire Sample Period (January 1980-February 2001) with | =1.5

Volvg 0.1 0.3 0.5 0.7 0.9
0.1
0.3 263.67
0.5 112.18 282.48
0.7 79.74 106.69 295.08
0.9 64.82 73.45 101.35 299.60
11 55.83 59.08 68.10 95.98 296.73
13 49.67 50.76 54.37 63.41 90.66
15 45.11 45.21 46.67 50.41 59.26
17 41.58 41.17 41.62 43.27 47.03
19 38.75 38.08 38.01 38.67 40.41
2.0 37.53 36.78 36.55 36.91 38.10

C. The Proportion in Equity (q) for the Entire Sample Period (January 1980-February 2001) with | =3

Volvg 0.1 0.3 0.5 0.7 0.9
0.1
0.3 8.24
0.5 19.83 8.83
0.7 25.12 18.86 9.22
0.9 27.25 23.14 17.92 9.37
11 27.92 24.84 21.45 16.97 9.28
13 27.88 25.38 22.86 19.97 16.03
15 27.50 25.37 23.33 21.19 18.66
17 26.96 25.10 23.36 21.64 19.77
19 26.36 24.69 23.17 21.70 20.21
2.0 26.06 24.47 23.03 21.66 20.29

Notes: The proportionsin the table are calculated with the estimates of the normal distribution for the entire
sample period; see table 1 for the parameter values. Bold Values are the cases that investors are risk averse
for gains and losses and losses and v, -V, is positive asin Proposition 2.




Table7 TheValuesof v, for Given Setsof v, and Investment Proportion in Equity for the
Entire Sample Period (January 1980-February 2001) in the UK Market with the Normal Distribution

A. The Estimated Values of v, for Given Sets of v; and q with | =2.25

vi\q 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.121 0.122 0.123 0.123 0.123 0.124 0.124 0.124 0.125
0.3 0.311 0.311 0.312 0.312 0.312 0.312 0.312 0.312 0.313
0.5 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502
0.7 0.694 0.694 0.694 0.694 0.693 0.693 0.693 0.693 0.693
0.9 0.888 0.888 0.887 0.887 0.887 0.887 0.887 0.886 0.886
11 1.084 1.084 1.083 1.083 1.082 1.082 1.082 1.081 1.081
13 1.282 1.281 1.280 1.280 1.279 1.279 1.279 1.278 1.278
15 1.480 1.479 1.478 1.478 1477 1477 1477 1.476 1.476
17 1.679 1.678 1.677 1.677 1.676 1.676 1.676 1.675 1.675
19 1.879 1.878 1.877 1.877 1.876 1.876 1.875 1.875 1.874
2.0 1.979 1.978 1.977 1.977 1.976 1.976 1.975 1.975 1.975

B. The Estimated Values of v, for Given Setsof v; and q with | =1.5

vi\q 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.038 0.036 0.033 0.032 0.031 0.030 0.029 0.029 0.028
0.3 0.224 0.221 0.218 0.217 0.216 0.215 0.213 0.212 0.211
0.5 0.412 0.408 0.405 0.403 0.401 0.400 0.399 0.397 0.396
0.7 0.601 0.597 0.593 0.591 0.589 0.587 0.586 0.584 0.582
0.9 0.792 0.787 0.783 0.781 0.779 0.777 0.775 0.773 0.771
11 0.985 0.980 0.975 0.973 0971 0.969 0.966 0.964 0.962
13 1.180 1.175 1.169 1.167 1.164 1.162 1.160 1.158 1.155
15 1.376 1.370 1.365 1.362 1.360 1.357 1.355 1.352 1.350
17 1574 1.568 1.562 1.559 1.556 1.554 1551 1.549 1.546
19 1772 1.765 1.759 1.757 1.754 1751 1.748 1.746 1.743
2.0 1.871 1.865 1.859 1.856 1.853 1.850 1.847 1.845 1.842

C. The Estimated Values of v, for Given Sets of v, and g with | =3

vi\q 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.1 0.181 0.184 0.187 0.189 0.190 0.191 0.192 0.194 0.195
0.3 0.373 0.376 0.379 0.380 0.381 0.383 0.384 0.385 0.386
0.5 0.566 0.569 0.572 0.573 0.574 0.575 0.577 0.578 0.579
0.7 0.761 0.764 0.766 0.768 0.769 0.770 0.771 0.772 0.773
0.9 0.958 0.960 0.963 0.964 0.965 0.966 0.967 0.968 0.969
11 1.155 1.158 1.160 1.162 1.163 1.164 1.165 1.166 1.167
13 1.354 1.357 1.359 1.361 1.362 1.363 1.364 1.365 1.366
15 1.554 1.557 1.559 1.561 1.562 1.563 1.564 1.565 1.566
17 1.755 1.758 1.760 1.761 1.763 1.764 1.765 1.766 1.767
19 1.956 1.959 1.961 1.963 1.964 1.965 1.966 1.967 1.969
2.0 2.056 2.059 2.062 2.063 2.065 2.066 2.067 2.068 2.069

Notes: The proportionsin the table are calculated with the estimates of the normal distribution for the entire
sample period; see table 1 for the parameter values.



