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Abstract. By formulating a nested test of the asymmetric response model

of Bawa, Brown, and Klein (1981), the mean-lower partial moment CAPM (LPM-

CAPM) of Bawa and Lindenberg (1977) and the mean-variance CAPM of Sharpe

(1963, 1964), Lintner (1965) and Mossin (1969), this paper investigates the rela-

tive merits of symmetric and asymmetric risk measures using UK equity data for

di®erently sized companies and at di®erent frequencies. Our analysis shows that,

when equity returns are not normal - which is the case for most daily and weekly

returns, and for a large portion of smaller ¯rms - the CAPM is rejected in 30%-50%

of cases, and the optimal choice of alternative model is LPM-CAPM in over two

thirds of these. These, and our further results, have strong consequences for the

accurate measurement of equity risk, performance and prices, as downside and/or

asymmetric risk measures often outperform the traditional CAPM framework, thus

rendering it's related and widely-used current approaches sub-optimal for some com-

pany sizes/data frequency combinations.

JEL Classi¯cations: C10, G12

Keywords: Risk, Asymmetric Returns, High Frequency Data, Small Companies

1. INTRODUCTION

Correctly measuring the risk of an asset, or a portfolio of assets, is of fundamental im-

portance for asset pricing and performance measurement in Finance. The most popular

equilibrium model which yields a measure of systemic market risk, or \beta", is the
¤We would like to thank Hashem Pesaran, Stephen Satchell and seminar participants at both the Fi-

nancial Econometrics Seminars at Cambridge University and The Third International Stockholm Seminar

on Risk Behaviour and Risk Management (1999) for useful comments. An earlier version of this paper

was presented at the Sixth Forecasting Financial Markets Conference in London (1999).
yThe opinions expressed in this article is that of the authors and independent of Oliver, Wyman &

Company
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mean-variance CAPM of Sharpe (1963 and 1964), Lintner (1965) and Mossin (1969).

Empirically, this imposes a parameter restriction on the joint distribution of market and

portfolio returns, which can be tested using a linear data-generating function.

Given the continuing criticism of the variance as risk measure and the well-documented

poor empirical performance of CAPM (see the excellent survey of Jagannathan and Mc-

Gratten (1995) for an extensive bibliography on this), several asset-pricing models which

serve as alternatives to CAPM have been proposed. Motivated by the belief that risk is

ultimately related to shortfall rather than volatility, such models typically imply downside

or asymmetric betas (see Bawa and Lindenberg (1977), Harlow and Rao (1989), Satchell

(1996) or Pedersen (1999b)). These models demand a more general data-generating func-

tion for asset returns, do not depend on mean-variance rules, and imply the use of alterna-

tive risk and performance measures, which complement or generalise the traditional trio

associated with CAPM (introduced in Treynor (1965), Sharpe (1966) and Jensen (1972)).

Such non-traditional measures have already appeared in di®erent guises in Finance liter-

ature and have the advantage of being able to capture asymmetries and fat tails in equity

returns (see Henriksson (1984), Henriksson and Merton (1981), Kim and Zumwalt (1979),

Fabozzi and Francis (1977 and 1979), Chen (1982), Bawa and Lindenberg (1977), Harlow

and Rao (1989), Sortino and Price (1996) or Pedersen and Satchell (1999)).

This paper empirically investigates which underlying data generating model best cap-

tures the essential features of some types of returns, thus de¯ning risk and performance

measures based on the best empirical ¯t to the data, whilst remaining within the bound-

aries of reasonable theoretical justi¯cation. This is a topic which has already attracted

some interest. For instance, Price, Price, and Nantell (1982) and Homaifar and Graddy

(1990) examine non-nested tests, which focus on average value di®erences - or the number

of positive di®erences - in the \betas" derived from two alternative models over a large

class of assets. However, both these studies assume betas are uncorrelated across assets

and that volatility is constant across both assets and markets, which is clearly violated

for any set of real ¯nancial asset classes. Roll (1973) and Grauer (1981) also address this

problem, but use a simple visual comparison of the implied security markets lines to infer

their conclusions. Most recently, the problem of modelling asymmetric risks has been at-

tacked from the angle of modelling conditional skewness (see Harvey and Siddique (1999)

for references) and estimation of more general non-linear pricing kernels (an excellent

summary of these is given in Dittmar (2000)).

Our analysis begins with the work of Harlow and Rao (1989) and Eftekhari and Satchell

(1996), who present a nested test of di®erences between CAPM and the mean-lower partial
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moment CAPM (LPM-CAPM) of Bawa and Lindenberg (1977). The LPM-CAPM is the

only model which both explicitly derives a systemic risk measure directly comparable

with the CAPM beta, whilst assuming individuals have sound axiomatic downside risk

preferences. By illustrating how this test depends on a maintained hypothesis in the

form of a non-linear parameter restriction, we derive a test for LPM-CAPM against a

more general asymmetric response model. Thus we e®ectively construct a nested test

for the di®erences in three risk measures, which are capable of capturing increasingly

"non-normal" features of asset returns; the traditional mean-variance CAPM beta, the

LPM-CAPM downside risk beta, and a general asymmetric measure of risk introduced

in Bawa, Brown and Klein (1981), which was extended to performance measurement in

Pedersen and Satchell (1999).

We use ten years daily, weekly, and monthly returns for FTSE100, FTSE250, and

FTSE SmallCap constituents in order to test the three models, since both company size

and data frequency have been well-documented as a®ecting skewness and kurtosis in

returns. We ¯nd that high frequency returns reject the mean-variance CAPM model

more frequently than monthly returns. This is consistent with lower frequency data

(which are temporal aggregates of higher frequency data) approaching normality via the

Central Limit Theorem. We also ¯nd that the rejection rate of the mean-variance CAPM

model increases for smaller companies. This re°ects the fact that small companies often

have more skewed and leptokurtotic returns due to lower trading volume, greater takeover

and acquisition speculation, and bankruptcy risk.

Conditional on returns data not rejecting a Bera-Jarque test for normality at the 5%

level, we con¯rm that the common perception that "when equity returns are conditionally

normal, use CAPM" is more or less accurate (in 88% of cases, this held true). Alarmingly,

though, for smaller companies and all companies with daily or weekly data - which were

non-normal in all of our cases - about 30-40% of cases typically required an alternative

model than CAPM. That is, whilst the CAPM is applicable for some small companies

and high frequency returns, one should conduct a more detailed analysis in these cases in

order to determine whether symmetric or asymmetric risk are the dominant explanatory

factors. Given the widespread and arbitrary use of CAPM in the industry today, this

could have severe consequences for risk and performance measurement, and asset pricing.

The paper is organised as follows: in the next section, we review the testing procedure

introduced by Harlow and Rao (1989) and later used by Eftekhari and Satchell (1996),

whilst Section 3 extends this and nests the three models we are testing. Section 4 considers

potential models of excess market returns and derives the precise forms of likelihoods
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needed for our analysis (with details in the Appendix). The data used for our main

empirical analysis is presented in Section 5 and results are discussed in Section 6. Section

7 is reserved for our conclusions.

2. THE HARLOW & RAO TEST FOR DOWNSIDE BETA

As alluded to in the Intnroduction, the two main theoretical models we shall test are

the Capital Asset Pricing Model (CAPM) of Sharpe (1963 and 1964), Lintner (1965) and

Mossin (1969), and the mean-lower partial moment CAPM (LPM-CAPM) of Bawa and

Lindenberg (1977). We refer the reader to the original texts for details of the theoretical

derivations of these models; for our purposes, we focus on the fact that the only di®erence

between them is that, rather than variance, the investors in the latter model minimise the

lower partial moment

h
E(min [0; Rp(t) ¡ Rf (t)]2)

i 1
2

(1)

where Rp(t) are portfolio returns at time t and Rf (t) the riskfree rate at time t, rather

than. The use of downside risk measures such as (1) has been advocated by a large num-

ber of theorists and practitioners (see, for instance, Markowitz (1952), Fishburn (1980),

Bawa (1975), Menezes, Geiss, and Tressler (1980), Sortino and Van der Meer (1991),

Balzer (1994), Kijima and Ohnishi (1993), and Pedersen (1999a) where an extensive re-

cent bibliography can be found). For the models under consideration, this change of risk

measure has only one main implication for the resulting pricing equation, namely that

the equilibrium measure of risk, the \beta", is di®erent in the two models. However, the

CAPM is always implied when returns are spherically symmetric or quadratic utility is

assumed (see Bawa and Lindenberg (1997), Chamberlain (1983), Ingersoll (1987), Chow

and Denning (1994) or Satchell (1996)). Hence, CAPM is nested in LPM-CAPM, which

suggests a role for standard statistical techniques to test for di®erences in the models.

The next section reviews existing applications of such tests and Section 3, by examining

an implicit restriction these rely upon, extends the analysis to derive a new test of the

LPM-CAPM against a more general asymmetric response model; this test then forms the

basis of our empirical investigations in Section 5.

2.1. The General Data Generating Function. In order to describe the economet-

ric relationship between the models, we appeal to the sample estimates of the two key
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equilibrium risk measures discussed above. In sample terms, CAPM beta is

b̄
CAPM =

cov (Rp; Rm)
var (Rm)

=

TP
t=1

¡
Rp(t) ¡ Rp

¢ ¡
Rm(t) ¡ Rm

¢

TP
t=1

¡
Rm(t) ¡ Rm

¢2
(2)

and LPM-CAPM beta is

b̄
LPM =

CLPMRf (Rp; Rm)
LPMRf (Rm)

=

TP
t=1

¡
Rp(t) ¡ Rf (t)

¢
min [0; Rm(t) ¡ Rf (t)]

TP
t=1

(min [0;Rm(t) ¡ Rf (t)])2
(3)

The underlying model which can capture both these is the asymmetric response model

Rp(t) ¡ Rf (t) = ¯1pR
¡
m(t) + ¯2pR

+
m (t) + ¼±(t) + "p(t) (4)

where R¡
m(t) = Rm(t)¡Rf (t) when Rm(t) < Rf (t) and zero otherwise, R+

m(t) = Rm(t)¡
Rf (t) when Rm(t) > Rf (t) and zero otherwise, and ±(t) is an index function which is one

when Rm(t) > Rf (t) and zero otherwise1. This model was ¯rst introduced by Bawa,

Brown, and Klein (1981), but has since been adapted by Harlow and Rao (1989) and

Eftekhari and Satchell (1996). Note that the market portfolio is split, which allows us to

capture asymmetric responses of portfolio returns to changes in market conditions. The

disturbances, "p(t), are serially uncorrelated, independent of all other variables, and have

mean zero.

To place this ¯rmly within popular ¯nance literature, it is worth brie°y establishing

further links to previous works. When ¼ = 0, (4) is the equation used by Kim and Zumwalt

(1979) to test for di®erences in CAPM-beta in Bull and Bear markets. Their work built

on the analysis of Fabozzi and Francis (1977 and 1979) and itself was extended to include

time-varying betas in Chen (1982). An identical empirical framework also formed the

basis for the tests of Henriksson (1984) and Henriksson and Merton (1981), who studied

the performance of market timers in Bull and Bear market conditions.

Both Harlow and Rao (1989) and Eftekhari and Satchell (1996) advance by assuming

that ¼ = Á
¡
¯1p ¡ ¯2p

¢
in (4), where Á is the conditional expectation of Rm(t) given that

Rm(t) > Rf (t), i.e.

Á = E [Rm(t) ¡ Rf (t) jRm(t) > Rf (t) ] =
E [R+

m(t)]
Pr(Rm(t) > Rf (t))

(5)

1For convenience, this assumes both mean-variance CAPM and LPM-CAPM are valid (i.e. that all

alphas of the assets are zero). However, one could insert a constant in the regression - the following

analysis would still be valid.
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This restriction is employed since it allows on to derive the desired test for distinguishing

between the equilibrium models. In it's present format, (4) without (5) does not allow

such a derivation (see Harlow and Rao (1989) for details). In particular, it can be shown

that, under the restriction imposed by (5), b̄
1p = b̄

LPM ; whilst b̄
2p measures the response

of the portfolio to upside market returns. Also, when ¼ = 0 and ¯1p = ¯2p in (4), b̄
1p =

b̄
CAPM . Thus, by testing the hypothesis

HCAPM : ¯1p = ¯2p and ¼ = 0 (6)

against the alternative

HLPM : ¯1p 6= ¯2p or ¼ 6= 0 (7)

given that ¼ = Á(¯1p ¡ ¯2p), one may establish a statistical di®erence between the two

models. The next section further elaborates on this and derives a new framework in which

the LPM-CAPM itself is tested against the asymmetric response model (4).

3. NESTING THREE ALTERNATIVE RISK MEASURES

We have thus highlighted how the critical assumption

¼ = Á
¡
¯1p ¡ ¯2p

¢
(8)

is needed to prove that the alternative model (7) in the original framework yields the

equilibrium LPM-CAPM beta2. However, it is also clear that (8) is a test of whether

LPM-CAPM is rejected against (4). Indeed, if (8) is rejected, both the LPM-CAPM and

the CAPM itself are rejected, and tests for their di®erence thus made redundant. Thus, we

note that by deriving our new nested testing procedure for LPM-CAPM, we also improve

the e±ciency of the original test for di®erences between CAPM and LPM-CAPM.

To derive these tests, we shall start with the general case - i.e. (4) without assuming

(8) - and then derive a test for

H1 : ¼ = Á
¡
¯1p ¡ ¯2p

¢
(9)

against

H1A : ¼ 6= Á
¡
¯1p ¡ ¯2p

¢
(10)

2Note that when ¼ = 0 and ¯1p = ¯2p, (8) is automatically satis¯ed for all Á. Hence, (8) is redundant

under the null hypothesis HCAPM .
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A rejection of H1 implies that the data is not well-described by either LPM-CAPM or

CAPM. This would speak in favour of the general asymmetric model (4) and its impli-

cations for risk and performance measurement, which were examined in Pedersen and

Satchell (1999). If we do not reject H1, we test

H2 : ¯1p = ¯2p (11)

against

H2A : ¯1p 6= ¯2p (12)

which then allows us to distinguish between CAPM and LPM-CAPM3.

We now present the main general steps in our procedure for testing these hypotheses.

The next section then discusses key distributions for the excess returns on the market.

Firstly, by adopting a suggestion by Eftekhari and Satchell (1996), we note that (4)

de¯nes Rp(t) as the conditional distribution of portfolio returns. If we assume that the

error "p(t) is distributed as a standard normal variable, the conditional likelihood of Rp(t)

given R+
m(t), R¡

m(t) and ±(t) is given by

pdf
¡
Rp(t)jR¡

m(t); R+
m(t); ±(t)

¢
=

1
¾
p

2¼
exp

·
¡ 1

2¾2

¡
Rp(t) ¡ ¯1pR

¡
m(t) ¡ ¯2pR

+
m(t) ¡ ¼ ±(t)

¢2
¸

(13)

Given the joint marginal distribution of R¡
m(t), R+

m(t) and ±(t), one can thus calculate a

full joint probability density function of fRp(t); R¡
m(t); R+

m(t); ±(t)g;

pdf
¡
Rp(t); R¡

m(t); R+
m(t); ±(t)

¢
= pdf

¡
Rp(t)jR¡

m(t); R+
m(t); ±(t)

¢
pdf

¡
R¡

m(t); R+
m(t); ±(t)

¢

(14)

where the ¯rst terms is given by (13) and the second determined by choosing an appro-

priate assumption for market returns (which we discuss in the next section). Given this

joint distribution, full likelihood functions can then be derived under all hypothesis. Note

that even if excess returns on the market were normal, this joint distribution (14) is not

necessarily multivariate normal, since we explicitly condition on R+
m(t), R¡

m(t) and ±(t) in

(13) and weigh them by the coe±cients ¯1p, ¯2p and ¼ respectively4. Hence, even in such

conditions, the CAPM will not be implied within our framework unless certain parameter

restrictions are satis¯ed..
3Note that H2 implies HCAPM - see (6) - since if ¼ = Á(¯1p¡¯2p) and ¯1p = ¯2p, then clearly ¼ = 0.

Also, H2A immediately implies HLPM - see (7). Hence, the stated hypothesis are su±cient.
4In fact, we can not in general obtain the functional form for the density function of Rp(t). However,

the moment-generating function can be obtained and consequently expressions for the central moments

of Rp(t) can be deduced (see Pedersen (1998) for details).



On Empirical Risk Measurement With Asymmetric Returns Data 8

Thus, once marginal distributions are determined for the excess market returns and the

full unrestricted likelihood function of fRp(t); R¡
m(t); R+

m(t); ±(t)g written down, Likeli-

hood Ratio Tests can easily be constructed by explicitly imposing (in turn) the restrictions

(9) and (11), and comparing the resulting likelihood estimates; this forms the overall ap-

proach we take to test for the appropriate model to use for di®erent size companies

and with di®erent data frequencies. We next address the question of which assump-

tions should be chosen for the probability density function of excess market returns,

pdf (R¡
m(t); R+

m(t); ±(t)), in the context of our chosen empirical analysis based on UK

returns data, enabling us to complete the last bit of the theoretical derivations.

4. EXCESS RETURNS ON THE MARKET

The problem of specifying a marginal distribution, pdf (R¡
m(t); R+

m(t); ±(t)) ; has recently

been addressed by Knight, Satchell, and Tran (1995), whose general approach is to split

the contributions of upside and downside excess returns using the identity

X(t) = ¹ + ±(t)X1(t) ¡ (1 ¡ ±(t))X2(t) (15)

where both X1(t) and X2(t) are non-negative variables, ±(t) is a switching variable, and

¹ is a constant. To be consistent with (4), we set ¹ = 0, X(t) = Rm(t) ¡ Rf (t), X1(t) =

R+
m(t), and X2(t) = ¡R¡

m(t). The negative sign in front of R¡
m(t) follows from the fact

that R¡
m(t) · 0, whilst we require X2(t) ¸ 0 in (15). Hence, (15) becomes

Rm(t) ¡ Rf (t) = ±(t)R+
m(t) ¡ (1 ¡ ±(t))

£
¡R¡

m(t)
¤

(16)

so we sample from R+
m(t) when ±(t) = 0 and from ¡R¡

m(t) when ±(t) = 1. The joint

marginal density function of R+
m(t), R¡

m(t) and ±(t) is thus given by

£
pdf(¡R¡

m(t))
¤±(t) £

£
pdf(R+

m(t))
¤1¡±(t) (17)

Depending on the data, di®erent assumptions can be made about R¡
m(t); R+

m(t) and ±(t)

and the explicit unconditional likelihood of fRp(t); R¡
m(t); R+

m(t); ±(t)g thus derived using

(14). We advocate the use of two such "split" distributions given the data to be analysed.

For our empirical analysis, we employ daily, weekly and monthly UK equity returns

over the period from 1 August 1991 to 31 July 2001; the FTSE All-share index and a

three-month UK Treasury Bill are used to calculate market returns and the risk-free rate.

The summary statistics of the returns on the All-share are given in Table 1. The results

indicate that the normal distribution may be suitable for monthly All-share returns, whilst
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- not unexpectedly - the Bera-Jarque test comfortably rejects normality for the weekly and

daily returns. Further investigation shows the signi¯cance of fat tails is the key source of

the non-normality in the daily market returns whilst weekly returns have both signi¯cant

skewness and excess kurtosis.

As a benchmark, the normal distribution has been ¯tted to excess returns on the

FTSE All-share and the results are summarised in Table 2. Note that whilst all means

¹ are insigni¯cant (t-ratios below 1.65), and thus the market risk premium is not sta-

tistically di®erent from zero, the volatilities are all signi¯cant. However, because of the

non-normality of the daily and weekly market returns shown in Table 1, the estimates in

Table 2 may not adequately re°ect the excess market returns in these cases.

Distributions such as those modelled by (16) allow alternative separate modelling of

negative and positive excess returns, which is appropriate given the above observations,

the Bera-Jarque tests and our objectives. In particular, we choose two di®erent distri-

butions; a mixture of truncated normal distributions which are continuous (CMTN) and

a structure mixing Gamma distributions (MG). Although they have very di®erent tails

characteristics and behaviour at zero, we shall show that they are both well-suited for our

purposes; excess market returns are better speci¯ed with the two split distributions than

with the normal distribution in high frequency data such as daily and weekly returns.

What is more, we shall see that all the results of our main tests are virtually identical

using these di®erent distributions, suggesting that our procedure is quite robust. We next

describe them in greater detail and derive the resulting likelihoods for testing (9) and

(11).

4.1. Continuous Mixed Truncated Normal (CMTN) Distributions. Our ¯rst

candidate distribution is a continuous mixed truncated normal distribution. (CMTN),

which nests the normal distribution but allows for asymmetry and excess kurtosis (fat

tails). To derive this, initially suppose that R+
m(t) and ¡R¡

m(t) are given by normal

distributions truncated below, i.e.

pdf(R+
m(t)) =

1
1 ¡ ©R+

m(t)(0)

"
1

¾1
p

2¼
e
¡ 1

2

µ
R+

m(t)¡¹1
¾1

¶2#
(18)

for R+
m(t) > 0 and zero elsewhere, where ¹1 and ¾1 are the mean and standard deviation

of a normal distribution with c.d.f. ©R+
m(t). Similarly

pdf(¡R¡
m(t)) =

1
1 ¡ ©¡R¡

m(t)(0)

"
1

¾2
p

2¼
e
¡ 1

2

µ
¡R¡

m(t)¡¹2
¾2

¶2#
(19)
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for ¡R¡
m(t) > 0 and zero elsewhere, where ¹2 and ¾2 are the mean and standard devi-

ation of a normal distribution with c.d.f. ©¡R¡
m(t); thus, R¡

m(t) is modelled as a normal

distribution truncated above.

Expressing ©R+
m(t) and ©¡R¡

m(t) in terms of ©, the c.d.f. of the standard normal

distribution and using (17), the joint marginal likelihood of R+
m(t), R¡

m(t) and ±(t) can be

given by

2
4 p³

1 ¡ ©
h
¡¹1

¾1

i´
¾1

p
2¼

e
¡ 1

2

µ
R+

m(t)¡¹1
¾1

¶2
3
5

±(t)

£

2
4 (1 ¡ p)³

1 ¡ ©
h
¡¹2

¾2

i´
¾2

p
2¼

e
¡ 1

2

µ
¡R¡

m(t)¡¹2
¾2

¶2
3
5

1¡±(t)

(20)

where ±(t) is an independent Bernoulli switching variable, which is one when Rm(t) >

Rf (t) and zero otherwise. In its present form (20) does not describe a distribution which

is continuous at zero; continuity is, however, a most desirable feature of distributions

used in statistical analysis. In addition, most ¯nancial return data - including the FTSE

All-share we use in our empirical section - has large clusters around zero which would

support such an assumption. Consider therefore the following Lemma, whose proof is in

the Appendix.

Lemma 1. The restriction

p =

e
¡ ¹2

2
2¾2

2

¾2

³
1¡©

h
¡ ¹2

¾2

i´

e
¡

¹2
1

2¾2
1

¾1

³
1¡©

h
¡ ¹1

¾1

i´ + e
¡

¹2
2

2¾2
2

¾2

³
1¡©

h
¡ ¹2

¾2

i´

(21)

is su±cient for continuity of the density whose likelihood is given by (20).

We label this combined distributional assumption - i.e. (20) where p is given by (21) -

as a continuous mixture of truncated normal distributions (CMTN). In Pedersen (1998),

the assumption (21) was tested using monthly FTSE returns data, and did not reject

continuity even at the 25% signi¯cance level5.

Table 3 reports the estimates of the CMTN for daily, weekly and monthly excess market

returns. Note that for both daily and weekly data, ¹1 and ¹2 are negative, suggesting that

the estimated CMTN is signi¯cantly a®ected by kurtosis and thus the probability density

function is not bell-shaped. By imposing ¹1 = ¹2 and ¾1 = ¾2, we used a Likelihood

Ratio Test (LRT) to test the assumption of normality in the data. The (LRT) statistic is
5We note that a further assumption of di®erentiability - which restricts the asymmetry allowed - was

rejected at the 10% level (see Pedersen (1998) for details).
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computed by

2(LLU ¡ LLR) » Â2(k) (22)

where LLU is log-likelihood of the CMTN distribution, LLR is the log-likelihood of the

normal distribution, and Â2(k) the chi-squared distribution with k degrees of freedom,

where k is the number of restrictions. Using the log-likelihood values of the normal and

CMTN distributions in Table 5, we calculated the LRT statistics for daily, weekly and

monthly returns and ¯nd that the LRT statistics are all signi¯cant and thus the returns

are better speci¯ed with the CMTN distribution.

As part of the choice of distribution, we shall also consider how well candidate dis-

tributions model Á. The parameter is key for our analysis and also helps us compute

how well the sample estimate of the market risk premium is replicated. For the normal

distribution, we need the following Lemma, which is also proved in the Appendix.

Lemma 2. If z s N
¡
¹; ¾2

¢
, then

Á = E [z jz > 0] = ¹ +
¾e¡ ¹2

2¾2

p
2¼

£
1 ¡ ©

¡
¡¹

¾

¢¤ (23)

and

E [z jz < 0] = ¹ ¡ ¾e¡ ¹2

2¾2

p
2¼©

¡
¡¹

¾

¢ (24)

where ©(:) is the cumulative density of a standard normal variable.

The estimates of Á and E [Rm(t) ¡ Rf (t) jRm(t) < Rf (t) ] can be obtained using Lemma

2, whilst p can be assessed from (21). For the CMTN distribution, the estimates of

daily Á and E [Rm(t) ¡ Rf (t) jRm(t) < Rf (t) ] are 0.63% and -0.63% respectively. Since

¾ = 0:0085 and ¹ = 0:0003, the probability of negative excess returns is ©
¡
¡¹

¾

¢
=

©(¡0:035) = 0:48, so the daily market risk premium is E [Rm(t) ¡ Rf (t)] = (0:52)(0:63%)+

(0:48)(¡0:63%) = 0:03%. The similar numbers for weekly and monthly returns indicate

that, for weekly returns, Á = 1:50%; and the market risk premium is 0:09%; whilst, for

monthly data, Á = 2:96%; and the market risk premium is 0:42%: Note that these con¯rm

the estimate of ¹ recorded in Table 2.

As these results are positive, and we can explicitly model "upside" and "downside"

returns, CMTN forms the ¯rst of our alternative distributions of excess market returns

to be used in our tests of the main hypothesis (9) and (11). We hence derive the log-

likelihood function of fRp(t); R¡
m(t); R+

m(t); ±(t)g using the probability density function
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of (14), when the conditional density of Rp(t) given R+
m(t), R¡

m(t) and ±(t) is (13) and the

marginal distribution as speci¯ed by (20). This, and the log-likelihood functions under

the main hypothesis (9) and (11), are all given in the Appendix.

4.2. Mixed Gamma Distributions. Our second candidate distribution for excess

market returns (i.e. potential model for R+
m(t), R¡

m(t) and ±(t)) is the Mixed Gamma

(MG) proposed by Knight, Satchell, and Tran (1995). The distribution assumes that both

R+
m(t) and ¡R¡

m(t) are described by Gamma distributions

pdf(x) =

8
<
:

¸®x®¡1 exp(¡¸x)
¡(®) x > 0

0 otherwise

9
=
; (25)

in which ¡ denotes the Gamma function, ® > 0 and ¸ > 0, and ±(t) is an independent

Bernoulli switching variable which is one with probability p and zero with probability 1¡p.

Under these assumptions, Knight, Satchell, Tran (1995) show that the joint likelihood of

R+
m(t), R¡

m(t) and ±(t) can be given as

"
p¸®1

1 [R+
m(t)]®1¡1 exp [¡¸1R+

m(t)]
¡(®1)

#±(t)

£
"

(1 ¡ p)¸®2
2 [¡R¡

m(t)]®2¡1 exp [¡¸2(¡R¡
m(t))]

¡ (®2)

#1¡±(t)

(26)

where the parameters (®1; ¸1) are from the Gamma distribution for R+
m(t) and (®2; ¸2)

from the Gamma distribution modelling ¡R¡
m(t). This has very di®erent tail character-

istics than the CMTN distributions in the previous section (see Knight, Satchell, and

Tran (1995) for further details). In addition, whilst the truncated normal distribution is

unrestricted, the MG distribution (25) must have density of zero at zero. Consequently,

we shall allow very di®erent features of excess market returns to be picked up depending

upon the choice of distribution.

The result of ¯tting the MG distribution to the market excess returns is given in

Table 4. All estimates are signi¯cant and for monthly returns the results are similar to

those reported in Hwang and Satchell (2001) and Knight, Satchell, and Tran (1995); large

values of ¸1 and ¸2; and ®1 > 1 and ®2 > 1. The density has maximum value (i.e.

mode) at (®i ¡ 1)=¸i when ®i > 1; for example, for the monthly returns, the conditional

densities for positive and negative excess returns have maximum value at (b®1 ¡ 1)=b̧1 =

(1:3368 ¡ 1)=46:4211 = 0:0073, and ¡(b®2 ¡ 1)=b̧2 = ¡(1:1187 ¡ 1)=34:1302 = ¡0:0035,

respectively. Likewise, Á is easily deduced from model parameters. Since the expectation

of a Gamma distribution (25) is ®
¸ , Á = ®1

¸1
and E [Rm(t) ¡ Rf (t) jRm(t) < Rf (t) ] = ¡®2

¸2
:

The probability of returns being below the risk-free rate is explicitly measured via the
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parameter estimation of p: Hence, for daily data, we get Á = 1:19=191:05 = 0:62% and

E [Rm(t) ¡ Rf (t)] = 0:53(0:62%)+0:47(¡0:64%) = 0:03%. The similar numbers for lower

frequency data are, for weekly, Á = 1:38% and a market risk premium of 0:09% whilst, for

monthly data, we get Á = 2:88% and a market risk premium of 0:42%: The comparison

here with those of the CMTN and normal distributions con¯rms that despite the fact that

the segmented ¯ttings and the probabilities di®er, the distribution-wide parameter (i.e.

the market risk premium) is identically estimated for all three frequencies.

We saw earlier that using the log-likelihoods values, CMTN speci¯es the excess market

returns better than the normal distribution. More general comparisons between all three

distributions are possible with the Akaike Information Criterion (AIC)6

AIC = 2(LL ¡ N) (27)

where LL is the log-likelihood of the estimation and N the number of parameters to be

estimated. This was introduced in Akaike (1973) and is well-discussed in Judge, Gri±ths,

Carter-Hill, and Lee (1985) and Maddala (1992); the higher the AIC, the better the ¯t.

Table 5 reports the likelihood, model selection criteria and estimated values of Á for all

¯tted distributions. For the daily data, the AIC was 16905 for the normal distribution

against 17075 for MG, indicating that the advantages we shall gain in using CMTN,

which has ¯ve parameters, is not o®set by loss in estimation e±ciency. This is also clearly

re°ected for weekly data (2644 for normal, 2652 for CMTN, and 2654 for MG). How-

ever, for monthly data, most a®ected by Central Limiting e®ects, the normal distribution

(436.8) and the CMTN distribution (438.2) both dominate the MG distribution (431.3),

this being perfectly consistent with the Bera-Jarque statistics in Table 1.

Although the market risk premiums are the same for all three distributions, there are

some di®erences in the way the asymmetry is modelled, as also evident from di®erences in

the estimate of Á. The additional bene¯t demonstrated through the rejection of normality

in favour of CMTN and/or MG is clear through the values of AIC. As the MG distribution

¯ts the data better than the normal distribution, but has very di®erent properties around

zero and in the tails than the CMTN, it forms an appropriate alternative distributional

assumption for excess market returns, especially for high frequency data. Given the
6We note that there are alternative approaches to model selection than using the Akaike criterion. One

could decide that the number of parameters is secondary and simply look at likelihood. Alternatively, if

concerned with sample sizes, one could use the Schwartz Bayesian criterion SB = LL¡ N2 logn where n is

the sample size, introduced in Schwartz (1978). As the AIC is the most common model selection criterion

used in the literature and we make no prior assumption about which criterion should be preferred, we

stay with the AIC in this paper.
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parameters are identically estimated but the MG have higher AIC, we shall thus also

apply MG for the test of our main hypothesis (9) and (11).

When we assume that the joint marginal density function of R+
m(t); R¡

m(t); and ±(t) fol-

lows MG - as in (26) - and the conditional density function of Rp(t); pdf (Rp(t)jR¡
m(t); R+

m(t); ±(t)) ;

is normal as in (13), we can obtain the joint probability density function of fRp(t); R+
m(t); R¡

m(t); ±(t)g
using the equation suggested in (14). This forms the second alternative joint distribution

in our tests of the main hypothesis, and the derivation of the relevant likelihood functions

for testing our main hypothesis (9) and (11), can be found in the Appendix.

This completes our theoretical derivations of the tests which will be used in our em-

pirical analysis. To summarise, we have shown how the original tests of Harlow and Rao

(1989) and Eftekhari and Satchell (1996) depend upon an untested restriction (8) which, if

not satis¯ed, implies the alternative model in their tests, the LPM-CAPM, is misspeci¯ed.

In addition, we have showed that by formulating a test for this maintained hypothesis, we

nest both the CAPM and LPM-CAPM in the general unrestricted framework (4), and give

the form of the speci¯c hypothesis, (9) and (11), which need to be tested to distinguish

between them. Consequently, the test allows the data to tell us whether to use the stan-

dard risk and performance measures of Sharpe (1966), Treynor (1965) and Jensen (1972),

which derive from CAPM, the Sortino and Price (1994) performance criteria, which is

justi¯ed by LPM-CAPM, or the more general asymmetric measures corresponding to the

unrestricted version of (4), which were introduced and formally analysed in Pedersen and

Satchell (1999). As the testing requires an explicit assumption to be made on the marginal

distribution of excess market returns, we have considered the particular features of the

daily, weekly and monthly returns on the FTSE All-share, and provided evidence for

appropriate distributional assumptions. Finally, by combining marginal and conditional

distributions, we have derived the log-likelihood functions for our main hypothesis tests,

which we now apply to equity returns with di®erent frequencies and for di®erently-sized

companies.

5. APPLICATION TO SMALL AND LARGE UK COMPANIES DATA

We now examine equity data for small and large UK companies (and for di®erent frequen-

cies) and use the results to comment upon some stylized facts and whether, for some types

of ¯nancial returns data, we ¯nd evidence favouring symmetric and asymmetric market

risk measures.

Larger companies generally have a greater number of shareholders, larger volume of

trade and higher frequency of trading. Monthly returns are additions of many trades and,
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by the Central Limit Theorem7, approach normality. Small companies often have fewer

shareholders and thinner markets with low trading frequency and volume, so that monthly

returns do not exhibit the same degree of central limiting and, consequently, should be

"less normal". This we dub the "frequency e®ect". Further, Cosh and Hughes (1995)

argue that small companies fail more often than larger due to their youth, inexperience

and often quite narrow product ranges, which would imply that investors need to account

for bankruptcy risk. This, together with takeover, merger and acquisition speculation,

encourages the presence of more outliers in returns, which skews the distribution and/or

gives fat tails. (For a more detailed examination of the general structures of small compa-

nies, one should consult works of Hughes and Storey (1994) and Storey, Keasey, Watson,

and Wynarczyk (1987).) This second e®ect, we label the "size e®ect".

Based on these observations, we have two hypotheses: (1) as company size decreases,

we should move from CAPM to LPM-CAPM to asymmetric model as the preferred struc-

ture, and (2) as frequency increases, we should likewise be moving from CAPM through

LPM-CAPM to (4). We shall examine these claims in detail. Further, we consider if -

in some particular equity data groups - we can conclude that conventional models based

on CAPM are suitable, and - where not - how serious the problem is. Presenting the

LPM-CAPM as an alternative model, we then also see if this provides adequate coverage

for the areas where issues arise or if one needs (4), with it's lack of theoretical founda-

tion, to capture appropriate risk in returns. Finally, we shall comment upon the obvious

consequences of our results for risk management based on CAPM-type measures.

5.1. Data. The UK stock market is covered by indices generated by FTSE Interna-

tional. In order to be admissible for these indices, securities must satisfy conditions of

investibility, size and liquidity8. The largest eligible companies comprising 98%-99% of

total market capitalisation constitute the FTSE All-share for the following year. The

All-share is further split into several sub-indices; the FTSE100 contains the largest 100

companies; the FTSE250, the next 250 largest companies; the FTSE350 comprises both

of these, and the FTSE SmallCap contains those companies too small to be included

in the FTSE350. Finally, the FTSE Fledgling index (henceforth Fledgling) covers those

companies too small to enter the All-share index.

Dimson and Marsh (1998) analysed the returns of all UK companies with market
7Strictly speaking, for central limiting arguments to apply, we implicitly assume that the distribution

of single return moves has ¯nite variance. This is an assumption we make unreservedly.
8Details of these and the criteria that individual companies must satisfy are given on the FTSE

International website on the World Wide Web: www.ftse.com.
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capitalisation under $188m; e®ectively complementary to the FTSE350, this covered the

FTSE SmallCap, Fledgling and Alternative Investment Market companies. We refer the

reader to their report for details and further references, but give two relevant ¯ndings

here: ¯rstly, Dimson and Marsh ¯nd evidence that the volume of trading in shares of

small companies is far below that of FTSE100 companies; in fact 97% of the value of

the All-share is invested in companies which have market capitalisation over $188m. In

addition (see Dimson and Marsh (1998), page 62, Exhibit 51), the correlation between

small companies and the All-share has steadily increased as smaller businesses have be-

come more sensitive to °uctuations in the domestic market, which has resulted in beta

with the FTSE All-share becoming larger and more signi¯cant.

Our sample period for the daily, weekly, and monthly FTSE100, FTSE250, and FTSE

SmallCap constituents is from 1 August 1991 to 31 July 2001, which is the same as in

Tables 1 to 5 for the analysis of the FTSE All-share index returns. Therefore, during the

sample period, we have 2525 daily returns, 521 weekly returns, and 120 monthly returns

for each stock9. Note that since the constituents of the indices have changed during the

sample period, we used stocks included in the indices as of the 4th of September 2001. The

number of stocks available at the beginning of our sample period is less than the number

of stocks in the indices at the end of our sample period. Our results may be a®ected by

this exclusion of stocks in the early period of our sample. The number of stocks available

to us for the whole sample period are 77, 163 and 197 for FTSE100, FTSE250 and FTSE

SmallCaps respectively10. We now examine this data in relation to our size and frequency

e®ects.

The "Size E®ect". As we are interested in the relative properties of large and highly

liquid stocks to those of small and less trading stocks, we investigated the properties of

the FTSE100, FTSE250 and FTSE SmallCap stocks separately in Tables 6a-6c in the

Appendix. As reported by Dimson and Marsh, we con¯rm that average returns on top

companies are larger than those on the middle and small companies, suggesting the stable

engine of FTSE All-share growth over the last 10 years having been through Large-Cap

stocks. For example, the monthly average return for the FTSE100 stocks has a mean
9The series is the Total Return Index from Datastream, which assumes dividends are re-invested.

Total returns, rt, are calculated as rt = ln
h
Pt+1(1+DYt+1)

Pt

i
, where Pt = price at time t and DYt =

dividend yield at time t. When selecting suitable proxies for small and large companies, it is clear that

no one de¯nition is necessarily correct. In particular, over a given time horizon, companies may change

size to become \large" or \small". Our chosen sample, however, contains those companies which have

been among the top 100 companies for ten years, which seems as good a criterion as any.
10For the daily returns, the number of equities for the FTSE250 is 159.
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of 1.20% and inter-quartile range of (0.7%, 1.5%), whilst those for the FTSE250 and

FTSE SmallCaps have means of 1% and 0.8% and interquartile ranges of (0.6%, 1.3%)

and (0.3%, 1.3%) respectively.

However the real top performers were typically smaller companies, along with the most

spectacular failures, as can be seen from comparing the Maximum and Minimum rows

and the interquartile ranges for the three di®erent size related groups. As expected, the

estimates of skewness and kurtosis show that the FTSE SmallCap stocks are more skewed

and fat-tailed; for example, for the case of monthly returns, 77% of companies reject

normality at the 5% level, versus 61%-62% amongst the larger companies, a di®erence

which is more pronounced as the signi¯cance level of the test increases. In general, Bera-

Jarque statistics for the FTSE SmallCap stocks' returns are much larger than those for

the FTSE250 stocks' returns which are again larger than the FTSE100 stocks' returns.

The main source of the trend seems to be kurtosis; that is, the smaller the ¯rm, the more

leptokurtotic their returns.

The "Frequency E®ect". As mentioned previously, the Central Limit Theorem

would dictate that lower frequency returns should be "more normal", since they are

temporally aggregated returns of higher frequency returns (e.g. daily returns). This

e®ect is found regardless of the type of data and appears more prevalent than the size

e®ect. Indeed, by glancing at Tables 6a-6c, it is apparent that - regardless of size - the

data becomes strongly non-normal at higher frequencies. For instance, the Bera-Jarque

statistics for daily returns for even FTSE100 companies having an interquartile range of

(1614, 9255), compared with (65, 432) and (2.7, 34.8) for weekly and monthly frequencies

respectively.

Overall, Table 6 suggest that both size and frequency are important factors to decide if

returns are normal, with frequency having the stronger e®ect. However, as we will conduct

our analysis at all frequencies individually, we shall of course test statistically if the

economic reasonings for smaller companies having more non-normal returns are powerful

enough to merit use of a separate model. In summary, we expect our tests to con¯rm that

CAPM is generally not appropriate for high frequency returns of all companies, whilst

low frequency returns of large companies may be well explained with CAPM. For smaller

companies with low frequencies, it is harder to form a precise hypothesis and the data

will have to do the talking. Also, as for the question of which asymmetric model (LPM-

CAPM or the general asymmetric model (4)) is best to apply where CAPM is unsuitable,

a directional bias should be expected, which would favour the asymmetric model where

data are more extremely non-normal, the LPM-CAPM ¯lling the gap between these and
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those for which the CAPM is favoured.

6. RESULTS

We now present the results of the tests of the main hypotheses using the two distributions,

CMTN and GM, as discussed in the previous section. The number of rejections of H1 and

H2 at the 10% signi¯cance level are summarised in Table 7. As explained in the previous

section, when H1 is rejected, returns are better speci¯ed with the asymmetric model in

(4). Hence, this tells us the theoretically justi¯ed models are incapable of capturing the

risk in the returns. On the other hand, when H1 is not rejected, we further test H2: When

H2 is rejected, we choose the LPM-CAPM and ¯nally, if H2 is not rejected, we favour

CAPM.

Firstly, we note that the results in Tables 7a-7c are almost identical for the two mar-

gional distributional assumptions (GM and CMTN). This suggests that our test is robust

for di®erent distributions. From now on, we hence explain our ¯ndings referring to the

numbers in Table 7 pertaining to the MG distribution. We ¯rst look at the case of daily

returns. For the FTSE SmallCap stocks, about 50% of cases still support the CAPM

whilst about 27% and 23% support the asymmetric and LPM-CAPM models, respec-

tively. Whilst this result may be surprising given that the mean-variance CAPM model is

widely used without thorough speci¯cation tests, it should be noted that joint normality

is not necessary but merely su±cient for CAPM. However, it is noteworthy that this

result informs us that some 50% of small companies would be wrongly valued/priced etc.,

if daily data was used in a CAPM. For the larger companies such as the constituents of

FTSE100, we ¯nd that 71% support the CAPM whilst the asymmetric model is chosen

less than 10% of cases. Thus, size plays a role in determining the applicability of CAPM

for daily data. In total, 40% of ¯rms are better modelled using alternatives to CAPM, of

which LPM-CAPM is preferred in over two thirds of the cases.

For weekly returns, Table 7b shows a similar pattenr except the acceptance rate of

CAPM is increased by about 10-15% for all three size groups. When the frequency of

returns is monthly, Table 7c shows that the percentage not rejecting the CAPM is about

80% across di®erent company sizes, whilst about 13% of stocks are best speci¯ed with

LPM-CAPM models and the asymmetric model again only chosen for 6% of stocks. Thus,

although not a large percentage, the CAPM is still misused in about 20% of cases, even

when we are talking about FTSE100 companies and monthly data, which is the most

typical frequency used by analysts and corporate ¯nanciers today. We also note that the

"size e®ect" seems most prevalent with daily returns. Figures 1a-1c summarises these
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¯ndings.

Finally, we note that Table 7c also reveals that when (monthly) returns are normal,

CAPM is appropriate in about 88% of cases11. Hence, the common rule of thumb that

"whenever you are dealing with normal equity returns, the CAPM is the right model",

appears to be supported by our evidence although some cases are still modelled better

with asymmetric risk regardless of the normality of returns. More importantly, however,

it is clear that whenever we are dealing with non-normal returns - which includes any

analysis with weekly and daily frequency data and a signi¯cant chunk of smaller company

and monthly data, a customised testing procedure - a model of which is introduced in

this paper - is necessary to adequately determine which model should be applied when

performing risk analysis, pricing or asset valuations.

7. CONCLUSION

Determining an \appropriate" data-generating function which captures essential features

of portfolio returns is fundamental for empirical risk measurement, valuations and perfor-

mance measurement. Whilst studies have sporadically attempted to illustrate the levels of

di®erences between the CAPM and classes of "asymmetric" risk models, the fundamental

belief still appears to be that using the CAPM gives an accurate enough picture of the

necessary features of risk and return for most equity data. In this paper, we have analysed

more precisely which data and company types may more readily be thrown into a CAPM

and which require more careful analysis, focusing on company size and data frequency in

particular.

Using a recent paper by Knight, Satchell, Tran (1995), which addressed the problem of

splitting distributions, we have presented an extension to the empirical testing procedure

of Harlow and Rao (1989) and Eftekhari and Satchell (1996). This extension, which relies

upon accurately modelling excess market returns using asymmetric distributions, enables

us to nest the lower partial moment CAPM of Bawa and Lindenberg (1977) - and so also

the traditional CAPM - in a more general asymmetric response model. Consequently,

we are able to distinguish between three di®erent models using standard econometric

techniques.

We have analysed daily, weekly, and monthly returns of three di®erent size UK com-

pany groups. Our results con¯rm that daily and weekly returns require most attention,

in that non-traditional frameworks need to be applied in a large number of cases. On

the other hand, CAPM works well for monthly returns of large companies, though some
11Note that conditional normality of portfolio returns is not su±cient for the CAPM to be valid.
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doubt reigns over the use of monthly data on smaller ¯rms. Finally, we con¯rm that

when dealing with normal equity returns, the CAPM is indeed the preferred model, being

chosen in 88% of cases. Most strikingly of our ¯ndings, however, is that when dealing

with non-normal returns, which includes all analysis with daily and weekly data, separate

testing is needed to determine the "correct" model. For these cases, the CAPM is still

"favourite", typically chosen in 55-80% of cases. Moreover, the LPM-CAPM chosen in a

further 15%-30% of cases, indicating that it is a solid alternative to CAPM in most cases

where CAPM is rejected. This does provide some comfort for proponents of equilibrium-

based "beta"-type risk measures, whilst promoting the LPM-CAPM. Indeed, only in the

most extreme cases, some 6-7% on average, did both CAPM and LPM-CAPM get rejected

in favour of the general asymmetric model (4). This indicates that - since LPM-CAPM

nests CAPM - one could apply LPM-CAPM to all data, knowing that CAPM is automat-

ically implied when appropriate, and capture the risk characteristics in almost all equity

returns studied.

We hope the ¯ndings of this paper will fuel the ongoing debate between proponents

and opponents of symmetric, downside and asymmetric risk measures in the academic

literature. Further, since it is clear that, in some cases, CAPM per se is not in practice

the best model, we hope that practitioners also will pay more attention to the fact that

accurate ¯nancial risk analysis, equity valuation and asset pricing in general, may contain

inaccurate measurements which can be improved. Indeed, there has been a more general

acceptance of general risk and performance measures such as those introduced in Sortino

and Price (1994) and Pedersen and Satchell (1999), which are generalisations of the con-

ventional measures in Sharpe (1966), Treynor (1965) and Jensen (1972). Our ¯ndings

in this article will hopefully also help these constructs gain further popularity amongst

analysts of markets with highly skewed and kurtotic returns.
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8. APPENDIX

PROOF OF LEMMA 1

By the continuity of individual truncated normal distributions, discontinuity can occur

only at zero. To eliminate this, we need
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which can be rearranged to give (21)

PROOF OF LEMMA 2
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where ©(:) is the cumulative density of a standard normal variable, we get
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THE KEY LOG-LIKELIHOOD FUNCTIONS UNDER CMTN

With the conditional distribution modelled by (13), the \unrestricted" model (4) under

the CMTN assumption has log-likelihood given by
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where T1 =
TP

t=1
±(t) and T2 =

TP
t=1

[1 ¡ ±(t)] : In order to get H1 - see (9) - in terms of the

parameters of this model, we recall that, by Lemma 2,
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where © is the c.d.f. of the standard normal distribution. Consequently, under CMTN ;

H1 becomes
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The \restricted" log-likelihood under H1 is derived by substituting (31) in (29) and thus

given by

¡ 1
2¾2

TX

t=1

0
B@Rp(t) ¡ ¯1pR

¡
m(t) ¡ ¯2pR

+
m(t) ¡ ±(t)

0
B@¹1 +

¾1e
¡ ¹2

1
2¾2

1

p
2¼

³
1 ¡ ©

h
¡¹1

¾1

i´

1
CA

¡
¯1p ¡ ¯2p

¢
1
CA

2

¡T ln (2¼) ¡ T ln¾ ¡ T1 ln
µ

1 ¡ ©
·
¡¹1

¾1

¸¶
¡ 1

2

TX

t=1

±(t)
µ

R+
m(t) ¡ ¹1

¾1

¶2

¡ T1 ln¾1

+T1 ln

2
664

¾1

³
1 ¡ ©

h
¡¹1

¾1

i´
e
¡ ¹2

2
2¾2

2

¾2

³
1 ¡ ©

h
¡¹2

¾2

i´
e
¡ ¹2

1
2¾2

1 + ¾1

³
1 ¡ ©

h
¡¹1

¾1

i´
e
¡ ¹2

2
2¾2

2

3
775 ¡ T2 ln

µ
1 ¡ ©

·
¡¹2

¾2

¸¶
¡ T2 ln¾2

¡1
2

TX

t=1

[1 ¡ ±(t)]
µ¡R¡

m(t) ¡ ¹2

¾2

¶2

+ T2 ln

2
664

¾2

³
1 ¡ ©

h
¡¹2

¾2

i´
e
¡ ¹2

1
2¾2

1

¾2

³
1 ¡ ©

h
¡¹2

¾2

i´
e
¡ ¹2

1
2¾2

1 + ¾1

³
1 ¡ ©

h
¡¹1

¾1

i´
e
¡ ¹2

2
2¾2

2

3
775

(32)

We use the Likelihood Ratio Test in (22) to test H1. The model in (29) is unrestricted one

whilst (32) is the restricted model. When testing H2, (32) is the \unrestricted" model,

and the \restricted" log-likelihood is found by further imposing ¯1p = ¯2p, giving
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THE KEY LOG-LIKELIHOOD FUNCTIONS UNDER MG

The joint likelihood function for fRp(t); R+
m(t); R¡

m(t); ±(t)g at time t is the product of

the marginal likelihood (26) and conditional likelihood (13). By taking logarithms of this
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product, summing over a sample of size T , we have a log-likelihood of
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for the unrestricted model corresponding to the general asymmetric model - i.e. (4) when

H1 is rejected - under the assumption of MG12. Since E [R+
m(t) jR+

m(t) > 0] = ®1
¸1

;H1, the

test of LPM-CAPM versus the general asymmetric model (4) - de¯ned in (9) - becomes
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The restricted likelihood under H1 is calculated by substituting (36) into (34), which gives
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If we reject (36), the data do not support an equilibrium model (i.e. LPM-CAPM or

CAPM), but favour the general asymmetric model (4). If (36) is not rejected, we test
12It is di±cult to say much about this distribution analytically; indeed, the density function corre-

sponding to this likelihood is not readily available. However, in Pedersen (1998), Corollary 1 establishes

that its moment-generating function is

ªRp(t)(s) = e
1
2 s

2¾2
·
p

µ
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¸1 ¡ s¯2

¶®1
+ (1¡ p)es¼

µ
¸2

¸2 + s¯1
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(35)

where ¸1 > s¯2 and ¸2 > ¡s¯1. From this, its moments can be recovered by evaluating the derivatives

of the logarithm of (??) at s = 0 (see, for instance Degroot (1989), page 202). As the ¯rst four central

moments take up ten pages of algebra, they are omitted but available on request from the author.
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LPM-CAPM against CAPM by considering H2 : ¯1p = ¯2p using the Likelihood Ratio

test where (38) is the unrestricted likelihood, and the restricted likelihood, obtained by

substituting ¯1p = ¯2p in (38), is
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If H2 is rejected, we can then conclude that the most suitable model describing the data

is LPM-CAPM and therefore ¯1p is the "correct" risk measure. If H2 is not rejected, we

have illustrated strong support from CAPM.
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Table 1 Returns on FTSE All-Share Index

Frequency Maximum Minimum Mean
Standard 
Deviation Skewness

Excess 
Kurtosis Bera-Jarque

Daily 0.057 -0.039 0.000 0.009 -0.069 2.500* 659.298*
Weekly 0.101 -0.062 0.002 0.019 0.262* 1.991* 92.022*
Monthly 0.100 -0.110 0.009 0.039 -0.420 0.114 3.589

Notes: The sample period for the daily, weekly, and monthly FTSE All-Share Index returns starts from 1 August 1991
to 31 July 2001. During the sample period, we have 2525 daily returns, 521 weekly return, and 120 monthly returns. 
* represents significance at 5% level.

Table 2  Maximum Likelihood Estimates of Normal Distribution
 on the Excess Market Returns

Frequency Parameter Estimate t-statistic
Daily µ 0.0003 1.616

σ 0.0085 71.062
Weekly µ 0.0009 1.048

σ 0.0191 32.279
Monthly µ 0.0042 1.184

σ 0.0386 15.492
Notes: The excess market returns are calculated with the FTSE All-share Index
and 3 month Treasury bill. See notes in Table 1 for other detailed explanation on data.

Table 3  Maximum Likelihood Estimates of Continuous Mixed
Truncated Normal Distribution on the Excess Market Returns

Frequency Parameter Estimate t-statistic
µ1 -0.0215 -3.262

Daily σ1 0.0143 9.444
µ2 -0.0622 -2.066
σ2 0.0216 4.817
µ1 -0.0236 -1.522

Weekly σ1 0.0271 5.857
µ2 -0.0255 -1.499
σ2 0.0266 5.428
µ1 0.0098 0.942

Monthly σ1 0.0322 5.582
µ2 -0.0953 -0.659
σ2 0.0689 1.979

Notes: See notes in Table 2 for the data.



Table 4  Maximum Likelihood Estimates of Mixed Gamma Distribution
 on the Excess Market Returns

Frequency Parameter Estimate t-statistic
p 0.5287 53.223
α1 1.1878 28.910

Daily λ1 191.0516 23.395
α2 1.1499 27.370
λ2 179.8201 22.002
p 0.5585 25.675
α1 1.1452 13.539

Weekly λ1 82.7621 10.874
α2 1.3321 11.888
λ2 85.8034 9.834
p 0.6000 13.416
α1 1.3368 6.650

Monthly λ1 46.4211 5.505
α2 1.1187 5.510
λ2 34.1302 4.404

Notes: See notes in Table 2 for the data.

Table 5  Summary of Fits to the FTSE All-Share Index Returns

Frequency Distribution Log-Likelihood Value AIC φ
Normal 8454.28 16904.56 0.0069

Daily MG 8542.36 17074.72 0.0062
CMTN 8536.26 17064.51 0.0063
Normal 1323.97 2643.93 0.0155

Weekly MG 1332.06 2654.12 0.0138
CMTN 1329.94 2651.89 0.0150
Normal 220.41 436.83 0.0323

Monthly MG 220.63 431.26 0.0288
CMTN 223.12 438.24 0.0296

Notes: See notes in Table 2 for the data.



Table 6  Summary Statistics of FTSE100 and FTSE250 Constituents

A. Daily Returns
Statistics Maximum Minimum Mean Inter  -quartile 5% significance

Lower Upper (in %)
Maximum 0.358 0.066 0.141 0.102 0.160

FTSE100 Minimum -0.050 -0.778 -0.166 -0.179 -0.104
Constituents Mean 0.002 0.000 0.001 0.000 0.001
(77 Equities) Standard Deviation 0.032 0.012 0.020 0.018 0.022

Skewness 1.665 -7.902 -0.128 -0.214 0.300
Excess Kurtosis 219.384 1.451 12.011 3.879 9.341
Bera-Jarque 5089882.353 232.504 90445.577 1614.250 9254.809 100%
Maximum 0.616 0.043 0.148 0.095 0.178

FTSE250 Minimum -0.043 -1.143 -0.165 -0.197 -0.083
Constituents Mean 0.002 -0.001 0.000 0.000 0.001
(159 Equities) Standard Deviation 0.042 0.008 0.017 0.012 0.019

Skewness 3.609 -15.556 -0.014 -0.228 0.597
Excess Kurtosis 573.784 2.540 26.514 7.371 21.965
Bera-Jarque 34739356.485 696.499 514498.987 5840.233 50850.484 100%
Maximum 1.900 0.047 0.232 0.112 0.281

FTSE Small Cap Minimum -0.047 -1.204 -0.251 -0.311 -0.109
Constituents Mean 0.002 -0.001 0.000 0.000 0.001
(197 Equities) Standard Deviation 0.074 0.006 0.020 0.012 0.024

Skewness 18.577 -18.173 -0.023 -0.684 1.121
Excess Kurtosis 666.143 2.703 59.235 17.493 62.290
Bera-Jarque 46824837.378 769.516 1204213.433 32720.363 412085.546 100%



B. Weekly Returns
Statistics Maximum Minimum Mean Inter  -quartile 5% significance

Lower Upper (in %)
Maximum 0.446 0.099 0.201 0.151 0.234

FTSE100 Minimum -0.078 -0.833 -0.219 -0.252 -0.155
Constituents Mean 0.008 0.000 0.003 0.002 0.003
(77 Equities) Standard Deviation 0.072 0.028 0.044 0.039 0.048

Skewness 1.498 -3.854 -0.119 -0.237 0.143
Excess Kurtosis 54.497 0.080 4.636 1.720 4.442
Bera-Jarque 65760.878 2.324 1696.915 65.407 432.022 99%
Maximum 1.182 0.082 0.230 0.157 0.257

FTSE250 Minimum -0.059 -1.170 -0.218 -0.252 -0.134
Constituents Mean 0.008 -0.003 0.002 0.001 0.003
(163 Equities) Standard Deviation 0.108 0.018 0.042 0.033 0.048

Skewness 2.714 -5.731 0.185 -0.085 0.471
Excess Kurtosis 87.306 0.672 6.765 2.674 6.785
Bera-Jarque 168318.199 9.813 3334.236 159.949 1069.210 100%
Maximum 2.255 0.078 0.315 0.158 0.377

FTSE Small Cap Minimum -0.065 -1.098 -0.299 -0.377 -0.155
Constituents Mean 0.008 -0.006 0.002 0.001 0.003
(197 Equities) Standard Deviation 0.171 0.018 0.050 0.032 0.062

Skewness 6.403 -7.393 0.238 -0.278 0.751
Excess Kurtosis 122.560 1.153 12.771 4.882 13.929
Bera-Jarque 330826.775 28.912 9288.084 517.501 4270.626 100%



C. Monthly Returns
Statistics Maximum Minimum Mean Inter  -quartile 5% significance

Lower Upper (in %)
Maximum 0.829 0.154 0.263 0.196 0.286

FTSE100 Minimum -0.132 -0.928 -0.286 -0.356 -0.202
Constituents Mean 0.035 -0.001 0.012 0.007 0.015
(77 Equities) Standard Deviation 0.145 0.058 0.085 0.070 0.091

Skewness 1.047 -2.785 -0.258 -0.567 0.062
Excess Kurtosis 17.477 -0.433 1.807 0.285 2.386
Bera-Jarque 1682.356 0.016 56.283 2.740 34.772 61%
Maximum 1.182 0.095 0.290 0.198 0.338

FTSE250 Minimum -0.120 -1.170 -0.307 -0.348 -0.206
Constituents Mean 0.034 -0.014 0.010 0.006 0.013
(163 Equities) Standard Deviation 0.231 0.042 0.092 0.072 0.104

Skewness 1.604 -2.818 -0.217 -0.473 0.059
Excess Kurtosis 17.557 -0.348 1.887 0.520 2.171
Bera-Jarque 1636.193 0.077 60.472 3.346 30.751 62%
Maximum 1.735 0.110 0.390 0.225 0.451

FTSE Small Cap Minimum -0.122 -1.522 -0.394 -0.483 -0.221
Constituents Mean 0.036 -0.025 0.008 0.003 0.013
(197 Equities) Standard Deviation 0.337 0.042 0.112 0.079 0.138

Skewness 2.532 -2.939 -0.070 -0.447 0.330
Excess Kurtosis 22.435 -0.305 2.897 0.880 3.453
Bera-Jarque 2689.439 0.157 110.702 6.769 68.805 77%

Notes: The sample period for the daily, weekly, and monthly stock returns starts from 1 August 1991 to 31 July 2001.
During the sample period, we have 2525 daily returns, 521 weekly return, and 120 monthly returns. 



Table 7 Percent of Rejections for the H1 and H2

A. Daily Returns
     H1 Rejected H1 Not Rejected Neither H1 nor

  Bera-Jarque but H2 Rejected H2 Rejected
Asymmetric Model LPM-CAPM         CAPM

Rejected 77 7 (9.1%) 15 (19.5%) 55 (71.4%)
MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)

FTSE100 Total 77 7 (9.1%) 15 (19.5%) 55 (71.4%)
Constituents Rejected 77 7 (9.1%) 16 (20.8%) 54 (70.1%)

CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 77 7 (9.1%) 16 (20.8%) 54 (70.1%)
Rejected 159 23 (14.5%) 42 (26.4%) 94 (59.1%)

MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE250 Total 159 23 (14.5%) 42 (26.4%) 94 (59.1%)
Constituents Rejected 159 24 (15.1%) 41 (25.8%) 94 (59.1%)

CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 159 24 (15.1%) 41 (25.8%) 94 (59.1%)
Rejected 197 54 (27.4%) 44 (22.3%) 99 (50.3%)

MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE Small Cap Total 197 54 (27.4%) 44 (22.3%) 99 (50.3%)
Constituents Rejected 197 55 (27.9%) 42 (21.3%) 100 (50.8%)

CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 197 55 (27.9%) 42 (21.3%) 100 (50.8%)



B. Weekly Returns
     H1 Rejected H1 Not Rejected Neither H1 nor

  Bera-Jarque but H2 Rejected H2 Rejected
Asymmetric Model LPM-CAPM         CAPM

Rejected 76 5 (6.6%) 9 (11.8%) 62 (81.6%)
MG Not Rejected 1 0 (0.0%) 0 (0.0%) 1 (100.0%)

FTSE100 Total 77 5 (6.5%) 9 (11.7%) 63 (81.8%)
Constituents Rejected 76 4 (5.3%) 9 (11.8%) 63 (82.9%)

CMTN Not Rejected 1 0 (0.0%) 0 (0.0%) 1 (1.3%)
Total 77 4 (5.2%) 9 (11.7%) 64 (83.1%)
Rejected 163 7 (4.3%) 32 (19.6%) 124 (76.1%)

MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE250 Total 163 7 (4.3%) 32 (19.6%) 124 (76.1%)
Constituents Rejected 163 5 (3.1%) 32 (19.6%) 126 (77.3%)

CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 163 5 (3.1%) 32 (19.6%) 126 (77.3%)
Rejected 197 20 (10.2%) 49 (24.9%) 128 (65.0%)

MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE Small Cap Total 197 20 (10.2%) 49 (24.9%) 128 (65.0%)
Constituents Rejected 197 22 (11.2%) 46 (23.4%) 129 (65.5%)

CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 197 22 (11.2%) 46 (23.4%) 129 (65.5%)



C. Monthly Returns
     H1 Rejected H1 Not Rejected Neither H1 nor

  Bera-Jarque but H2 Rejected H2 Rejected
Asymmetric Model LPM-CAPM         CAPM

Rejected 49 3 (6.1%) 7 (14.3%) 39 (79.6%)
MG Not Rejected 28 2 (7.1%) 1 (3.6%) 25 (89.3%)

FTSE100 Total 77 5 (6.5%) 8 (10.4%) 64 (83.1%)
Constituents Rejected 49 3 (6.1%) 7 (14.3%) 39 (79.6%)

CMTN Not Rejected 28 2 (7.1%) 1 (3.6%) 25 (89.3%)
Total 77 5 (6.5%) 8 (10.4%) 64 (83.1%)
Rejected 112 11 (9.8%) 17 (15.2%) 84 (75.0%)

MG Not Rejected 51 0 (0.0%) 8 (15.7%) 43 (84.3%)
FTSE250 Total 163 11 (6.7%) 25 (15.3%) 127 (77.9%)
Constituents Rejected 112 10 (8.9%) 18 (16.1%) 84 (75.0%)

CMTN Not Rejected 51 0 (0.0%) 9 (17.6%) 42 (82.4%)
Total 163 10 (6.1%) 27 (16.6%) 126 (77.3%)
Rejected 161 11 (6.8%) 21 (13.0%) 129 (80.1%)

MG Not Rejected 36 0 (0.0%) 3 (8.3%) 33 (91.7%)
FTSE Small Cap Total 197 11 (5.6%) 24 (12.2%) 162 (82.2%)
Constituents Rejected 161 14 (8.7%) 21 (13.0%) 126 (78.3%)

CMTN Not Rejected 36 0 (0.0%) 3 (8.3%) 33 (91.7%)
Total 197 14 (7.1%) 24 (12.2%) 159 (80.7%)

Notes: The sample period for the daily, weekly, and monthly stock returns starts from 1 August 1991 to 31 July 2001.
During the sample period, we have 2525 daily returns, 521 weekly return, and 120 monthly returns. 
10% level of significance is used to test statistics. The numbers in the brackets represent represent the percentage 
of the number of cases chosen for a model among the rejected (not rejected) case.



Figure 1A  Percent of the Choice of the Three Models for Daily 
Returns Obtained with MG Distribution
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Figure 1B  Percent of the Choice of the Three Models for Weekly 
Returns Obtained with MG Distribution
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Figure 1C  Percent of the Choice of the Three Models for Monthly 
Returns Obtained with MG Distribution
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