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Abstract

We introduce a general approach to nonlinear quantile regression modelling that is
based on the specification of the copula function that defines the dependency structure
between the variables of interest. Hence we extend Koenker and Bassett’s [1978] orig-
inal statement of the quantile regression problem by determining a distribution for the
dependent variable Y conditional on the regressors X and hence the specification of all
the quantile regression functions. We use the fact that this multivariate distribution can
be split into two parts: the marginals and the dependence function (or copula). We then
deduce the form of the non linear conditional quantile relationship implied by the cop-
ula. Notice that this can be done with arbitrary distributions assumed for the marginals.
Some properties of the copula based quantiles or c-quantiles are then derived. Finally, we
develop an empirical application which examines conditional quantile dependency in the
foreign exchange market and compare this approach with the standard tail area depen-
dency measures.
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1 INTRODUCTION

1 Introduction

The problem of characterising the dependence between random variables at a given quantile

is an important issue, especially if the distributions of the variables involved are fat tailed as

is standard with financial returns. Tail area dependency for instance may be quite different

to that implied by standard correlation measures and may signal where extreme downside

protection may be found if two assets do not show causal dependency in their extreme quantile

relationships. One goal of this paper is to introduce a general approach to nonlinear quantile

regression modelling that exploits the form of the copula linking the assets involved.

The starting point is the multivariate distribution for the variables, and then working down

from this, using the fact that this multivariate distribution can be split into two parts - the

margins and the dependence function or copula. The conditional non linear quantile relationship

implied by the copula, the c-quantile, as opposed to an empirical quantile, can then be derived.

A second objective of this paper is to apply the c-quantile idea to assess the conditional

dependency between foreign exchange rates. It is an important issue in practice as to how

exchange rates are dependent when the markets are under stress and by using c-quantiles

we can examine the entire conditional distribution rather than the question of asymptotic

dependence and independence which is captured by standard tail area dependency measures.

These issues have been considered by Patton (2001) and Hartmann,Straetmans and De

Vries(2002) using related but different techniques. We also consider dynamic dependency

and how dynamic risk measures may be developed based on c-quantiles and expected shortfall.

The c-quantile approach here provides a different approach to that considered by Engle and

Manganelli (2000) who assumed the form of the dynamic quantile functions whereas the

form of the c-quantiles follows from the joint distribution.

In the next section, we briefly review regression quantiles and then the concept of copula is

defined and the implications for the assessing the dependence structure between X and Y are

presented. Then, we introduce the concept of a copula quantile curve, derive some properties of

this c-quantile curve and provide some examples for particular copulae. In the next section, the

copula quantile regression model is formally defined and we discuss the estimation issue. Then

the application to analysing quantile and tail area dependence in foreign exchange markets is

provided.A final section offers some conclusions.
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2 REGRESSION QUANTILES

2 Regression Quantiles

Koenker and Bassett intoduced linear quantile regression in Econometrica in 1978 [11]. We

first review how they define quantile regression and the main properties of their model. Let

(y1, . . . , yT ) be a random sample on Y and (x1, . . . , xT ) a random k-vector sample on X.

Definition 1 The p-th quantile regression is any solution to the following problem:

min
β∈Rk

X
t∈Tp

p |yt − xtβ|+
X

t∈T1−p

(1− p) |yt − xtβ|


with Tp = {t : yt ≥ xtβ} and T1−p its complement. This can be alternatively expressed as 1:

min
β∈Rk

Ã
TX
t=1

¡
p− I{yt≤xtβ}

¢
(yt − xtβ)

!
(1)

Non-linearity in quantile regression was developed by Powell [1986] using a censored

model. The consistency of non-linear quantile regression estimation has been investigated by

White [1994], Engle and Manganelli [2000]and Kim and White [2002]. For a recent

overview of quantile regression see Yu, Lu, and Stander [2001]. As noted by Buchin-

sky [1998], quantile regression models have useful features: (i) with non-gaussian error terms,

quantile regression estimators may be more efficient than least-square estimators, (ii) the entire

conditional distribution can be characterized, (iii) different relationships between the regressor

and the dependent variable may arise at different quantiles. In this paper, we attempt to re-

solve one problem with using quantile regression, the question of how to specify the form of the

quantile regression function. We achieve this by deriving a distribution for Y conditional on X

which then implies the structural form of the quantile regression. For simplicity, our model is

developed for the one regressor case, corresponding to a bivariate copula but it may be extended

to multiple regressors.

1Koenker and Bassett discuss properties of their estimator, especially through the following theorem:

Theorem 1 Let β (p, y,X) ∈ B (p, y,X). Then, the following properties hold:

1. β (p, κy,X) =

½
κβ (p, y,X) for κ ∈ R+
κβ (1− p, y,X) for κ ∈ R−

2. β (p, y +Xδ,X) = β (p, y,X) for δ ∈ Rk

3. β (p, y,XΓ) = Γ−1β (p, y,X) with Γ non-singular (k × k) matrix
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3 COPULAE AND DEPENDENCE

3 Copulae and dependence

The goal of this preliminary section is to provide a definition of a copula function and Sklar’s

theorem which ensures the uniqueness of the copula when the bivariate distribution for two

random variables (corresponding in our modelling framework to the dependent variable and a

regressor) is given and the margins are continuous. Then, we introduce the concepts of positive

quadrant dependence and the left tail decreasing property and show how these two concepts are

related. These definitions are the starting point to demonstrating that the concavity (respec-

tively convexity) of the copula in its first argument induces a positive (respectively negative)

dependence at each quantile level.

Definition 2 A bivariate copula is a function C : [0, 1]2 → [0, 1] such that:

1. ∀ (u, v) ∈ [0, 1]2 , ½
C (u, 0) = C (0, v) = 0
C (u, 1) = u and C (1, v) = v

(2)

2. ∀ (u1, v1, u2, v2) ∈ [0, 1]4 , u1 ≤ u2 and v1 ≤ v2,

C (u2, v2)−C (u1, v2)−C (u2, v1) +C (u1, v1) ≥ 0 (3)

Theorem 2 (Sklar’s Theorem) Let X and Y be two random variables with joint distribution

F. Then, there exists a unique copula C satisfying

F (x, y) = C (FX (x) , FY (y)) (4)

if FX and FY are continuous and represent the marginal distribution functions of X and Y

respectively.

Definition 3 (Order) Let (C,D) ∈ C2 with C the set of copulae. One says that C is greater

than D (C Â D or D ≺ C) if

∀ (u, v) ∈ [0, 1]2 , C (u, v) ≥ D (u, v)

Theorem 3 (Fréchet Bounds) Let C ∈ C. Then,

C−≺ C ≺ C+
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3 COPULAE AND DEPENDENCE

where C− and C+ are such that

C− (u, v) = max (u+ v − 1, 0)

C+ (u, v) = min (u, v)

The concept of order for copulae is importnat as it allows us to rank the dependence be-

tween random variables. One interesting copula is the product copula C⊥- that corresponds to

independence - so that C⊥ (u, v) = uv.

Figure 1: C−, C⊥ and C+

Definition 4 (Lehmann (1966)) The pair (X,Y ) is positive quadrant dependent (PQD (X,Y ))

if

Pr {X ≤ x, Y ≤ y} ≥ Pr {X ≤ x}Pr {Y ≤ y} (5)

In terms of copulae, this definition can be restated C⊥ ≺ C.

Definition 5 (Esary and Proschan (1972)) Y is left tail decreasing inX (LTD (Y | X))
if

∀y, Pr {Y ≤ y | X ≤ x} is a nonincreasing function of x (6)
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3 COPULAE AND DEPENDENCE

This definition can be equivalently expressed using copulae as:

Theorem 4 (Nelsen (1998))

LTD (Y | X) ⇐⇒ C (u, v)

u
is nonincreasing in u

⇐⇒ ∂C (u, v)

∂u
≤ C (u, v)

u
(7)

Theorem 5 Let C ∈ C. The following holds

If ∀ (u, v) ∈ [0, 1]2 ,
∂2C (u, v)

∂u2
≤ 0 then C⊥ ≺ C (8)

If ∀ (u, v) ∈ [0, 1]2 ,
∂2C (u, v)

∂u2
≥ 0 then C ≺ C⊥ (9)

Proof. We refer to Nelsen (1998), p 151-160, for the proof. The first part is based on the

fact that ∂2C(u,v)
∂u2

≤ 0⇒ LTD (Y | X)⇒ PQD (X,Y ).

The previous theorem tells us that if the copula function is concave in the marginal distri-

bution FX then the random variables X and Y are positively related i.e. their copula value is

greater than given by the independence copula C⊥. Conversely, convexity implies a negative

relationship i.e. the copula linking X and Y lies below the independence copula C⊥. For

simplicity, we still have not introduced the parameter(s) of the copula function which in effect

measure the degree and different forms of dependence between the variables, let us denote these

parameters by δ ∈ ∆. Then, through the family of copula functions, we can distinguish three

classes:

1. Copulae that only exhibit negative dependence:

∀δ ∈ ∆, ∀ (u, v) ∈ [0, 1]2 , then C (u, v; δ)≺ C⊥ (u, v)

2. Copulae that only exhibit positive dependence:

∀δ ∈ ∆, ∀ (u, v) ∈ [0, 1]2 , then C⊥ (u, v)≺ C (u, v; δ)

3. Copulae that exhibit both negative and positive dependence depending on the parameter

values:

∀δ ∈ ∆−, ∀ (u, v) ∈ [0, 1]2 , then C (u, v; δ)≺ C⊥ (u, v)

∀δ ∈ ∆+, ∀ (u, v) ∈ [0, 1]2 , then C⊥ (u, v)≺ C (u, v; δ)
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4 QUANTILE CURVE

In the next section, the concept of a quantile curve of Y conditional on X is defined and we

derive several results that are directly deduced from the underlying copula properties outlined

above.

4 Quantile curve

First, the copula p-th quantile curve of y conditionally on x or p’th c-quantile curve is defined.

Second, its main properties are exhibited. Third, the case of radially symmetric variables is

studied. Finally, the quantile curves are developed for three special cases: the Kimeldorf and

Sampson, Gaussian and Frank copulae.

4.1 Definitions

We restrict the study to monotonic copula for simplicity. Define the probability distribution of

y conditional on x by p (x, y; δ):

p (x, y; δ) = Pr {Y ≤ y | X = x}

= E
¡
I{Y≤y} | X = x

¢
= lim

ε→0
Pr {Y ≤ y | x ≤ X ≤ x+ ε}

= lim
ε→0

F (x+ ε, y; δ)− F (x, y; δ)
FX (x+ ε)− FX (x)

= lim
ε→0

C [FX (x+ ε) , FY (y) ; δ]−C [FX (x) , FY (y) ; δ]

FX (x+ ε)− FX (x)

p (x, y; δ) = C1. [FX (x) , FY (y) ; δ] (10)

with C1. (u, v; δ) = ∂
∂u
C (u, v; δ). Since the distribution functions FX and FY are nondecreasing,

p (x, y; δ) is nondecreasing in y. Using the same argument, p (x, y; δ) is nondecreasing in x if

C2. (u, v; δ) ≤ 0 and nonincreasing in x if C2. (u, v; δ) ≥ 0 where C2. (u, v; δ) = ∂2C(u,v;δ)
∂u2

.

Definition 6 For a parametric copula C (., .; δ), the p-th copula quantile curve of y condi-

tional on x is defined by the following implicit equation

p = C1. [FX (x) , FY (y) ; δ] (11)

where δ ∈ ∆ the set of parameters.
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4 QUANTILE CURVE

Under some conditions2, equation (11) can be expressed as follows in order to capture the

relationship between X and Y :

y = q (x, p; δ) (12)

where q (x, p; δ)=F [−1]
Y (D (FX (x) , p; δ)) with D the partial inverse in the second argument of

C1 and F
[−1]
Y the pseudo-inverse of FY . Note that the relationship (12) can alternatively be

expressed using uniform margins as:

v = r (u, p; δ) . (13)

with u = FX (x) and v = FY (y).

4.2 Properties

Two properties are demonstrated. The first tells us that the quantile curve shifts up with

the quantile level. The second indicates that the quantile curve has a positive (respectively

negative) slope if the copula function is concave (respectively convex) in its first argument.

Property 1 If 0 < p1 ≤ p2 < 1 then q (x, p1; δ) ≤ q (x, p2; δ).

Property 2 Let x1 ≤ x2.

If C (u, v) is concave in u then q (x1, p; δ) ≤ q (x2, p; δ)
If C (u, v) is convex in u then q (x1, p; δ) ≥ q (x2, p; δ)

Proof. Thanks the implicit function theorem, y may be expressed as a function of x and p

i.e. y = q (x, p; δ). Let us rewrite equation (11) as F (x, p,q (x, p; δ)) = 0. Thus,(
∂F
∂x
(x, p,q (x, p; δ)) + ∂F

∂y
(x, p,q (x, p; δ)) ∂q

∂x
(x, p; δ) = 0

∂F
∂p
(x, p,q (x, p; δ)) + ∂F

∂y
(x, p,q (x, p; δ)) ∂q

∂p
(x, p; δ) = 0

.

Then, 
∂q
∂x
(x, p; δ) = −

∂F
∂x
(x,p,q(x,p;δ))

∂F
∂y
(x,p,q(x,p;δ))

∂q
∂p
(x, p; δ) = −

∂F
∂p
(x,p,q(x,p;δ))

∂F
∂x
(x,p,q(x,p;δ))

.

Just note that F (x, p, y) = C1. [FX (x) , FY (y) ; δ]− p, it follows that(
∂q
∂x
(x, p; δ) = − fX(x)C2.[FX(x),FY (y);δ]

fY (y)C11[FX(x),FY (y);δ]
∂q
∂p
(x, p; δ) = 1

fY (y)C11[FX(x),FY (y);δ]

. (14)

As ∀ (u, v) ∈ [0, 1]2, C11 [u, v; δ] ≥ 0, fX (x) ≥ 0 and fY (y) ≥ 0, this completes the proof.
2Note that C1. has to be partially invertible in its second argument. If it is not anatically invertible, a

numerical root finding procedure can be used.
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4 QUANTILE CURVE

4.3 Symmetric case

An interesting case concerns the radial symmetry ofX and Y . Indeed, in this case, a remarkable

relationship exists between the p-th quantile curve and the (1− p)-th quantile curve. First, the

definition of radial symmetry is given. Then, a theorem is stated and a corollary that informs

us about the slopes of the quantile curves is provided.

Definition 7 Two random variables X and Y are radially symmetric about (a, b) if

Pr {X ≤ x− a, Y ≤ y − b} = Pr {X ≥ x+ a, Y ≥ y + b} (15)

Theorem 6 (Nelsen (1998)) Let X and Y be respectively symmetric about a and b. They

are radially symmetric about (a, b) iff their copula C satisfies:

C (u, v) = u+ v − 1 +C (1− u, 1− v) (16)

Corollary 7 If the copula C satisfies equation (11), then C1. (u, v; δ) = 1− C1. (1− u, 1− v; δ)
C2. (u, v; δ) = C2. (1− u, 1− v; δ)
C11 (u, v; δ) = C11 (1− u, 1− v; δ)

Theorem 8 (Radial symmetry and copula quantile curves) If two random variables X

and Y are radially symmetric about (a, b) then

q (a− x, p; δ) + q (a+ x, 1− p; δ) = 2b (17)

Proof. From equation (15),

Pr {Y ≤ y − b | X ≤ x− a} = Pr {Y ≥ y + b | X ≥ x+ a}

In terms of copula,

C1. [FX (a− x) , FY (b− y) ; δ] = 1− C1. [FX (a+ x) , FY (b+ y) ; δ]

p (a− x, b− y) = 1− p (a+ x, b+ y)

Then, for p (a− x, b− y) = p, ½
b− y = q (a− x, p; δ)
b+ y = q (a+ x, 1− p; δ)

and the proof follows.

Note that a direct implication of this theorem is q
¡
a, 1

2
; δ
¢
= b.

9



4 QUANTILE CURVE

Corollary 9 If two random variables X and Y are radially symmetric about (a, b) then

∂q

∂x
(a− x, p; δ)=

∂q

∂x
(a+ x, 1− p; δ) (18)

4.4 Examples

We first describe a case where the copula quantiles can be derived analytically, this is for the

Kimeldorf and Sampson copula. We then describe how to develop c-quantiles for the general

class of Archimedean Copulae and the Clayton-Joe Copula in particular (BB7 in Joe[1997 ].

We then study two specific copulae that allow both positive and negative slopes for the quantile

curves, depending on the value of their dependence parameter. These are the Gaussian copula

where the dependence pattern is measured by correlation but where the marginal distributions

may be non-gaussian. We then show that we have to be careful when choosing copula since

some copulae, such as the Frank copula, maay not allow us to adequately capture the full range

of behaviour in the distribution of the dependent variable Y .

4.4.1 Kimeldorf and Sampson copula

Consider the copula given by

C(u, v) = (u−θ + v−θ − 1)− 1
θ for θ > 0

we then have

C2(v|u) =
∂C(u, v)

∂u

= −1
θ
(u−θ + v−θ − 1)−

(1+θ)
θ (−θu−(1+θ))

= (1 + uθ(v−θ − 1))−
(1+θ)
θ

solving p = C2(v|u) for v gives

C−12 (v|u) = v = (p
−θ
1+θ − 1)u−θ + 1)−1θ

which provides us with the c-quantiles relating v and u for different values of p. Using the

empirical distribution functions for u = FX (x) and v = FY (y) we can find explicit expressions

for the conditional c-quantiles for the variable Y conditional on X.

y = F−1Y

³
(p

−θ
1+θ − 1)FX (x)

−θ + 1)
−1
θ

´
10



4 QUANTILE CURVE

4.4.2 Archimedean Copulae

4.4.2.1 General case An archimedean copula is defined as follows

C(u, v) = φ−1 [φ (u) + φ (v)] (19)

with φ a continuous and strictly decreasing function from [0, 1] to [0,∞] such that φ (1) = 0. φ
is often called the generator function. From p = ∂

∂u
C(u, v), we obtain

p =
φ0 (u)

φ0 (C(u, v))

p =
φδ0 (u)

φ0
¡
φ−1 [φ (u) + φ (v)]

¢ (20)

and the quantile regression curve for archimedean copulae can in general be deduced as

v = r (u, p; δ)

v = φ−1
·
φ

µ
φ0−1

µ
1

p
φ0 (u)

¶¶
− φ (u)

¸
Introducing u = FX (x) and v = FY (y) , the equation for the c-quantile above becomes

y = F−1Y

µ
φ−1

·
φ

µ
φ0−1

µ
1

p
φ0 (FX (x))

¶¶
− φ (FX (x))

¸¶
4.4.3 A specific archimedean copula: Clayton Joe

For the copula defined by

Cδ,θ(u, v) = 1−
Ã
1−

·³
1− (1− u)θ

´−δ
+
³
1− (1− v)θ

´−δ
− 1
¸− 1

δ

! 1
θ

(21)

with θ ≥ 1 and δ > 0, see Joe [1997], p 153). This two parameter copula is archimedean as

Cδ,θ(u, v) = φ−1δ,θ
£
φδ,θ (u) + φδ,θ (v)

¤
with 

φδ,θ (s) =
h
1− (1− s)θ

i−δ
− 1

φ−1δ,θ (s) = 1−
h
1− (1 + s)−

1
δ

i 1
θ

φδ,θ0 (s) = −
h
1− (1− s)θ

i−δ−1
δ
h
− (1− s)θ θ

−1+s

i (22)
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4 QUANTILE CURVE

It only allows positive dependence and we can see that

lim
δ→∞

Cδ,θ(u, v) = C+(u, v)

lim
θ→∞

Cδ,θ(u, v) = C+(u, v)

An important property is that each parameter respectively measures lower (δ) and upper (θ)

tail dependence as we show below. Moreover this copula encompasses two copulae sub-families

as for θ = 1 one obtains the Kimeldorf & Sampson (1975) copula:

Cδ(u, v) =
¡
u−δ + v−δ − 1

¢− 1
δ ,

and for δ → 0 the Joe (1993) copula:

Cθ(u, v) = 1−
¡
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

¢1/θ
.

4.4.4 Gaussian copula

The bivariate copula in this case is written:

C (u, v; ρ) = Φ2
¡
Φ[−1] (u) ,Φ[−1] (v) ; ρ

¢
(23)

with Φ2 the bivariate gaussian distribution and Φ the univariate distribution.

p = Φ

Ã
Φ[−1] (v)− ρΦ[−1] (u)p

1− ρ2

!

or equivalently solving for v we find the p0th c-quantile curve to be,

v = r (u, p; ρ) = Φ
³
ρΦ[−1] (u) +

p
1− ρ2Φ[−1] (p)

´
.

The slope of the p-quantile curve is given by:

∂r (u, p; ρ)

∂u
= ρ

φ
³
ρΦ[−1] (u) +

p
1− ρ2Φ[−1] (p)

´
φ (Φ[−1] (u))

.

A positive correlation is characterized by a positive slope and conversely for a negative corre-

lation. Moreover,

∂r (u, p; ρ)

∂p
=
p
1− ρ2

φ
³
ρΦ[−1] (u) +

p
1− ρ2Φ[−1] (p)

´
φ (Φ[−1] (u))

.

12



4 QUANTILE CURVE

that is always positive. Then, the higher p the higher the quantile curve. The relationship

between y and x for the p-quantile is:

y = F
[−1]
Y

h
Φ
³
ρΦ[−1] (FX (x)) +

p
1− ρ2Φ[−1] (p)

´i
(24)

Let assume that X and Y are jointly bivariate gaussian with µX = E [X], µY = E [Y ],

σ2X = Var [X], σ
2
Y = Var [Y ] and ρ = Corr [X,Y ]. Then, given equation (24), the relationship

becomes linear and we have

y = q (xt, p; δ = ρ) = a+ bx

with slope and intercept values determined by the quantile level;½
a = µY + σY

p
1− ρ2Φ[−1] (p)− ρσY

σx
µX

b = ρσY
σx

Figure 2: Gaussian copula densities, copula pth quantile curves (for p = .1, .2, . . . , .9) for (u, v)
and (x, y) under the hypothesis of Student margins (ν = 3) for ρ = 0.4 (upper plots) and
ρ = −0.8 (lower plots)
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5 COPULA QUANTILE REGRESSION

4.4.5 Frank copula

This copula is given by

C (u, v; δ) = −1
δ
ln

µ
1 +

(e−δu − 1)(e−δv − 1)
e−δ − 1

¶
(25)

By computing its first derivative with respect to u, one obtains the copula p-th quantile curve,

p = C1. (u, v; δ) as

p = e−δu
¡¡
1− e−δ

¢
(1− e−δv)−1 − (1− e−δu)

¢−1
or equivalently,

v = −1
δ
ln
³
1−

¡
1− e−δ

¢ £
1 + e−δu

¡
p−1 − 1

¢¤−1´
.

From the definition of the uniform distribution, one obtains the non-linear relationship between

x and y for the p-quantile as:

y = F
[−1]
Y

·
−1
δ
ln
³
1−

¡
1− e−δ

¢ £
1 + e−δFX(x)

¡
p−1 − 1

¢¤−1´¸
(26)

We can see that the Frank copula might not always be a good choice as for u ∈ [0, 1],

−1
δ
ln
¡
1−

¡
1− e−δ

¢
p
¢
≤ r (u, p; δ) ≤ −1

δ
ln

µ
1− e−δ

1 + e−δ (p−1 − 1)

¶
for δ > 0

and

−1
δ
ln
¡
1−

¡
1− e−δ

¢
p
¢
≥ r (u, p; δ) ≥ −1

δ
ln

µ
1− e−δ

1 + e−δ (p−1 − 1)

¶
for δ < 0

5 Copula quantile regression

5.1 Definition

In this section, we define the concept of copula quantile regression as a special case of non-

linear quantile regression. Let (y1, . . . , yT ) be a random sample on Y and (x1, . . . , xT ) a random

k-vector sample on X.

Definition 8 The p-th copula quantile regression q (xt, p; δ) is any solution to the following

problem:

min
δ

X
t∈Tp

p |yt − q (xt, p; δ)|+
X

t∈T1−p

(1− p) |yt − q (xt, p; δ)|

 (27)
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5 COPULA QUANTILE REGRESSION

Figure 3: Frank copula densities, copula pth quantile curves (for p = .1, .2, . . . , .9) for (u, v) and
(x, y) under the hypothesis of Student margins (ν = 3) for δ = 2.5 (upper plots) and δ = −8
(lower plots)
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5 COPULA QUANTILE REGRESSION

with Tp = {t : yt ≥ q (xt, p; δ)} and T1−p its complement. This can be expressed alternatively as:

min
δ

Ã
TX
t=1

¡
p− I{yt≤q(xt,p;δ)}

¢
(yt − q (xt, p; δ))

!
(28)

This definition indicates that the estimate of the dependence parameter δ is provided by

an L1 norm estimator. This problem has already been investigated by Koenker and Park

[1996] who propose an algorithm for problems with response functions that are non-linear

in parameters. We refer the reader to Koenker and Park’s original article for a detailed

discussion of the development of an interior point algorithm to solve the estimation problem.

The main idea is to solve the non-linear L1 problem by splitting it into a succession of linear

L1 problems.

It might be surprising that the probability level p appears in equation (27) as an argu-

ment of the function q itself. This is simply because we have adopted a top-down strategy in

our modelling by first specifying the joint distribution and then deriving the implied quantile

function. By postulating given margins for X and Y and their copula, we implicitly assume

a specific parametric functional for q (xt, p; δ). In fact, the probability level is implicit in the

original quantile regression definition of Koenker and Bassett [1978].

5.2 Application to FX markets and Measuring Tail area Depen-
dency

We now turn to consider the form of dependency between exchange rates. We start by consider-

ing the static inter-relationship between the Dollar -Yen, Dollar-Sterling and Dollar- DM rates

using 522 weekly returns on the exchange rates from August 1992 to August 2002 as shown

in the following figure.We then turn to consider the dynamic evolution of conditional quantiles

both within and between these rates. All three exchange rates fail univariate normality tests

with excess kurtosis and positive skew except for Sterling -Dollar which shows a negative skew

over the sample period.

We then compute the nonlinear quantile regression estimates of ρ̂ (p) such that:

ρ̂ (p) = argmin

Ã
TX
t=1

³
p− I{S1t≤q(S2t,p;ρ,θ̂1,θ̂2)}

´³
S1t − q

³
S2t, p; ρ, θ̂1, θ̂2

´´!
(29)
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5 COPULA QUANTILE REGRESSION
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Figure 4: Exchange rates levels

Assuming a gaussian copula the relationship between any two exchange rates S1 and S2 at the

p’th-quantile is:

S1 = F̂
[−1]
1

·
Φ

µ
ρ̂ (p)Φ[−1]

³
F̂2 (S2)

´
+
q
1− ρ̂2 (p)Φ[−1] (p)

¶¸
, (30)

with F̂1 and F̂2 the empirical marginal distribution functions for exchange rates 1 and 2 respec-

tively. The results for estimates of the dependency parameter, the correlation at each quantile

level ρ̂ (p) expressed in percentage terms, are reported in Table 5 below together with their

empirical standard deviations. The mean regression results are also reported for information.

The lower p the lower the regression curve.
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5 COPULA QUANTILE REGRESSION

S1 USD/Y USD/Y USD/£
S2 USD/£ USD/DM USD/DM
5% 14.2% 37.7% 49.1%

(5.4%) (3.5%) (4.6%)
10% 16.5% 31.9% 57.2%

(4.7%) (4.2%) (4.0%)
50% 20.2% 32.9% 72.0%

(3.8%) (4.0%) (3.1%)
90% 14.1% 28.5% 63.2%

(5.5%) (4.7%) (3.6%)
95% 13.2% 23.3% 55.8%

(5.9%) (5.7%) (4.1%)
mean regression 18.3% 32.0% 65.2%

(4.2%) (4.2%) (3.5%)

Table 1: C- Quantile Regression Estimates baserd on Gaussian Copula

S1 USD/£ USD/DM USD/DM
S2 USD/Y USD/Y USD/£
5% 14.4% 21.4% 51.2%

(5.9%) (6.2%) (4.0%)
10% 17.5% 20.1% 57.7%

(4.9%) (6.6%) (3.6%)
50% 20.5% 33.4% 64.3%

(4.1%) (4.0%) (3.2%)
90% 22.8% 37.1% 66.1%

(3.7%) (3.6%) (3.1%)
95% 16.9% 34.3% 51.2%

(5.0%) (3.9%) (4.0%)
mean regression 19.2% 32.0% 62.1%

(4.4%) (4.2%) (3.3%)

Table 2: C-Quantile Regression Estimates based on Gaussian Copula
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6 TAIL AREA DEPENDENCY
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Figure 5: Empirical Yen/DM bivariate return distribution

6 Tail Area Dependency

Several dependence measures for extremes, λ - so called tail dependence measures have been

developed where asymptotic independence is given by λ = 0 and λu ∈ (0, 1] for upper tail
dependence and where λl ∈ (0, 1] may be similarly defined for lower tail dependency.

λu is linked to the asymptotic behaviour of the copula:

λu = lim
α→1−

Pr{X2 > V aRα(X2)|X1 > V aRα(X1)}

= lim
α→1−

1− 2α+ C̄(α, α)

1− α

or, alternatively (see Embrechts P., A. McNeil and D. Straumann (1999)):

λu = − lim
x→1−

d(1− 2x+ C̄(x, x))

dx
= lim

x→1−
Pr{U2 > x|U1 = x}+ lim

x→1−
Pr{U1 > x|U2 = x}

= 2 lim
x→1−

Pr{U2 > x|U1 = x}
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6 TAIL AREA DEPENDENCY
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Figure 6: Empirical Yen/Sterling bivariate return distribution

Applying the same transformation F−11 to both marginals, and (X,Y )> ∼ C(F1(x), F1(y)),

λu = 2 lim
x→∞

Pr{F−11 (U2) > x|F−11 (U1) = x}

= 2 lim
x→∞

Pr{Y > x|X = x}

An alternative interpretation is that λ(u) may be viewed as a quantile dependent measure

of dependence (Coles,Currie and Tawn (Lancaster University, [1999]) .Then

λu(u) = Pr[U1 > u|U2 > u] =
C̄(u, u)

1− u

and

λu = lim
u→1

C̄

1− u

Where

C̄(u1, u2) = C̃(1− u1, 1− u2)

Applying these measures to numerically compute the upper and lower tail indices for the three

exchange rates we find

20



6 TAIL AREA DEPENDENCY

rt USD/Y USD/Y USD/£
rt USD/£ USD/DM USD/DM

p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 1.07 0.00 1.17 0.00 1.42 0.19
10% 1.07 0.00 1.17 0.00 1.39 0.21
50% 1.06 0.03 1.13 0.09 1.21 0.37
90% 1.05 0.08 1.10 0.21 1.07 0.53
95% 1.04 0.09 1.09 0.23 1.06 0.55

Table 3: C-Quantile Regression estimates of the relative returns of the exchange rates rt =
St/St−1 − 1.

St USD/Y USD/Y USD/£
St USD/£ USD/DM USD/DM
p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 1.01 0.67 1.39 0.00 1.04 0.44
10% 1.02 0.54 1.39 0.00 1.03 0.44
50% 1.00 0.00 1.37 0.00 1.00 0.35
90% 1.00 0.00 1.25 0.17 1.00 0.15
95% 1.00 0.00 1.24 0.20 1.00 0.11

Table 4: C-Quantile Regression estimates of the levels of the exchange rates St.

Upper Tail Dependency λu Lower Tail Dependency λl
α = .975 α = 0.2

Yen-Sterling 0.01538 0.926
Yen-DM 0.03846 0.8349
DM-Sterling 0.3076 0.8780

Table 5: Upper and Lower Tail index Estimates
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6 TAIL AREA DEPENDENCY
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Figure 7: Empirical Sterling/DM bivariate return distribution

The lower and upper tail dependence measures for archimedean copula are defined in general

by  λl = lim
α→1−

1−2α+φ−1(2φ(α))
1−α

λu = lim
α→0+

φ−1(2φ(α))
α

(31)

and for the Clayton Joe Copula specifically are given by½
λl = 2

−1/δ

λu = 2− 21/θ
(32)
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6 TAIL AREA DEPENDENCY
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Figure 8: Nonlinear quantile regression of USD/Y on USD/$ for 5%, 10%, 50%, 90%, 95%
probability levels.
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Figure 9: Nonlinear quantile regression of USD/Y on USD/DM for 5%, 10%, 50%, 90%, 95%
probability levels.
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Figure 10: Nonlinear quantile regression of USD/$ on USD/DM for 5%, 10%, 50%, 90%,
95% probability levels.
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6 TAIL AREA DEPENDENCY

USD/Y USD/£ USD/DM
p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)

5% 1.03 0.00 1.00 0.04 1.00 0.06
(0.02) - - (0.02) - (0.03)

10% 1.03 0.00 1.00 0.03 1.00 0.05
(0.02) - - (0.02) - (0.03)

50% 1.04 0.00 1.00 0.00 1.00 0.04
(0.02) - - - - (0.02)

90% 1.05 0.00 1.00 0.00 1.00 0.02
(0.02) - - - - (0.01)

95% 1.05 0.00 1.00 0.00 1.00 0.02
(0.02) - - - - (0.01)

Table 6: C-Quantile Regression estimates of the returns of the exchange rates St on St−1.

6.1 Dynamic c-quantiles

We next compute the nonlinear dynamic quantile regression estimates
³
δ̂ (p) , θ̂ (p)

´
for the

Clayton Joe Copula such that:³
δ̂ (p) , θ̂ (p)

´
= argmin

Ã
TX
t=1

¡
p− I{St≤q(St−1,p;δ,θ)}

¢
(St − q (St−1, p; δ, θ))

!
(33)

with

q (St−1, p; δ, θ) = F̂ [−1]
·
φ−1δ,θ

·
φδ,θ

µ
φδ,θ0−1

µ
1

p
φδ,θ0

³
F̂ (St−1)

´¶¶
− φδ,θ

³
F̂ (St−1)

´¸¸
(34)

with φδ,θ the generator of the copula defined in equation (22) and F̂ the empirical distribution

function of the exchange rate St. The estimates are given below for the levels and relative

returns.

The results are summarized in the following table:

USD/Y USD/£ USD/DM
model Joe none Kimeldorf & Sampson
lower dependence no no yes
upper dependence yes no no
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6 TAIL AREA DEPENDENCY

St−1 USD/Y USD/£ USD/DM
St USD/Y USD/Y USD/Y

p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 2.95 1.16 1.00 0.01 1.35 0.00
10% 2.91 1.18 1.00 0.02 1.34 0.00
50% 2.57 1.34 1.00 0.10 1.30 0.07
90% 2.30 1.45 1.00 0.27 1.20 0.27
95% 2.27 1.46 1.00 0.30 1.19 0.30

Table 7: C-Quantile Regression estimates of the level of the exchange rate St on St−1.

St−1 USD/Y USD/£ USD/DM
St USD/£ USD/£ USD/£

p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 1.00 0.68 2.38 0.64 1.00 0.47
10% 1.01 0.55 2.33 0.68 1.00 0.46
50% 1.00 0.00 1.94 1.04 1.00 0.35
90% 1.00 0.00 1.57 1.50 1.00 0.22
95% 1.00 0.00 1.53 1.55 1.00 0.19

Table 8: C-Quantile Regression estimates of the level of the exchange rate St on St−1.

St−1 USD/Y USD/£ USD/DM
St USD/DM USD/DM USD/DM

p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 1.38 0.00 1.04 0.40 3.43 0.64
10% 1.38 0.00 1.03 0.40 3.34 0.69
50% 1.36 0.00 1.00 0.33 2.53 1.18
90% 1.25 0.17 1.00 0.19 1.82 1.71
95% 1.23 0.20 1.00 0.16 1.75 1.76

Table 9: C-Quantile Regression estimates of the level of the exchange rate St on St−1.

rt−1 USD/Y USD/£ USD/DM
rt USD/Y USD/Y USD/Y

p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 1.00 0.00 1.00 0.00 1.00 0.00
10% 1.01 0.00 1.00 0.00 1.00 0.00
50% 1.03 0.00 1.00 0.00 1.00 0.00
90% 1.05 0.00 1.01 0.00 1.01 0.00
95% 1.05 0.00 1.01 0.00 1.02 0.00

Table 10: C-Quantile Regression estimates of the relative return of the exchange rate rt =
St/St−1 − 1 on rt−1.
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6 TAIL AREA DEPENDENCY

rt−1 USD/Y USD/£ USD/DM
rt USD/£ USD/£ USD/£

p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 1.02 0.00 1.00 0.08 1.00 0.06
10% 1.02 0.00 1.00 0.07 1.00 0.06
50% 1.02 0.00 1.00 0.01 1.00 0.04
90% 1.02 0.00 1.00 0.00 1.02 0.00
95% 1.02 0.00 1.00 0.00 1.03 0.00

Table 11: C-Quantile Regression estimates of the relative return of the exchange rate rt =
St/St−1 − 1 on rt−1.

rt−1 USD/Y USD/£ USD/DM
rt USD/DM USD/DM USD/DM

p θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p) θ̂ (p) δ̂ (p)
5% 1.00 0.02 1.00 0.08 1.00 0.06
10% 1.00 0.02 1.00 0.07 1.00 0.06
50% 1.00 0.02 1.00 0.04 1.00 0.04
90% 1.00 0.01 1.00 0.00 1.02 0.00
95% 1.00 0.01 1.00 0.00 1.02 0.00

Table 12: C-Quantile Regression estimates of the relative return of the exchange rate rt =
St/St−1 − 1 on rt−1.
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7 CONCLUSION

7 Conclusion

The copula quantile regression results in Tables 1 and 2 above indicate significant dependence

using standard inference procedures at all probability levels and for all exchange rates using

the Gaussian copula. There is a relatively lower degree of association indicated between the

Yen:Dollar and the Sterling:Dollar rates and a much higher association indicated at all quantile

levels for the Dollar: Sterling and Dollar:DM rates.A fairly symmetric degree of dependence is

indicated as we range from the 5% quantile to the 95% quantile with relatively minor differ-

ences from the mean regression results.We find the same qualitative conclusions in these two

cases when we reverse the causality in Table 2. What are striking however are the results for

Yen:Dollar and DM:Dollar dependency patterns revealed in the C-quantile regressions. In par-

ticular we can see a clear asymmetric structure in the dependency between the lower quantiles

and the upper quantiles with much stronger dependency being shown in the lower quantiles

when the Yen is the dependent variable ( and vice versa in the upper quantiles when the DM

is the dependent variable). Use of the mean or median regression in this case could give a

substantially misleading idea of the relative joint risks.

Using the Clayton Joe copula Tables 3 and 4 show the some indication of upper tail de-

pendence in the Yen DM dollar rates in levels and Sterling:DM dollarrates in the uppertil in

returns. Some lower tail dependence is found for the Yen:Sterling Dollar rates and Sterling Dm

Dollar rates in levels and Steringl: DM in returns. Otherwise we find dependence at all.

Turning to consider the numerical tail index parameters estimated from the empirical copula

in Table 5. -first it would seem there is a question of the reliability of these estimates of

asymptotic dependence but it is clear we get substantially more information regarding the joint

risk structure from the C-Quantile regressions. We see high dependence in the lower tail for

all pairs of rates and low dependence in the upper tail for Yen:Dollar and Sterling :Dollar

rates but relatively high upper tail dependence for the DM:Dollar and Sterling :Dollar Rates.

These results are not immediately consistent with the information provided by the C-Quantile

estimates indicating that we are getting distinct information from the two different approaches

to measuring conditional dependency. Rather than using the empirical copula to compute

these tail area dependence paramters it may be that more reliable estimates can be found

from estimating the parameters of the relevant copula and then calculating the tail dependence

measures directly.

28



7 CONCLUSION

Tables 7 to 9 show the dynamic dependence between the levels of the exchange rates. The

Sterling Yen and Sterling DM rates with the Dollar show no upper tail dependence. Own lag

dependence is strong and varies consitently with the quantile level. The Yen DM Dollar rates

show relatively strong upper tail dynamic dependence but otherwise there seems to be relatively

little strong dynamic dependence in the tails of these exchange rates.

Tables 10 to 12 show that there is no dynamic dependence at any quantile level between

the returns of the exchange rates at least at the weekly level that our data has been recorded.

The Clayton Joe parameter estimates indicate independence even in the relative extremes of

the joint distribution.

These results are indicative of the structure that can be uncovered using copula based

quantile regressions. We intend to move from this point to consider dynamic copula based risk

measures based on these quantile estimates- in particular expected shortfall measures following

Tasche[2000].
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