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Abstract

The stochastic Dirichlet problem computes values within a domain
of certain functions with known values at the boundary of the domain.
When applied to valuing barrier options, solutions are expressed as ex-
pected discounted payo¤s achieved at hitting times to the boundary of
the domain.

We construct a lattice solution to the stochastic Dirichlet problem. In
between time steps on the lattice, the lattice process is assumed to have
the bridge distribution of the underlying stochastic process.

We apply the Dirichlet lattice to valuing barrier options. A plain
simple scheme converges very slowly. We …nd that the Dirichlet lattice is
considerably faster than a plain lattice scheme, converging to 2 decimal
places in only several hundred time steps.

The Dirichlet lattice can directly value knock-in barrier options, in-
cluding knock-in Bermudan barrier options which cannot normally be
priced by a plain lattice method. It values Bermudan barrier options
and barrier options with non-linear barriers equally quickly. We present
results demonstrating the superiority of the Dirichlet lattice over both a
plain lattice method and a conditional Monte Carlo method.

¤We wish to thank participants at a City University seminar for comments on an early
version of this paper. The paper has also bene…ted from conversations with Gordon Gemmill
and Paul Dawson.
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1 Introduction
We describe a lattice method that computes knock-in and knock-out continuous
single and double barrier option values by a exploiting a knowledge of hitting
time distributions to the barrier. The method can be used with non-constant
barriers and with knock-in and -out Bermudan barrier options. It is considerably
faster than ordinary lattice formulations. Since the lattice is a discrete approx-
imation to a solution of a stochastic Dirichlet problem, we call it a Dirichlet
lattice.

The Dirichlet lattice process approximates a continuous process. It takes a
discrete set of values at each time step, but at intermediate times is distributed
according to the bridge process of the underlying continuous process.

Barrier options are widely traded in foreign exchange markets. They can be
bought to allow a view to be taken on the future direction of an FX rate, or
as a cheaper alternative to a standard option. Vanilla barrier options with a
…xed continuous barrier where the underlying asset has a geometric Brownian
motion can be valued using formulae developed by Merton (73) [12] and Reiner
and Rubinstein (91) [14].

More complex barrier instruments, perhaps with early exercise provision or
more complex payo¤s, usually need to be valued by a numerical method. Both
Monte Carlo and lattices methods can be used.

A simple Monte Carlo method can su¤er from simulation bias, caused by
the possibility of the barrier being hit in between time steps. Simulation bias in
a Monte Carlo method can be reduced using the idea of Beaglehole, Dybvig and
Zhou (97) [4] and El Babsiri and Noel (98) [3]. They showed how a knowledge
of the extremes distribution of a Brownian bridge could be used to correct for
simulation bias.

Ordinary lattice methods can su¤er from a similar problem to plain Monte
Carlo, discretization bias, that leads to slow convergence. This arises because
nodes on the lattice do not exactly correspond to the barrier level. As the
number of time steps increases the lattice will converge to the continuous time
value. However, while this is happening, the levels of nodes on the lattice will
shift relative to the barrier, leading to slow, non-uniform and unpredictable
convergence properties.

Several authors have suggested methods to overcome discretization bias in
lattice methods to value barrier options. These may involve altering the location
of nodes on the lattice (for instance Boyle and Lau (94) [5], Ritchken (95) [16],
Cheuk and Vorst (96) [7].)

Figlewski and Gao (99) [8] described the adaptive mesh method, a lattice
with re…ned branching near the barrier. This method has signi…cantly improved
convergence. Ahn, Figlewski and Gao (99) [1] applied it to value discrete barrier
options. As it is re…ned the adaptive mesh is approximating with increasing
accuracy the conditional hitting distribution. The Dirichlet lattice exploits a
direct knowledge of the hitting distribution.

Broadie, Glasserman and Kou (97) [6] show how the value of a continuous
barrier option is related to values of discrete barrier options with shifted barrier
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levels. This allows the value of a continuous barrier option to be found by
extrapolation from the more easily computed values of discrete barrier options.
While this elegant method, extended by Horfelt (03) [10], works well with vanilla
barrier options it does not readily generalize to more complex barrier options,
for instance those with non-constant or partial barriers. We apply the Dirichlet
lattice to options with time varying barriers and Bermudan barrier options,
achieving very good results compared to benchmark methods.

Andricopoulos, Widdicks, Duck and Newton (03) [2] use a quadrature method
of numerical integration to value options by backwards induction, reporting ex-
cellent results with, for instance, discrete barrier options. The method seems
particularly appropriate for options with discrete reset times, but it appears to
be signi…cantly slower for continuously time varying barrier or continuous exer-
cise conditions. No applications are given to continuous barrier options in the
paper. Furthermore, since the method critically depends on an optimal place-
ment of nodes (to avoid problems with vanishing derivatives), it appears that
the method must be applied ‘case by case’ for every strike and maturity varia-
tion, limiting its application in practice. By contrast, the Dirichlet lattice needs
no adjustment and can use both forward and backwards induction to value ‘in’
and ‘out’ type barrier options, enabling it to value many options simultaneously.
The Dirichlet lattice can value vanilla barrier options with a single time step,
extending the quadrature method to this case.

The next section describes how the Dirichlet lattice can be constructed.
We show how a Brownian bridge hitting times distribution can be exploited to
construct lattices with considerably reduced discretization bias. Section three
presents numerical results. We benchmark the lattice to standard knock-in and
knock-out barrier options, using both forward and backwards induction. We
then apply the lattice to value options with non-linear barriers, and options
which knock-in or out on an underlying Bermudan option. We …nd that the
Dirichlet lattice achieves great accuracy with only a few hundred time steps.
Section four concludes.

2 The Dirichlet Lattice
The value c0 of a European derivative security at time t0 is c0 = E0

h
HT

p0
pT

i

where pt is the value at time t of a numeraire, HT is a potentially path depen-
dent payo¤ function and expectations are taken with respect to the equivalent
martingale measure. We suppose interest rates are constant, value r, and use
the accumulator account numeraire so that c0 = e¡rT E0 [HT ] under the spot
measure. We assume there is a single state variable in the model, an asset value
St, and we specialize down to the process for St following a geometric Brownian
motion, dSt = rStdt + ¾Stdzt, for a Wiener process zt.

We consider options that knock-in or knock-out when the asset value hits a
domain boundary. For each t 2 [0; T ] let Dt = [lt; ut] ½ R, lt < ut, be either
a closed interval or else a half-closed interval with one of ut or lt unbounded.
For simplicity, we also suppose that the functions t 7¡! ut and t 7¡! lt are
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continuous.
The payo¤ to a European barrier option takes place at time T , although

whether a payo¤ is made or not depends on whether a barrier value has been
breached. We consider the case where rebates are paid or received when the
option is knocked in or out, and we also investigate Bermudan barrier options.
We only consider options where if a non-zero payo¤ is made at time T , its value
depends only upon ST and not, for instance, on the hitting time.

2.1 The Stochastic Dirichlet Problem
Given a domain D ½ RN , a bounded measurable function Á on the boundary
@D, and a stochastic process Xt, the stochastic Dirichlet problem is to …nd an
X-harmonic function eÁ on D such that eÁ agrees with Á on @D (at least in a
limit). When the solution exists it is eÁ (x) = E [Á (X¿ ) j X0 = x] where ¿ is the
hitting time of Xt to @D.

Barrier option pricing involves a particular version of the stochastic Dirichlet
problem. In general we have a time-varying domain Dt = [lt; ut] ½ R with
boundary @t = ffltg ; futgg and a stochastic process St 2 R with S0 2 D0.
Upon hitting the boundary at time ¿ the barrier option acquires the value
Á¿ (S¿ ) of some other instrument. Á¿ (S¿ ) is zero for a knock-out option. At
the option expiry time T , if ¿ > T , suppose the option has value ÁO

T (ST ). For
European barrier options we seek a C2 function eÁ (S; t) for t · T such that

1. eÁ (S¿ ; ¿) = Á¿ (S¿ ), if ¿ · T ,

2. eÁ (ST ; T ) = ÁO
T (ST ), if ¿ > T ,

3. AeÁ = reÁ where A is the generator of St:

When Dt and St are su¢ciently regular the solution is

eÁ (St; t) = Et

"
exp

µ
¡

Z ¿

t
rsds

¶
Á¿ (S¿ ) If¿·Tg + exp

Ã
¡

Z T

t
rsds

!
ÁO

T (ST ) IfT<¿g

#
:

(1)
For a vanilla up-and-in barrier call option the domain D = (1; u] is the half

open interval with a …xed barrier level u. Upon hitting the barrier the option
acquires the value of a European call option. In general the value Á¿ (S¿ ) of the
option when it is knocked-in may not be known analytically and may need to
be computed numerically.

We de…ne unconditional and conditional hitting times to the upper barrier,
¿ , the lower barrier, ¿ , and to both barriers, ¿ = min f¿; ¿g. For t1 < t2, set

¿S
t1 = inf

s¸t1
fSs ¸ us j St1 = Sg ; (2)

¿S;S0

t1;t2 = inf
s¸t1

fSs ¸ us j St1 = S;St2 = S0g ; (3)
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with analogous de…nitions for ¿ , and set ¿S
t1 = min

©
¿S

t1 ; ¿
S
t1

ª
and ¿S;S0

t1;t2 =

min
n
¿S;S0

t1;t2 ; ¿
S;S0

t1;t2

o
.

Let c0 be the value at time 0 of an option which receives a payo¤ H at time
T of

H (S; ¿; ¿) = H (S) In
¿S0
0 ·min

n
¿S0
0 ;T

oo+H (S) In
¿S0
0 ·min

n
¿S0
0 ;T

oo+HO (S) In
T<min

n
¿S0
0 ;¿S0

0

oo

(4)
where H, H and HO depend only on ST , and IA is the indicator function.
H and H are payo¤s at time T corresponding to Át and HO corresponds to
ÁO

T . A standard double knock-in call option has H = H = (ST ¡ X)+ and
HO = 0, and a standard double knock out call option has H = H = 0 and
HO = (ST ¡ X)+. Single barrier options correspond to one or other of ut and
lt being unbounded.

Let c0 be the value at time 0 of the up-and-in option with payo¤ HIn
¿S0
0 ·min

n
¿S0
0 ;T

oo ,

c0 be the value of the down-and-in option with payo¤ HIn
¿S0
0 ·min

n
¿S0
0 ;T

oo , and

cO
0 the value of the knock-out option with payo¤ HOIn

T<min
n

¿S0
0 ;¿S0

0

oo . Since

the three barrier events are mutually exclusive c0 = c0 + c0 + cO
0 : We call c0, c0

and cO
0 the components of the barrier option.

For European style options equation (1) is a direct integration. Let fS (S)
be the density function of ST and fS;¿;¿ (S; ¿ ; ¿) be the joint density function of
ST , ; ¿S0

0 and ¿S0
0 , both conditional on S0. Then (1) is

c0 = e¡rT
Z T

0

Z T

0

Z 1

0
H (S; ¿ ; ¿) fS;¿;¿ (S; ¿; ¿) dSd¿d¿ : (5)

We now condition on ST . Write f¿;¿ (¿ ; ¿ j S) for the conditional density func-
tion so that fS;¿;¿ (S; ¿ ; ¿) = f¿;¿ (¿ ; ¿ j S) fS (S) and set

F
S0;ST
0;T (t) = Pr

h
¿S0
0 · min

n
t; ¿S0

0

o
j S0; ST

i
; (6)

FS0;ST
0;T (t) = Pr

h
¿S

t0 · min
n
t; ¿S0

0

o
j S0; ST

i
; (7)

FS0;ST
0;T (t) = Pr

h
min

n
¿S0

0 ; ¿S0
0

o
· t j S0; ST

i
; (8)

t ¸ 0, for the conditional distribution functions. F
S0;ST
0;T (T ) is the probability

that ut is hit before time T and before lt is hit, conditional on the value of ST
at time T . Then, for instance,

Z T

0

Z T

0
H (ST ) In

¿S0
0 ·min

n
¿S0
0 ;T

oof¿;¿ (¿ ; ¿ j ST ) d¿d¿ (9)

= H (ST )
Z T

0

Z T

0
In

¿S0
0 ·min

n
¿S0
0 ;T

oof¿;¿ (¿ ; ¿ j ST ) d¿d¿ (10)

= H (ST )FS0;ST
0;T (T ) (11)
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so

c0 = e¡rT
Z 1

0

³
H (S) F

S0;S
0;T (T ) + H (S)FS0;ST

0;T (T ) + HO (S)
³
1 ¡ FS0;ST

0;T (T )
´´

fS (S) dS

(12)
When FS0;S

0;T (T ) is known, or can be approximated, we can develop a lattice
solution to (12), the Dirichlet lattice. We see below that this is possible when
St has a geometric Brownian motion, for instance.

2.2 Constructing the lattice
We construct a lattice for a Wiener process zt. Discretise time as 0 = t0 < : : : <
tN = T where, for simplicity, we assume ¢t = tj+1 ¡ tj , j = 0; : : : ; N ¡ 1 is
a constant. Label nodes at time tj by the pair (j; i), i = ¡Nj ; : : : ;Nj , where
Nj = jK for a constant integer K. At time tj the discretised Wiener process
bzt can take values zj;i 2 fz0 + i¢zgi=¡Nj ;:::;Nj

where ¢z =
p

·¢t, for some
constant · > 0, and z0 = 0. Branching from node (j; i) is to nodes (j + 1; i + k),
k = ¡K; : : : ;K, with branching probabilities pk chosen to match the transition
density function of the Wiener process. The order of branching is 2K + 1.

When K = 1 we have trinomial branching and can choose branching proba-
bilities to be

pk =
½ 1

2· ; k = §1;
·¡1

· ; k = 0; (13)

setting · = 3 to match the …rst …ve moments of zt. In the sequel, except where
stated, we assume that branching is trinomial.

We now construct a lattice process bSt for St constrained to take discrete
values at times tj but assumed to follow a bridge process at intermediate times.
When St has a geometric Brownian motion, dSt = rStdt+¾Stdzt, it has solution
St = S0 exp

¡¡
r ¡ 1

2¾2
¢
t + ¾zt

¢
. On the lattice at node (j; i) the lattice process

has value Sj;i = S0;0 exp
¡¡

r ¡ 1
2¾2

¢
tj + ¾zj;i

¢
where S0;0 = S0, the initial value

of the asset. Conditional on Sj;i the lattice process has the value Sj+1;i+k
at time tj+1 with probability pk, but at intermediate times tj · t · tj+1,
the distribution of bSt conditional on Sj;i and Sj+1;i+k is given by the bridge
distribution of St. We use a knowledge of this bridge distribution to more
accurately model the behaviour of St at intermediate times.

We describe option valuation by both forward and backwards induction.

2.2.1 Option valuation by forward induction

If the integrand in (12) is known it may be possible to integrate it directly, or else
by a quadrature method (Andricopoulos, Widdicks, Duck and Newton (03) [2]).
However, in practical applications (a) the integrand may not be known and (b)
an options book can contain many options with di¤erent time to maturity and
payo¤ functions, each requiring a separate integration. The forward induction
method (Jamshidian (91) [11]) computes values of F

S0;S
0;T (T ) fS (S), et cetera,

by iterating forward through the lattice, …nding these values at each node of
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the lattice, so that a single pass through the lattice can compute the values of
many options simultaneously. This overcomes both problems su¤ered by direct
quadrature methods.

Forward induction cannot be used to value Bermudan options. Backwards
induction methods are needed for these cases.

Write pj;i for the probability on the lattice of reaching node (j; i) from the
initial node (0; 0). pj;i is an approximation to fS (Sj;i). Write Bj;i for the set of
predecessor nodes to node (j; i),

Bj;i = fl 2 f¡Nj¡1; : : : ; Nj¡1g j (j ¡ 1; l) branches to (j; i)g : (14)

Then, recursively, p0;0 = 1 and

pj;i =
X

l2Bj;i

pj¡1;lpi¡l (15)

so that pj;i can be constructed at every node (j; i).
Write pj;i (p

j;i
) for the probability of reaching node (j; i) having been knocked

in at the upper (lower) boundary, and pO
j;i for the corresponding probability of

reaching node (j; i) without having hit the boundary. Of course pj;i+p
j;i

+pO
j;i =

pj;i. pj;i, for instance, is an approximation to F
S0;0;Sj;i
0;tj

(tj) fS (Sj;i). We discuss
in a moment how these probabilities can be calculated.

Write HN;i, HN;i, HN;i and HO
N;i for the payo¤s on the lattice at node

(N; i); HN;i = H (SN;i), et cetera. The forward induction approximation to the
integral (12) is

c0 = e¡rT
NNX

i=¡NN

³
pO

N;iH
O
N;i + pN;iHN;i + p

N;i
HN;i

´
: (16)

As ¢t ! 0 this discrete approximation converges to its continuous time coun-
terpart.

For t ¸ tj , set F
i;l
j;k (t) = F

Sj;i;Sk;l
tj ;tk

(t), F i;l
j;k (t) = FSj;i;Sk;l

tj ;tk
(t) and F i;l

j;k (t) =
FSj;i;Sk;l

tj ;tk
(t). We could try setting

pj;i = pj;iF
0;i
0;j (tj) ; (17)

p
j;i

= pj;iF 0;i
0;j (tj) ; (18)

pO
j;i = pj;i

³
1 ¡ F 0;i

0;j (tj)
´

; (19)

but there are two problems with these de…nitions. Firstly, the functions F
i;l
j;k (t),

F i;l
j;k (t) and F i;l

j;k (t) may not be known. Secondly, if the lattice is used for
valuing several products for di¤erent maturities at once (which is feasible since
to …nd pN;i, say, one computes pj;i for all j · N) arbitrage opportunities may

be introduced. This is because the probabilities F
i;l
j;k (t), F i;l

j;k (t) and F i;l
j;k (t)
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are conditioned only at the initial and …nal times. At intermediate times tk,
0 < k < j, there is no constraint to force the discrete process to take values on
the lattice. Setting pj;ijk;l to be the probability on the lattice of reaching node
(j; i) conditional on being at node (k; l) at time tk, we will …nd, for instance,
for 0 < k < j,

pj;i

³
1 ¡ F 0;i

0;j (tj)
´

6=
X

l=¡Nk;:::;Nk

pk;l

³
1 ¡ F 0;l

0;k (tk)
´

pj;ijk;l

³
1 ¡ F l;i

k;j (tj)
´

:

(20)
To overcome the this problem, and to facilitate a solution to the …rst prob-

lem, we de…ne distributions G
0;i
0;j (t), G0;i

0;j (t) and G0;i
0;j (t) appropriate for the

lattice. Set ¿ i1;i2
j1;j2 = ¿Si1 ;Si2

tj1 ;tj2
and for t ¸ tj1 de…ne

G
i1;i2
j1;j2 (t) = Pr

h
¿ i1;i2

j1;j2 · t j Stk 2 fSk;igi=¡Nk;:::;Nk
, j1 < k < j2

i
; (21)

with density gi1;i2
j1;j2 (t) (also de…ne G and G with densities g and g). Using

G
0;i
0;j (t) and G0;i

0;j (t) rather than F
0;l
0;k (t) and F 0;l

0;k (t) eliminates the possibility
of arbitrage.

We can compute values of G
i1;i2
j1;j2 (tj), j ¸ j1, on the lattice. Clearly,

G
l;i
j;j+1 (tj) = F

l;i
j;j+1 (tj) for all j; l; i. Furthermore, since mint2[0;T ] jut ¡ ltj is

bounded away from zero then for a su¢ciently small time step ¢t the probability
of hitting both barriers over a single time step is negligible, so that

G
l;i
j;j+1 (tj+1) » eGl;i

j;j+1 (tj+1) = Pr
h
¿S

tj
· t j Stj = Sj;i; Stj+1 = Sj+1;l

i
; (22)

which does not depend on ¿S
tj

, and

Gl;i
j;j+1 (tj+1) » eGl;i

j;j+1 (tj+1) + GÃ!
l;i
j;j+1 (tj+1) : (23)

eGl;i
j;j+1 (t) is a signi…cantly more tractable object than G

l;i
j;j+1 (t).

We now assume that ¢t is su¢ciently small so that we can approximate
G

l;i
j;j+1 (tj+1) with eGl;i

j;j+1 (tj+1) and Gl;i
j;j+1 (tj+1) with eGl;i

j;j+1 (tj+1)+ GÃ!
l;i
j;j+1 (tj+1).

To …nd G0;i
0;j (tj), j > 0, i 6= 0, we …rst calculate pj;i, pj;i, p

j;i
and pO

j;i forward

through the lattice using G
l;i
j;j+1.©

pO
j+1;i

ª
i=¡Nj+1;:::;Nj+1

can be found immediately from
©
pO

j;i
ª

i=¡Nj ;:::;Nj
.

To get to (j + 1; i) without hitting a boundary one must have …rst reached time
tj without hitting the boundary and then not hit the boundary over the step
from time tj to time tj+1. Hence

pO
j+1;i =

X

l2Bj+1;i

pO
j;lpi¡l

³
1 ¡ Gl;i

j;j+1 (tj+1)
´

: (24)
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Similarly, if one has knocked in by time tj+1, either one knocked in before time
tj or else one knocked in (for the …rst time) between times tj and tj+1. Hence

pj+1;i =
X

l2Bj+1;i

pj;lpi¡l +
X

l2Bj+1;i

pO
j;lpi¡lG

l;i
j;j+1 (tj+1) ; (25)

p
j+1;i

=
X

l2Bj+1;i

p
j;l

pi¡l +
X

l2Bj+1;i

pO
j;lpi¡lGl;i

j;j+1 (tj+1) : (26)

If the barrier condition is not active at time t0 then pO
0;0 = 1 and p0;0 = p0;0 = 0.

From this starting point one can now evolve pj;i, p
j;i

and pO
j;i forward through

the lattice up to time tN , and then use them in (16).
The conditional hitting probabilities are then

G
0;i
0;j (tj) =

pj;i

pj;i
; j = 1; : : : N; (27)

G0;i
0;j (tj) =

p
j;i

pj;i
; j = 1; : : : N: (28)

Values of G
i1;i2
j1;j2 (t), et cetera, for (j1; i1) 6= (0; 0) can be computed using con-

ditional probabilities conditioned on starting at node (j1; i1) instead of node
(0; 0). These values may be needed for certain types of barrier option but we
do not investigate these here.

Note that the integral (12) can be computed in a single time step. Set N = 1
and let K be large so that S1;k, k = ¡K; : : : ;K, is a sample from time T whose
range [S1;¡K ; S1;K ] is such that

c0 »
Z S1;K

S1;¡K

H (S)F
S0;S
0;T (T ) fS (S) dS; (29)

say, within the accuracy required. If the three functions in the integrand are
known and their values computable at S1;k, k = ¡K; : : : ;K, the integral can be
computed by a numerical integration method, such as Simpson’s rule. This is
the case when St has a geometric Brownian motion. Andricopoulos, Widdicks,
Duck and Newton (03) [2] successfully used such a quadrature method, but
without the hitting distribution term and not applied to continuous barrier
options. Our extension allows us to price vanilla barrier options in a single time
step, but our main interest is to price non-standard barrier options for which a
single time step is insu¢cient.

2.2.2 Option valuation by backwards induction

Backwards induction needs to be used if a rebate is paid or payable when the
barrier is hit, or if some component of the option can be exercised prior to
maturity. A standard lattice method is unable to price Bermudan ‘in’ type
barrier options, but our lattice formulation is able to do so.
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We consider American or Bermudan options which knock-in to other Amer-
ican or Bermudan options. Write HO

t for the payo¤ to the option if it is exer-
cisable at time t < ¿ = min f¿; ¿g. An exercise strategy ¾ < ¿ is a stopping
time at which exercise takes place. Write eÁA

(St; t) and ÁA
¿ (S¿ ) for values in

the American version of (1),

eÁA
(St; t) = max

¾

½
Et

·
exp

µ
¡

Z ¾

t
rsds

¶
HO

¾ If¾<minf¿;Tgg (30)

+exp
µ

¡
Z ¿

t
rsds

¶
ÁA

¿ (S¿ ) If¿<minf¾;Tgg

+exp

Ã
¡

Z T

t
rsds

!
HOIfT<minf¿;¾gg

#)
;

where the maximum is taken over all exercise strategies ¾ (for expositional
simplicity we assume that ¿ and ¾ do not coincide with each other or with T ).

In (30), ÁA
¿ (S¿ ) is the value acquired by the option upon hitting the barrier,

and may itself be the value of an American or Bermudan option with exercise
value Ht (Ht) at time t ¸ ¿ if the upper (lower) barrier was hit.

Over a time step ¢t we have

eÁA
(St; t) = max

¾

½
Et

·
exp

µ
¡

Z ¾

t
rsds

¶
HO

¾ If¾<minf¿;¢tgg (31)

+exp
µ

¡
Z ¿

t
rsds

¶
ÁA

¿ (S¿ ) If¿<minf¾;¢tgg

+exp

Ã
¡

Z t+¢t

t
rsds

!
eÁA

(St+¢t; t + ¢t) If¢t<minf¿;¾gg

#)

Backwards induction solves (30) by iteration back from time T via an approx-
imation to (31). We suppose that exercise is not possible between times t and
t + ¢t. Then

eÁA
(St; t) = max

½
HO

t ; Et

·
exp

µ
¡

Z ¿

t
rsds

¶
ÁA

¿ (S¿ ) If¿·¢tg (32)

+exp

Ã
¡

Z t+¢t

t
rsds

!
eÁA

(St+¢t; t + ¢t) If¢t<¿g

#)
:

We implement (32) on the lattice.
Write Hj;i = Htj

(Sj;i), et cetera, for payo¤s to the option components
if exercised at node (j; i) on the lattice. Set cN;i = HN;i, cN;i = HN;i and

10



cN;i = HO
N;i and then simultaneously evolve back cj;i, cj;i and cj;i. Let

qj;i = e¡r¢t
X

k=¡K;:::;K

pkcj+1;i+k; (33)

q
j;i

= e¡r¢t
X

k=¡K;:::;K

pkcj+1;i+k; (34)

qj;i = e¡r¢t
X

k=¡K;:::;K

pk

³³
1 ¡ Gi;i+k

j;j+1

´
cj+1;i+k + G

i;i+k
j;j+1cj+1;i+k + Gi;i+k

j;j+1cj+1;i+k

´
;(35)

be the continuation values of the option components. These are option values if
the options are not exercised at time t but exercised optimally from time t+¢t.
At exercise times tj set

cj;i = max
©
Hj;i; qj;i

ª
; (36)

cj;i = max
n
Hj;i; q

j;i

o
; (37)

cj;i = max
©
HO

j;i; qj;i
ª

; (38)

otherwise cj;i = qj;i, et cetera. (36) and (37) give values on the lattice for
ÁA

t (St). (35) approximates the expectation in (32). If the option knocks-in
at the upper (lower) barrier between times tj and tj+1 the knock-in value at
node (j + 1; i + k) is the value cj+1;i+k (cj+1;i+k), corresponding to ÁA

¿ (S¿ ). If
it does not knock-in then the option receives the discounted back value of the
un-knocked-in value cj+1;i+k, which corresponds to eÁA

(St+¢t; t + ¢t).
Note that if the values Á¿ (S¿ ) or ÁA

¿ (S¿ ) are known explicitly they can be
used directly in (35) and (38) without being evolved back in the lattice.

For a European knock-out option, (35) reduces to

cj;i ´ cO
j;i = e¡r¢t

X

k=¡K;:::;K

pk

³
1 ¡ Gi;i+k

j;j+1

´
cO
j+1;i+k: (39)

since the contribution to cj;i from node (j + 1; i + k) is zero if the option has
knocked-out.

For a vanilla European up-and-in call option Gi;i+k
j;j+1 = Gi;i+k

j;j+1, and (33) and
(35) reduce to

cI
j;i = e¡r¢t

X

k=¡K;:::;K

pkcj+1;i+k; (40)

cj;i = e¡r¢t
X

k=¡K;:::;K

pk

³³
1 ¡ G

i;i+k
j;j+1

´
cj+1;i+k + G

i;i+k
j;j+1cj+1;i+k

´
;(41)

since cj;i is the value of the knock-in option if it has not knocked in by time tj .
If the option knocks-in between times tj and tj+1 the knock in value at node
(j + 1; i + k) is the vanilla call value cj+1;i+k.

Note that (35) generalises a result of Reimer and Sandmann (95) [13]. They
describe a backwards induction method for knock-in options in which a layer of

11



nodes must lie at the boundary value. If node (j + 1; i + k) lies on the boundary,
then, e¤ectively, they set G

i;i+k
j;j+1 = 1, and G

i;i+k
j;j+1 = 0 otherwise. By contrast

the Dirichlet lattice does not require nodes to lie at the boundary level, and
exploits a full knowledge of G.

The expressions above can also be modi…ed if a rebate is paid or earned
when the barrier is hit. If a rebate R (t) is paid if the upper barrier is hit at
time t, and R (t) paid at the lower barrier, (35) becomes

qj;i = e¡r¢t
X

k=¡K;:::;K

³
pk

³
1 ¡ Gi;i+k

j;j+1

´
cj+1;i+k (42)

+G
i;i+k
j;j+1 (tj+1)

¡
cj+1;i+k + R (tj+1)

¢

+Gi;i+k
j;j+1 (tj+1)

¡
cj+1;i+k + R (tj+1)

¢´
:

2.3 Interpreting the Dirichlet Lattice
Although the lattice process takes a discrete set of values fSj;ig, branching to
a limited number of successor nodes at each step, by construction the lattice
assumes that at intermediate times it follows a bridge process. For particular
options, branching probabilities are e¤ectively modi…ed to exploit a knowledge
of the bridge process.

Write pO;j;i
k = pk

³
1 ¡ Gi;i+k

j;j+1

´
. Then both (24) and (39) can be interpreted

as branching in a lattice for a knock-out option where the branching probabilities
are level dependent, with pO;j;i

k the kth branching probability at node (j; i).
Through an alternative formulation of (40) we can also write down analogous

‘probabilities’ for knock-in options. Consider a European up-and-in option.
Suppose that

c0 = e¡rtj

NjX

i=¡Nj

pj;ibcj;i (43)

for certain values bcj;i evolved back on the lattice. From (25)

pj+1;i =
X

l2Bj+1;i

pj;lpi¡l

Ã
1 +

G
l;i
j;j+1 (tj+1)

G
0;l
0;j (tj)

³
1 ¡ G0;l

0;j (tj)
´!

(44)

so level dependent branching ‘probabilities’ are

pI;j;i
k = pk

Ã
1 +

G
i;i+k
j;j+1 (tj+1)

G
0;i
0;j (tj)

³
1 ¡ G0;i

0;j (tj)
´!

(45)

and the evolved-back value bcj;i at node (j; i) is

bcj;i = e¡r¢t
X

k=¡K;:::;K

pI;j;i
k bcj+1;i+k: (46)

12



Note that in (46) the value bcj;i is not the value at node (j; i) of an un-knocked-in
knock-in option. In fact

bcj;i = cj;i +
pO

j;i

pj;i
cj;i (47)

where cj;i is the knocked-in and cj;i the un-knocked-in option value.
In practice, (46) cannot be used directly near time 0 on the lattice. Consider

an up-and-in option and let jC = arg maxjfSj;j < utj g. Up to time jC every
node in the lattice lies beneath the barrier. In a standard lattice, it is not
possible for the option to be knocked in (or out) until after time tjC . In the
Dirichlet lattice values of G0;i

0;j (tj), j · jC ; can become vanishing small so that
pI;j;i

k can become very large, leading to over‡ow errors. To solve this problem
one evolves back only as far as step jC and then sets

c0;0 = e¡rjC¢t
jCX

i=¡jC

pjC ;ibcjC ;i: (48)

We do not use this alternative in the sequel.

2.4 Using a terminal correction
The convergence and accuracy of both forward and backwards induction can be
improved by using a terminal correction. A terminal correction can be used if
for short times to maturity there exists a good approximate analytical solution
for the value of the option. For instance, for a time-varying barrier option, at
time T ¡¢t, the vanilla analytical formula for an option with a constant barrier
equal to uT¡¢t may be a good approximation. One then evolves the lattice only
up to time T ¡ ¢t. At each node at time T ¡ ¢t one assigns an option value
equal to the analytical approximation. These values are then evolved back in
the lattice, or used in (16).

The a¤ect of the applying a terminal correction is to substitute a (su¢-
ciently) di¤erentiable payo¤ function for a non-di¤erentiable one, enabling con-
vergence at the theoretically fastest rate (Heston and Zhou (00) [9]).

Note that separate terminal corrections need to be made to each of the
component options cj;i, cj;i and cj;i.

2.5 Computing Conditional Hitting Probabilities
To be able to construct the lattice we need to be able to approximate the
conditional hitting time probabilities FS0;ST

0;T (T ), et cetera.
Fw0;wT

0;T (T ) is known when wt is a Brownian motion and there is a single
linear barrier ut = a + bt. We can …nd Fw0;wT

0;T (T ) from the distribution of the
conditional maximum to the hitting time distribution. Suppose wt has drift ¹
and volatility ¾. Set M

w0;wT
0;T = maxt2[0;T ] fwt j w0; wT g. When both w0 and

13



wT lie beneath the barrier

F
w0;wT
0;T (T ) = Pr

£
¿S

t0 · T j ut = a + bt;w0; wT
¤

(49)

= Pr
£
¿S

t0 · T j ut = a;w0; wT ¡ bT
¤

(50)

= Pr
h
M

w0;wT ¡bT
0;T ¸ a

i
(51)

= exp
µ

¡1
2

(a ¡ w0) (a ¡ wT + bT )
¾2T

¶
; (52)

else F
w0;wT
0;T (T ) = 1.

Beaglehole, Dybvig and Zhou (97) [4] and El Babsiri and Noel (98) [3] apply
this result to a Monte Carlo method for valuing barrier options with a constant
barrier on an asset following a geometric Brownian motion. The same distrib-
ution was also used by Ribeiro and Webber (03) [15] to value barrier and other
options when asset returns are driven by Lévy processes.

From (52) the hitting probability of a geometric Brownian motion St to a
constant barrier u can be found. Set wt = ln

³
St
S0

´
and but = ln

³
u
St

´
. For

u > max fS0; ST g we have

F
S0;ST
0;T (T ) = Pr

h
M

S0;ST
0;T > u

i
= Pr

h
M

w0;wT
0;T > bu0

i
(53)

= exp
µ

¡2
(bu0 ¡ w0) (bu0 ¡ wT )

T

¶
(54)

= exp
µ

¡2
bu0buT

¾2T

¶
; (55)

and FS0;ST
0;T (T ) = 1 when u · max fS0; ST g.

When St has a geometric Brownian motion we are able to …nd a good ap-
proximation to the probabilities G

i;i+k
j;j+1 (tj+1) when the barrier is non-linear.

The returns process Rt = ln
³

St
S0

´
is a Brownian motion whose conditional hit-

ting probabilities to a linear barrier are given by (52). Let but = ln
³

ut
S0

´
and

blt = ln
³

lt
S0

´
be barrier levels for Rt. Hitting times of Rt to but and blt are identical

to hitting times of St to ut and lt.
We assume that ut and lt are su¢ciently regular so that over the time step

¢t of the lattice but and blt can be approximated as piece-wise linear functions,

but » aj + bjt; t 2 [tj ; tj+1] ; (56)
blt » cj + djt; t 2 [tj ; tj+1] : (57)

We use the hitting probabilities of Rt to these linear barriers, given by (52), as
our approximation to the hitting probabilities of St to ut and lt.

In our numerical applications we use an endpoint approximation, setting
bj =

butj+1¡butj
¢t and aj = butj ¡ bjtj . This is a continuous approximation with

knot value butj at time tj .
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3 Numerical Results
In this section we value knock-in and knock-out continuous barrier options on
an underlying asset following a geometric Brownian motion. No rebates are
earned or paid. The initial asset value is S0 = 100, the riskless interest rate is
r = 0:1, and the asset volatility is ¾ = 0:25.

We benchmark to European knock-in and knock-outs calls maturing in one
year, T = 1, with a continuous single barrier level of u = 110; 130 or 150, with
a strike of X = 100. There is an explicit solution for the values of these options
which enables us to benchmark the method.

We then use the lattice to price Bermudan barrier options and barrier options
with time-varying non-linear barriers. We …nd that the Dirichlet lattice prices
more accurately that either a plain lattice method or conditional Monte Carlo.

Lattices for knock-out options are truncated at the barrier level. All lattices,
Dirichlet and Plain, are in any case truncated at 8 standard deviations either
side of the expected …nal value of the underlying. The plain lattice method
computes values for knock-in barrier options by barrier parity; it computes
knock-out values and subtracts them from vanilla option values found from
the Black-Scholes formula. Barrier parity does not hold for Bermudan barrier
options so we are unable to use the plain method in this case.

In practice G
i;i+k
j;j+1 (tj+1) is very close to zero if Sj;i is some distance below

the barrier. If Gi;i+k
j;j+1 (tj+1) is set to zero when node (j; i) is more than ten

layers beneath the barrier there is no di¤erence to machine accuracy in the
computed option value, but the computation time is roughly halved. We call
this the partial Dirichlet method. This method, with a cut-o¤ ten layers from
the barrier, is used to compute the results in this section.

3.1 Benchmark Results
Tables 1 and 2 represent benchmark results for up-and-in and up-and-out barrier
call options. A terminal correction is imposed at time T ¡ 0:01. The top value
in each table entry is the computed option value. Code was written in VBA 6:0
with no special speed-ups. The platform was a 1:8 Ghz pentium 4 PC. For the
Dirichlet lattice the top value in square brackets is the time in seconds taken by
the backwards induction method, the second value is the time taken by forwards
induction.

Forwards induction and backwards induction return identical values. To
value a single option forward induction is slightly slower than backwards induc-
tion; however, the forwards induction method can value many options simulta-
neously.

Each table gives comparisons using the conditional Monte Carlo method of
Beaglehole, Dybvig and Zhou (97) [4] and El Babsiri and Noel (98) [3] with
100; 000 sample paths. We simulate up to time T = 1 in a single time step.
The entry in round brackets is the standard error. The conditional Monte Carlo
method is far superior the plain Monte Carlo, but it is still relatively inaccurate
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Up-and-in calls: Comparison of Methods
Barrier level: u = 110 u = 130 u = 150
Explicit: 14:916 12:692 7:928

Monte Carlo
14:89
(0:06)
[1:2]

12:75
(0:07)
[1:2]

7:96
(0:06)
[1:2]

Lattice Plain Dirichlet Plain Dirichlet Plain Dirichlet

N = 100 14:886
[0:015]

14:910
[0:031]
[0:047]

12:344
[0:016]

12:646
[0:031]
[0:047]

7:511
[0:016]

7:896
[0:032]
[0:047]

N = 500 14:900
[0:13]

14:915
[0:24]
[0:45]

12:478
[0:11]

12:697
[0:22]
[0:45]

7:715
[0:12]

7:907
[0:22]
[0:50]

N = 1000 14:902
[0:31]

14:916
[0:64]
[1:3]

12:555
[0:31]

12:690
[0:63]
[1:3]

7:770
[0:36]

7:920
[0:64]
[1:3]

N = 2000 14:908
[0:90]

14:915
[1:7]
[3:6]

12:590
[0:88]

12:691
[1:8]
[4:2]

7:783
[0:95]

7:930
[1:7]
[3:6]

Table 1: Benchmark: Knock-in calls

compared to the Dirichlet lattice, despite its ability to use ‘long-step’ simulation.
For the up-and-in call table 1 shows the Dirichlet lattice is accurate to within

2 decimal places with N = 1000 time steps. In about the same amount of
time the conditional Monte Carlo method still has a standard error of 0:06 and
cannot be considered to be accurate to 1 decimal place. Values for the plain
lattice method were computed by in-out parity. The plain lattice results are
much inferior to the Dirichlet lattice. For u = 130 and u = 150 the plain lattice
is not correct at N = 2000 to even 1 decimal place.

Table 2 compares the Dirichlet lattice method with the plain lattice and with
conditional Monte Carlo. For the same number of time steps the plain lattice
is a little faster than the Dirichlet lattice, but it is much less accurate. The
Dirichlet lattice is accurate to about 2 decimal places at N = 1000: The plain
lattice method is not yet accurate to 1 decimal place (for u = 130 and 150). In
about the same computational time the conditional Monte Carlo method still
has signi…cant standard error.

Figures 1 and 2 show convergence for the plain and Dirichlet lattices for an
up-and-out with u = 130 and an up-and-in barrier options with u = 150. It is
clear that the Dirichlet lattice is very accurate compared to the plain lattice.

3.2 Application to Non-Vanilla Barrier Options
We apply the partial Dirichlet lattice using backwards induction to price Bermu-
dan up-and-in and up-and-out barrier options and barrier options with non-
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Up-and-out calls: Comparison of Methods
Barrier level: u = 110 u = 130 u = 150
Explicit: 0:0602 2:284 7:047

Monte Carlo
0:060

(0:002)
[1:2]

2:30
(0:02)
[1:2]

7:03
(0:03)
[1:2]

Lattice Plain Dirichlet Plain Dirichlet Plain Dirichlet

N = 100 0:0862
[0:016]

0:0657
[0:016]
[0:015]

2:596
[0:015]

2:330
[0:016]
[0:031]

7:442
[0:016]

7:080
[0:016]
[0:015]

N = 500 0:0749
[0:13]

0:0611
[0:14]
[0:14]

2:492
[0:11]

2:279
[0:14]
[0:16]

7:256
[0:13]

7:069
[0:16]
[0:16]

N = 1000 0:0738
[0:31]

0:0601
[0:34]
[0:38]

2:419
[0:33]

2:286
[0:38]
[0:41]

7:204
[0:36]

7:055
[0:39]
[0:42]

N = 2000 0:0677
[0:84]

0:0605
[0:91]
[0:99]

2:385
[0:89]

2:284
[1:0]
[1:0]

7:192
[0:96]

7:046
[1:1]
[1:2]

Table 2: Benchmark: Knock-out calls

Convergence,  Up-and-Out,  u = 130

2.25

2.3

2.35

2.4

2.45
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Figure 1: Convergence, plain and Dirichlet lattices, Up-and-Out option.
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Convergence,  Up and in,  u = 150
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Figure 2: Convergence, plain and Dirichlet lattice, Up-and-In option

constant barriers. The Dirichlet lattice consistently prices more accurately than
either conditional Monte Carlo or the plain lattice method.

3.2.1 Bermudan Options

Table 3 shows convergence of the method for Bermudan up-and-out puts with
quarterly and monthly resets (Resets = 4 and 12). The put has a strike of 100
and one year to maturity. For comparison, values of the corresponding European
put (“Explicit” and “Resets = 1”) are also given. Table 4 gives corresponding
knock-in values

It is awkward to use Monte Carlo for Bermudan options so we give a com-
parison solely with the plain lattice method. A terminal correction is imposed
at time T ¡ 0:01.

Computation times are not very sensitive to the number of resets and vary
relatively little with the barrier level, so they are given with the number of time
steps, N . Times shown are for u = 130 with 12 resets. The upper entry in each
box refers to the Dirichlet lattice, the lower entry to the plain lattice.

At a barrier level of 150 both the Dirichlet and the plain lattice perform
similarly. This option knocks out only when it is far out of the money so the
advantage of the Dirichlet lattice is less marked. However at lower barrier levels
the plain lattice appears to be giving results that are signi…cantly biased. The
values found by the Dirichlet lattice appear to be converging, to 2 decimal places,
but the plain lattice is not yet accurate to 1 decimal place. The Dirichlet lattice
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Up-and-out Bermudan puts
Barrier: u = 110 u = 130 u = 150
Explicit: 3:516 5:350 5:457
Resets: 1 4 12 1 4 12 1 4 1
N = 100

[0:02]
[0:02]

3:515
3:925

4:254
4:693

4:380
4:823

5:352
5:388

6:195
6:231

6:340
6:377

5:457
5:458

6:302
6:303

6:4
6:4

N = 500
[0:13]
[0:11]

3:533
3:715

4:281
4:472

4:396
4:591

5:350
5:368

6:191
6:209

6:351
6:369

5:457
5:457

6:300
6:300

6:4
6:4

N = 1000
[0:36]
[0:31]

3:526
3:663

4:272
4:417

4:387
4:534

5:350
5:364

6:190
6:204

6:352
6:367

5:457
5:457

6:299
6:299

6:4
6:4

N = 2000
[0:97]
[0:88]

3:519
3:631

4:264
4:384

4:379
4:501

5:350
5:360

6:190
6:200

6:351
6:362

5:457
5:457

6:299
6:299

6:4
6:4

Table 3: Application: Up-and-out Bermudan Puts

takes only slightly longer to run as the plain lattice to run, but it is far more
accurate.

The up-and-in Bermudan put values are very small, but nevertheless the
Dirichlet lattice appears to converge here also. Since the plain lattice method
cannot be used to value up-and-in Bermudan options, table 4 gives no compar-
ison.

3.2.2 Non-Constant Barrier Options

We value two non-constant barrier options. The barriers are:

1) ut = 110 exp
¡ 3

10 t2 + 1
10 t

¢
;

2) ut = 165 ¡ 10 exp
¡ 3

10 t2 + 3
2 t

¢
: (58)

Barrier (1) is convex and monotonic increasing from 110 at time 0 to roughly 164
at time 1. Barrier (2) is concave and monotonic decreasing from 155 a time 0
to about 105 at time 1. Payo¤s are to vanilla calls with strike X = 100. We use
partial Dirichlet branching at ten layers from the barrier, pricing by forward
induction. The log-barrier is approximated with a piecewise linear endpoint
approximation. Monte Carlo is conditional with 100; 000 sample paths and 600
time steps. We do not use a terminal correction in these cases as we do not have
an analytical approximation to the option value.

Table 5 gives the results. For most options the Dirichlet lattice is achieving
accuracy to 2 decimal places, whereas the plain lattice has plainly not converged.
Both plain and Dirichlet lattices have di¢culty in valuing the far out of the
money knock-out call with barrier (2). With a non-linear barrier, conditional
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Up-and-in Bermudan puts
Barrier level: u = 110 u = 130 u = 150
Explicit: 1:946 0:110 0:0028
Resets 1 4 12 1 4 12 1 4 12
N = 100

[0:05] 1:945 2:100 2:155 0:108 0:110 0:112 0:0026 0:0027 0:0027

N = 500
[0:5] 1:926 2:078 2:139 0:109 0:112 0:114 0:0028 0:0028 0:0029

N = 1000
[1:6] 1:934 2:087 2:148 0:110 0:112 0:115 0:0028 0:0028 0:0029

N = 2000
[4:4] 1:940 2:095 2:156 0:110 0:112 0:115 0:0028 0:0028 0:0029

Table 4: Application: Up-and-in Bermudan Puts

Non-Constant Barriers
Barrier type: (1) (2)
Option type: Knock-out Knock-in Knock-out Knock-in

Monte Carlo:
2:90

(0:02)
[670]

12:00
(0:06)
[670]

0:0486
(0:001)
[677]

14:852
(0:06)
[676]

Lattice type: Dirichlet Plain Dirichlet Plain Dirichlet Plain Dirichlet Plai

N = 100 2:878
[0:02]

3:683
[0:02]

12:108
[0:05]

11:292
[0:02]

0:0804
[0:03]

0:1108
[0:02]

14:905
[0:05]

14:86
[0:02

N = 500 2:885
[0:1]

3:278
[0:1]

12:093
[0:4]

11:698
[0:1]

0:0537
[0:1]

0:0632
[0:1]

14:924
[0:4]

14:91
[0:1

N = 1000 2:885
[0:4]

3:170
[0:3]

12:089
[1:3]

11:806
[0:3]

0:0497
[0:4]

0:0739
[0:3]

14:924
[1:3]

14:90
[0:3

N = 2000 2:888
[1:1]

3:078
[0:9]

12:088
[3:5]

11:897
[0:9]

0:0531
[1:2]

0:0629
[0:9]

14:922
[3:5]

14:91
[0:9

Table 5: Application: Non-constant barriers
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Figure 3: Convergence, Comparison of approximations to a non-linear barrier.

Monte Carlo cannot use a single ‘long step’ simulation and is painfully slow
compared to the lattice.

Figure 3 shows more detailed convergence for the knock-out option with
barrier (1). It compares the piecewise linear endpoint approximation with two
piecewise constant approximations. Values for the plain lattice are not shown.
‘Constant, j ¡ 1’ sets but = butj¡1 ; t 2 [tj¡1; tj ]. ‘Constant, j’ sets but = butj ;
t 2 [tj¡1; tj ]. For a convex increasing barrier ‘Constant, j ¡ 1’ lies beneath the
barrier and tends to undervalue up-and-out options. ‘Constant, j’ lies above it,
overvaluing up-and-outs.

Convergence is not uniform, but the piecewise linear endpoint approxima-
tion, lying between the piecewise constant approximations, is clearly superior
to both:

4 Conclusions
In this paper we have constructed a lattice, based upon a knowledge of condi-
tional hitting time distributions, to value continuous barrier options. We call
this a Dirichlet lattice. The Dirichlet lattice benchmarks well to vanilla barrier
option values. We applied the lattice to value Bermudan barrier options and
barrier options with non-linear barriers. We found that the Dirichlet lattice was
considerably more accurate than alternative methods.

Several extensions of the method are possible. By making the stock volatility
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¾ = ¾j a deterministic function of the time step, its values can be …xed so
that the lattice recovers a term structure of volatility. Similarly if the lattice is
implemented for a term structure model, it is possible to calibrate to an observed
term structure of interest rates. In the latter case an o¤set is applied at each
time step to recover the market short rate. This translates into a time varying
barrier on the lattice.

The Dirichlet lattice is very much superior to a plain lattice method, and
to conditional Monte Carlo. The Dirichlet is most advantageous compared to
a quadrature method when applied to options with time varying barriers, since
in these case a quadrature method requires a large number of time steps.

We …nd that the Dirichlet lattice in achieving accuracy to 2 decimal places
with less than …ve hundred time steps. It is a simpler alternative to quadrature
methods for options with continuous time varying barriers. It can directly value
up-and-in Bermudan puts, which is not possible on a plain lattice and di¢cult
with a Monte Carlo method.
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