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Abstract

In this paper we propose a continuous time model capable of describing

the dynamics of futures equity index returns at different time frequencies.

Unlike several related works in the literature, we avoid specifying a model

a priori and we attempt, instead, to infer it from the analysis of a data

set of 5-minute returns on the S&P500 futures contract. We start with a

very general specification. First we model the seasonal pattern in intra-

day volatility. Once we correct for this component, we aggregate intraday

data into a daily volatility measure to reduce the amount of noise and its

distorting impact on the results. We then employ this measure to infer the

structure of the stochastic volatility model and of the leverage component,

as well as to obtain insights on the shape of the distribution of conditional

returns. Our model is then refined at a high frequency level by means of

a simple non-linear filtering technique, which provides an intraday up-

date of volatility and return density estimates on the basis of observed

5-minute returns. The results from a Monte Carlo experiment indicate

that a sample of returns simulated according to our model successfully

replicates the main features observed in market returns.

Keywords: High frequency data; continuous time models; non-linear

filtering.1
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1 Introduction

The increasing availability of high frequency data in finance has improved the
empirical analysis of financial asset returns in several respects. In the first place,
it has enabled the investigation of the dynamics of intraday volatility and returns
per se. Secondly, and perhaps more importantly, it has enriched the information
set available to develop and test continuous time models, which are able to
explain and replicate the dynamics of financial market returns in a consistent
manner across different time horizons. Traditionally, continuous time models in
finance have been estimated and tested on moderate frequency (normally daily)
data. However, the asset returns generated from those models often manage
to capture the dynamics of daily or weekly returns fairly accurately, but fail
to mirror the behavior of high frequency financial returns. Therefore, intraday
data can be usefully employed to derive a more consistent specification for a
continuous time model.

The present work fits in this latter area of research. Its aim is to identify
the simplest possible model which is both congruent with the specifications
commonly adopted in this field, and capable of replicating the essential features
that characterize the actual evolution of intraday returns and volatility. We will
find that a continuous time specification turns out to be the most convenient
and appropriate one for such purpose.

A distinctive aspect of our study, which we consider a significant contribution
to the related literature, is that we adopt a parsimonious approach. Throughout
the different steps, we let the data suggest the model as much as possible, rather
than imposing a model ourselves. The standard approach commonly followed by
the literature consists of assuming from the beginning a particular specification
for the model in all its components, and using the data to estimate and test
it. Instead we believe that a model for financial data should originate from
the data itself, therefore we avoid specifying a model a priori. We start with
a very general model structure and we perform a careful step by step analysis
of the data, recording the relevant features to be modelled, whose peculiar
characteristics will actually drive the choice among different specifications. At
each step we also look carefully for possible specification errors. Throughout
the entire paper we try to keep the modelling assumptions to a minimum, while
retaining an adequate level of structure. Our approach is also parsimonious
in terms of the statistic and econometric techniques employed to estimate the
model. Our main interest is to assess whether the data-driven, step-by-step
criteria we propose for selecting the model (and subsequently refining it on the
basis of intraday returns) enable us to derive a valid specification that adequately
explains the empirical features. Producing the most precise estimates for the
parameters of our model is not our main concern, as that would introduce
a lot of complexity to the analysis without contributing significantly to the
main results. Therefore we use simple techniques that still produce reasonably
accurate estimates.

At the conclusion of our analysis we propose a relatively simple specifica-
tion, able to capture and model most of the aspects observed in equity index
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futures markets, namely: seasonality in intraday data, stochastic volatility and
the presence of jumps, and a leverage effect. By means of a simple Bayesian
filtering technique we also generate 5-minutes ahead volatility estimates and
density estimates for the distribution of the intraday returns, whose accuracy is
thoroughly assessed via both point and distributional forecast tests.

The paper is structured as follows. Section 2 introduces the relevant litera-
ture. Section 3 describes the data set. Section 4 details in its subsections the
various steps of the data analysis and the modelling of each component, up to
the identification and estimation of a simple, but accurate, model in continuous
time. The assessment of both the volatility and the density intraday estimates
produced by our model is carried out in Section 5. A Monte Carlo simulation
exercise of the complete model is performed in Section 6. Section 7 summarizes
the main findings.

2 The Informative Content of Intraday Data

During the last few years, the availability of high frequency data on financial
assets has stimulated the production of a very rich literature. One stream of
literature (not immediately related to the present work) has focused on deriving
tailored models for intraday returns and volatility, capable of capturing their
distinctive features. Models for the dynamics of transaction prices have been
suggested, amongst the others, by [36].

A second stream of literature exploits the informative content of intraday
data to obtain more accurate measures of the volatility of financial returns.
Most of these studies approximate the volatility over a certain period, such
as a day, with the sum of intraday squared, or absolute, returns, a measure
called realized volatility (see [38], [8]). The theoretical justification for this
approximation ([11], [14]) is to be found in the theory of quadratic variation (see
[29]). A complete asymptotic theory of the convergence of the realized volatility
to the integrated volatility was derived by [15], [16], [17], under the assumptions
that conditional returns are normally distributed and volatility follows either a
diffusion specification or a Lévy process. They also considered extensions to
account for the presence of a leverage effect. [12] and [31] discussed potential
distortions and biases in the realized volatility measure.

An impressive number of papers have appeared in the last couple of years
in this area, proposing various possible applications for the realized volatility
measure. For a survey of this literature, the interested reader can consult [9]
and [23].

The distribution and the time series properties of the realized volatility have
also been studied. Examples in this context are given by [11] for exchange rates
and [10] for both the index and its constituent stocks.

A third stream of literature employs intraday data in order to estimate and
test continuous time models in which financial returns are described by a time-
changed Brownian motion or Lévy process. The stochastic time change is given
by a measure of the intraday economic activity (e.g. trading volumes, proxy of
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integrated stochastic volatility). The underlying theoretical justification is that
all arbitrage-free processes defining asset returns can be represented as time-
changed Brownian motions,2 where the time change (or business time) must
account for information arrival and market activity. This stream of research
originated from the pioneering paper by [22], who showed how, once re-specified
in the new business time (expressed in terms of the cumulative volume of ac-
tivity), financial returns are virtually distributed according to a Gaussian law.
Amongst the most relevant contributions in this field, we recall [6], [13] and,
more recently, [28], and [19]. In relation to this area, we recall some relevant
contributions of the “econophysics” literature, directed at analyzing the scaling
behavior of the distribution of normalized returns over different time horizons
(see [26], [3], [4]).

Our work directly relates to the second and the third streams of research.
At an intermediate stage of our analysis, we derive a daily realized volatility
quantity from intraday data, in order to obtain an almost noise-free measure
which can provide reliable insights on the stochastic volatility dynamics and
on the shape of the conditional distributions. Similarly to the literature on
stochastic time changes, our purpose is to estimate a valid continuous time
specification from high frequency data. However, contrary to the contributions
listed above, we will find that, after correcting for the seasonality in volatility,
no stochastic time change is necessary and the model can be set in calendar
time.

3 The Data Set

Our data set consists of 5-minute frequency intraday prices on the S&P500 stock
index futures contract from September 15, 1997, to July 26, 2001. All prices are
for the futures contract closest to maturity, except for the days within one week
to expiration, when the next contract is considered, in order to always refer to
the contract with the highest trading volume. Days that recorded transactions
only for part of the entire trading day have been excluded from the data set.
We have also eliminated four days which exhibited very large returns on some
intraday interval immediately followed by equally large returns of the opposite
sign, which could be indicative of mistakes in recording the price. Some other
days were originally missing from the data set. All in all, our final sample
consists of intraday prices for 960 days.

The full trading day in the futures market at the Chicago Mercantile Ex-
change starts at 8:30 a.m. and ends at 3:15 p.m. Chicago time. Intraday log
returns have been computed on the consecutive logarithmic closing prices for
each of the 81 5-minute intervals that constitute a trading day. Since in mod-
elling the intraday dynamics of returns and volatility it is important to take into
account the close-to-open returns and their volatility, we also analyze overnight
log returns, calculated as the difference between the logarithm of the open price

2See [32] for the proof that any semimartingale is a time-changed Brownian motion.
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and the logarithm of the closing price for the previous day. For the same rea-
son, unlike most works on high frequency data, we retain the return on the first
interval of the trading day, which mainly reflects the information accumulated
overnight and shows a high volatility.

In Table 1 we report some sample statistics for the 5-minute and the overnight
returns, which we consider separately, given the different nature and characteris-
tics of the two series. The intraday returns display an almost zero sample mean,
a sample standard deviation of 0.121%, positive sample skewness and a strong
sample excess kurtosis. As expected, the standard deviation of the overnight
returns is considerably larger, as it refers to a longer temporal horizon. The
higher moments are closer to those of a normal distribution, by effect of the
aggregation process which takes place over a longer time horizon.

Table 1: Summary sample statistics for intraday returns.

5-minute Overnight

Mean -9.95E-09 0.0002
Std. Dev. 0.121% 0.575%
Skewness 0.883 -0.378
Excess Kurtosis 35.476 3.044

Table 2 displays the values of first order autocorrelation coefficients in the
series of high frequency returns for each year under analysis, together with
the percentage bid-ask spread, estimated following [35].3 Although statistically
significant for the first two and a half years, the serial correlation in the intraday
futures returns always seems economically negligible. To ascertain that, we
compute the bias in the variance induced by ignoring first and second order
serial correlation, which is, respectively, −0.318% and −0.319% of the correct
variance.4 Therefore, it does not make any substantial difference if we remove
the autocorrelation from our series or not. The percentage bid-ask spread is
consistently small, around 0.06%. Our findings suggest that here we do not need
to worry about market microstructure issues such as the bid-ask bounce, which
would bring a strong negative serial dependence and complicate the analysis
further, by introducing a serious bias in the volatility measures.

4 Data Analysis and Derivation of the Model

Throughout the present section we develop a careful step by step analysis of
the data, aimed at isolating its main distinctive features and their nature, and,

3Roll simply defines a measure for the bid-ask spread in percentage of the geometric average

of the average bid and ask prices as: sr ≡ 2
√

−Cov[Rt−1, Rt].
4Our measure for the bias in the variance is obtained by comparing the variance of the

returns with the variance of the residuals resulting from fitting, respectively, an AR(1) and
an AR(2) process to the high frequency returns.
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Table 2: First order serial correlation of intraday returns.

1997-98 1999 2000 2001

Serial correlation -0.0793* -0.0901* -0.0491 -0.0364
Critical value -0.0372 -0.0423 -0.0493 -0.0570
Estimated BA spread (%) 0.064% 0.064% 0.059% 0.053%

* Statistically significant at 5% confidence level.

therefore, at providing directions for plausible model specifications.
We start by postulating a very general structure for our model of the dy-

namics of intraday returns, represented as follows:

rit = sitσitεit (1)

for i = 1, . . . , 82, t = 1, . . . , T , where rit represents the unconditional intraday
(or overnight) log return for interval i at day t; sit identifies the volatility for
sub-interval i at day t attributable to the seasonal pattern in intraday volatility;
σit stands for the stochastic volatility component, independent of the seasonal
component;5 εit symbolizes the conditional intraday log return, with zero mean,
independent of both the seasonal and the stochastic volatility parts. Once both
the seasonal and stochastic volatility components have been correctly modelled,
εit should translate into a series which is independent across the intraday inter-
vals.

An important consideration needs to be made here. The structure in (1)
is indeed a very rich specification which admits an infinite variety of models
as special cases. Nevertheless, even these very general assumptions may easily
be too strong. However, we do not take our assumptions for granted, but we
attempt to test their validity as much as possible, as part of our data analysis.
Also, it is worth emphasizing that we do not attempt to model the risk premium,
given that four years of data would not be a sufficiently long time span to obtain
reliable estimates.

A note on the terminology that we use and on the scaling of the model in (1).
After ascertaining the deterministic nature of the seasonal volatility component,
we choose to work with de-seasonalized returns, which involves scaling our model
so that E[σit] = 1 and E[|εit|] = 1. Also, throughout the paper, we prefer to
use absolute rather than squared, returns, to measure volatility. As largely
documented in the existing literature (see, for an exhaustive discussion, [17]),
absolute returns are less sensitive to large outliers and more reliable when the
fourth moment of the distribution of returns is not finite. Finally, when we talk
about 5-minute or intraday intervals, we also refer to the overnight interval,
unless otherwise stated.

5The choice of such a specification for the volatility seemed natural since the empirical
evidence indicates that both a periodic pattern and a stochastic volatility component exist in
intraday volatility.
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In the following subsections we proceed to investigate the empirical features
of the various components in (1).

4.1 The seasonal component

The plot of the average absolute returns (Fig. 1), computed across the time
series of the single 5-minute intervals,6 reveals an obvious U-pattern in intraday
volatility, which was first documented by [39]. The average absolute returns
keep on increasing for the first half an hour of the trading day, decline smoothly
to their lowest level before noon and then increase again until the closure of the
cash index market. The final spike in the last 15 minutes of the trading day is
attributable to the post cash market trading.

800 900 1000 1100 1200 1300 1400 1500 1600
5

6
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8

9

10

11

12

13
x 10

−4

5−minute intervals

Average absolute returns across a day

Figure 1: Seasonality pattern in intraday volatility.

In principle, the model in (1) allows for a seasonal volatility component
that changes through time t. To test for the stability of the seasonal pattern
across different moments, we conduct formal tests of equality between intraday
volatility patterns for, respectively, high and low volatility days, first and second
half of the sample, each trading day of the week and the overall sample. We
first perform, for each intraday interval, a two sample Student’s t-test for mean
equality (at 95% confidence level) on the average absolute returns of the two

6Overnight returns have not been included in the plot, since their average absolute values
are not in line with the rest of the intraday data, and their inclusion would have distorted the
analysis.

7



sub-samples we want to compare.7 The percentage of sub-intervals on which
the null hypothesis of equal means is rejected (on the total of 82 intervals) is
displayed in the second column of Table 3. We then derive the series of intraday
ratios computed on the average normalized absolute returns of the two sub-
samples of interest; average values and standard deviations for these series are
reported in Table 3. Both the small percentages of rejections for the mean
equality test (ranging from 0 to 12%) and the low dispersion of the ratios of
intraday volatility coefficients around the average level of one (with values for
the standard deviation between 0.055 and 0.075) seem to support the stability
of the seasonal pattern. These findings are reinforced by the evidence of very

Table 3: Tests for equality of seasonal volatility patterns.

Sub-samples % of rejection Average value ratio Std. dev. ratio
mean equality test intraday coeff. intraday coeff.

Monday 0.0% 1.002 0.057
Tuesday 12.20% 0.998 0.075
Wednesday 2.44% 0.998 0.056
Thursday 0.0% 1.002 0.055
Friday 4.88% 1.001 0.064
First-second half 12.20% 1.004 0.074
High-low volatility 7.32% 1.000 0.064

similar shapes displayed by the seasonal patterns in intraday volatility for the
various sub-samples (not reported here, but available upon request).

Therefore, over the time period spanned by our data we can safely assume
a constant deterministic intraday seasonal pattern, represented by si.

Since the intraday periodicity in the return volatility has a strong impact
on the dynamic properties of intraday returns, it is essential to correct for this
component in order to reveal and model the stochastic volatility dynamics.
The average absolute returns for the individual sub-intervals constitute simple
estimates of the intraday seasonal component si, both for the 5-minute intervals
and for the overnight returns. Different approaches have been proposed in the
literature to obtain smoothed estimates of these seasonal coefficients (see, for
example, the Flexible Fourier functions recommended by [7]). In Fig. 2 we show
how good smoothed estimates can be easily obtained by fitting a set of cubic
B-splines to the average absolute returns for the 5-minute intervals.8

Having obtained accurate estimates for the deterministic seasonal pattern
in intraday volatility, we can now derive the time series of de-seasonalized un-

7To allow a comparison amongst subsets of data with different levels of volatility, we
compute absolute returns normalized by the average of absolute returns across the day, taken
as a volatility proxy for the day.

8Once again, the overnight period has been excluded from the analysis. As estimate of the
overnight seasonal volatility component we use the average absolute overnight returns. Also
note the presence of a spike in our cubic B-splines curve, due to a knot placed to capture the
drop-and-rise movement typical of the futures contract.
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Figure 2: Smoothed B-spline estimation of seasonal coefficients.

conditional intraday returns, by dividing the unconditional returns rit by the
corresponding estimate of periodicity in volatility si. In the same way we com-
pute the time series of de-seasonalized unconditional overnight returns.

4.2 The stochastic volatility component: analysis of daily

volatility estimates

Once we have adjusted for the intraday periodicity in volatility, the model in (1)
translates into a mixture process, such that each de-meaned and de-seasonalized
intraday return is a combination of independent realizations from a stochastic
volatility process and from a conditional density. Therefore, the next step is to
identify an appropriate stochastic volatility process capable of generating good
intraday volatility estimates.

To investigate the presence and the nature of the stochastic volatility com-
ponent, we start by plotting the autocorrelogram of the absolute de-seasonalized
5-minute returns for 4, 100 lags, corresponding to 50 days (Fig. 3). The highly
significant serial correlation in absolute intraday returns over many lags reveals
an important stochastic component in volatility. The slow decay of the autocor-
relation coefficients through time indicates the persistence of such component.

Our target is to model stochastic volatility at a high frequency level. How-
ever, any single 5-minute absolute return obviously gives a very poor estimate
of volatility, as confirmed by the strongly irregular pattern of the ACF. We
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Figure 3: ACF of intraday absolute returns.

can eliminate most of this noise by working initially with daily averages of the
intraday absolute returns, in order to understand the low frequency compo-
nent of the volatility dynamics. The daily average of the 82 5-minute absolute
unconditional returns is computed as follows:

σ̂t =
1

m

m
∑

i=1

∣

∣

∣

∣

rit

si

∣

∣

∣

∣

(2)

The measure in (2) directly relates to the realized volatility measures men-
tioned earlier.

The model estimated on these volatility proxies will yield good estimates of
daily volatility. Only if volatility were constant across the 5-minute subintervals
of a same day, such estimates would also be accurate at an intraday level. We
know that this is not the case, therefore at a high frequency level these esti-
mates will show inaccuracies due to both some measurement error and intraday
changes in the volatility. Instead, our daily volatility estimates will prove to
be very useful at revealing most of the structure that our stochastic volatility
model should possess in order to capture the essential features of the volatility
dynamics, including the impact of the leverage component. Moreover, the daily
estimates can be considered good enough for the purpose of normalizing the se-
ries of unconditional intraday returns and, consequently, providing more precise
information on the shape of the conditional distributions.

The autocorrelogram for the daily average of absolute high frequency returns
up to lag 50 is displayed in Fig. 4, to ensure that our measure for the volatility
at a daily level reproduces the basic characteristics displayed by the volatility
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estimates at an intraday level (hopefully highlighted by the reduction in the
noise). As expected, the elimination of most of the noise produces an overall
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Figure 4: ACF of daily average absolute returns.

increase in the level of serial correlation for the daily volatility, which is around
four times as much as the intraday level. Also the averaging process has the
obvious effect of drastically reducing the very high autocorrelation recorded in
intraday volatility for the first 150-200 lags. The autocorrelograms at both
daily and 5-minute level reveal that the stochastic volatility factor seems to be
the result of two components: a) a fast mean reverting component; b) a more
persistent component, which appears to decline almost linearly in time.

As we will see later, the statistical techniques that we use to estimate a
stochastic volatility model provide more accurate results the closer the series
to be modelled is to a normal. Therefore, we choose to work with the time
series of the logarithm of the daily volatility proxy ln(σ̂t), whose skewness of
0.40 and excess kurtosis of 0.31 are much closer to the corresponding moments
of a Gaussian than those of the volatility proxy itself (equal to, respectively,
1.94 and 6.63).

In the following subsections, we first investigate the impact of the leverage
effect and suggest a model to account for the changes in volatility induced by
this component, and then we explore a way of modelling the (daily) dynamics
of the volatility in order to capture the features described above.

4.3 The leverage effect

The leverage effect was first discussed by [18], who observed how the amplitude
of the volatility of a stock tends to increase when its price drops. However,
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a direct comparison between volatility and stock prices is not possible, since
the first series is stationary and the second one is not. In order to investigate
presence and magnitude of the leverage effect, we propose a specification which
is very easy to estimate and well supported by our data.

The distance between the current level of the index and its moving average
quite naturally represents a new, stationary, variable, which is intuitively re-
lated to the volatility of the index. The average index level is computed as an
exponentially weighted moving average M of closing log prices for the S&P500
stock index futures: Mt = (1−θ∆t)Mt−∆t +θ ln(St−∆t)∆t. The new stationary
series is derived as ln(St) − Mt. A measure of the leverage effect is then given
by the correlation between ln(St) − Mt and the log volatility for the following
period ln(σ̂t+∆t).

To quantify the leverage effect for variables measured at a daily level (∆t =
1) we proceed as follows. The initial value M0 is set equal to the initial log
price and we choose θ = 0.03 (corresponding to a half life of 23 days), which
is the value that maximizes (in absolute terms) the correlation between the
series of daily log price movements and daily log volatility proxy. For this
parametrization, we obtain a correlation of ρ = −0.545 between the two series,
which confirms the existence of a strong leverage effect.

In order to separate the changes in volatility induced by the leverage effect
from those arising from the dynamics of the stochastic volatility component, we
propose the following specification:

ln(σ̂t) = κ(ln(St−∆t) − Mt−∆t) + υt (3)

The regression in (3), performed on daily measures, provides us with an
estimate for κ of −4.34 (standard error 0.26) and with time series of daily resid-
uals υt, whose evolution mirrors the dynamics of the (ex-leverage) stochastic
volatility. Given that the ACF inspection carried out in the previous section
suggests the presence of both a transient and a more permanent component in
the volatility process, and that the leverage effect turns out to be quite per-
sistent, we start by assessing whether the volatility expressed by υt could be
adequately modelled by means of an AR(1) specification. Unfortunately, the
ACF of the residuals from the AR(1) process (not reported here, but avail-
able upon request) indicates that this simple and appealing specification does
not capture all the dynamics of the process. More complete specifications are
then needed in order to achieve a satisfactory model for the stochastic volatility
component.

4.4 A short memory model for the stochastic volatility

Given the slow, almost hyperbolic, decay in the sample autocorrelogram for
the stochastic volatility, which seems to suggests the presence of long memory
effects, we have attempted to model the volatility component by means of long
memory ARFIMA(p,d,q) processes of different kinds. Quite surprisingly, none
of the specifications chosen is supported by our data set, perhaps because we
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analyze only 4 years of data. [27] provided an alternative explanation for such
a slowly decaying dynamics by showing how, for an appropriate choice of pa-
rameters, the sum of two AR(1) processes also exhibits long memory features.
Modelling the stochastic volatility as a sum of two AR(1) (or equivalently, in con-
tinuous time framework, with a superposition of Ornstein-Uhlenbeck processes)
provides a sufficiently accurate description of the empirical results, while main-
taining the nice properties of a short memory process.

We therefore explore the use of a model similar to [1], and represent log
volatility in continuous time as the sum of two independent Ornstein-Uhlenbeck
processes, each of them mean reverting towards the long run level of zero, given
that E[σt] = 1.

Since we employ the residuals from Eq. (3) as our (ex-leverage) log volatility
measure, the discrete time version of the model for the dynamics of the log
volatility becomes:

υt = ln(σt) + ξt

ln(σt) = ln(σs,t) + ln(σl,t)

ln(σs,t) = ρs ln(σs,t−∆t) + βs

√
∆tωs,t

ln(σl,t) = ρl ln(σl,t−∆t) + βl

√
∆tωl,t

(4)

The two log volatility components follow a Gaussian first-order autoregressive
process with mean zero, autoregressive parameter ρj = 1 − αj∆t (with mean
reversion parameter αj) and variance β2

j ∆t. ∆t = 1,9 since we estimate the
model on daily volatility proxies, whose measurement error ξt is small and can
be easily bounded.10

The estimation is carried out by applying a Kalman filter algorithm to the
state space system in (4). The estimated parameters, with standard errors in
brackets, are displayed in Table 4.

We can clearly identify a transient volatility component, with αs = 0.739
corresponding to a half life of 0.94 days and a more persistent one, with αl =
0.018 and half life of approximately 37.5 days. Most of the short-run variance
of the model can be attributed to the transient component, whereas 52% of the
unconditional long-run variance is explained by the more persistent component.

9The empirical issue of the choice of dt at intraday level, in view of the overnight market
closure, will be discussed later on in the paper.

10The variance of the measurement error associated with our log volatility proxy should not
be very large. In fact the distribution of the residuals from the measurement equation includes
both the noise component and the sampling variation from the conditional distribution of the
log volatility proxy, which in practice are very difficult to separate. However, the variance
of the error term can be used as an upper bound to the percentage of the total variance
attributable to measurement error. In our example, it amounts to 0.052, which is 38.5% of
the total variance of the log volatility measure. A lower bound on the variance explained by
measurement error is obtained by calculating what the variance of the log volatility proxy
from conditional returns would be if the conditional distribution of the returns was normal.
In our case it is equal to 0.0072, which corresponds to 5.3% of the total variance for the log
volatility proxy on the unconditional returns.
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Table 4: Coefficient estimates for two-factor AR(1) model.

ρ α(= 1 − ρ) β2 Half life Unconditional var.
in days β2/(1 − ρ2)

Transient 0.261 0.739 0.044 0.94 0.046
(0.095) (0.570)

Permanent 0.982 0.018 0.0019 37.50 0.051
(0.008) (0.321)

The dynamics of the volatility has now been correctly captured.
In our case, the distributions of the residuals from both the state equations

of the two components and the measurement equation exhibit little positive
skewness (around 0.35) and excess kurtosis (around 0.4). This “approximate”
Gaussianity should ensure a reasonable efficiency of both the Gaussian quasi-
maximum likelihood estimates and the consequent inferences about the latent
volatility process.

4.5 Some insights on the conditional return densities

The estimation of the stochastic volatility model on a daily basis provides us
with both a structure for the dynamics of the stochastic volatility component,
and estimates of the (log) volatility level, adjusted daily according to the new
value for the log volatility proxy ln(σ̂). Although inaccurate as 5-minute volatil-
ity estimates, these constant intraday volatility measures can be usefully em-
ployed to extract information on the distribution of conditional returns, as a
necessary preliminary step to perform in view of refining the estimates of our
model at a 5-minute level.

The time series of conditional returns is obtained by normalizing the uncon-
ditional de-seasonalized return, rit/si, by the volatility estimate for day t made
at the end of the previous day.

Once the volatility dynamics has been accurately modelled, if the conditional
return distribution is Gaussian and independent from the volatility process, then
the conditional intraday returns will be identically distributed across all intervals
of the day and no changes in the shape of their density (i.e. more fat-tailed in
intervals of higher activity and less fat-tailed when there are less transactions
on the market) would be discernible. Similarly, given our choice of scaling, if we
refer to the distribution of absolute conditional intraday returns, the following
properties should hold: E[|εit|] = 1 and V ar[|εit|] constant for i = 1, . . . ,m.

In order to empirically assess such hypotheses, we start by computing sum-
mary sample statistics of the time series of conditional returns for each of the 82
intraday intervals. First we investigate how these sample statistics relate to the
theoretical ones from a normal distribution, and then we discuss their stability
across the 5-minute subintervals. We plot in Fig. 5 (top) the standard deviation
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of the time series of the conditional returns for the individual intervals, together
with a straight horizontal line at

√

π/2, which represents the theoretical level
of standard deviation under the assumption of normality for the distribution
of conditional returns.11 We can clearly detect a few spikes for some intraday
intervals, that seem to suggest the fat-tailed nature of the conditional distrib-
ution. However, the spikes are mainly attributable to a very small number of
outliers (around 15 for the whole data set, i.e. less than 0.020% of the total
observations) that distort the tails of the distributions over some intervals (not
necessarily the busiest ones). Disregarding the spikes, the standard deviation
of the conditional distribution of intraday returns turns out to be fairly close to
the theoretical

√

π/2 level.
However, the fact that the volatility of the empirical distribution is persis-

tently higher than the theoretical normal one seems to suggest that the con-
ditional distribution is more fat-tailed than a Gaussian. The plot showing the
average excess kurtosis of the conditional returns for the individual intraday
periods is reported in Fig. 5 (bottom). Again, we observe a high level of excess
kurtosis over some intervals of the day, which is mainly due to the presence of
few sporadic outliers. If we removed these outliers, the excess kurtosis for the
overall conditional distributions would be around 2, pushing the distributions
much closer to a Gaussian.12

Once we find evidence of near-Gaussian 5-minute conditional return den-
sities, we focus on the stability of the shape of such distributions across the
intraday intervals. The comparison amongst the values of standard deviation
and excess kurtosis recorded for the individual subintervals reveals that the
main source of variability in the shapes occurs as an effect of the few outliers
already discussed above. Except for that, on average the values of the summary
sample statistics computed for the intraday conditional distributions are quite
flat across the 5-minute intervals of the day.

To summarize, the distribution of conditional returns computed by normal-
izing upon constant intraday volatility forecasts turns out to be surprisingly
close to Gaussian and virtually the same across the different 5-minute intervals
of the day. However, it exhibits a small degree of fat-tailness that could be
explained by the changes in volatility across the day that our simplified esti-
mates do not capture. The investigation of this aspect will be the object of the
following subsection.

4.6 The estimation of the model at an intraday level

The model calibrated on a daily basis cannot accurately describe the actual
dynamics of high frequency data. Therefore, the estimation of our continuous
time specification must be refined by exploiting the information content of the

11Under the assumption of normally distributed conditional returns, their variance must be
equal to π/2 in order to satisfy the condition E[|εit|] = 1.

12The average skewness of the conditional returns for each of the intraday intervals has also
been computed. However, its analysis is not particularly informative, given that, apart from
very few exceptions, skewness coefficients do not depart significantly from zero.
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5-minute return series. For this purpose we employ a simple non-linear filter-
ing technique in which the update occurs every 5 minutes, based on observed
intraday market returns.

The assumption of a continuous time specification for our model seems to be
supported by the analysis of the serial correlation ρt,t+k for 5-minute absolute
returns within the same day (t and t + k belong to the same day, k ≤ 80)
and between one day and the following (t and t + k belong to adjacent days,
k ≤ 161), reported in Fig. 6. The fact that the two segments for k ≤ 80 are
different, with a higher serial correlation within the same day, indicates that the
overnight period has a significant impact on the mean reversion of the model,
an evidence in favor of a continuous time specification.

In deriving high frequency estimates, we start by dismissing the persistent
component of the stochastic volatility process in (4), since we expect the con-
tribution of the fast mean-reverting part to be predominant for such purpose.
We also ignore the impact of the leverage effect at intraday level, given that
this component is quite persistent and, therefore, its effect should be better
investigated and modelled at a lower frequency level. To justify our choices,
we have computed the proportions of the variance of log volatility innovations
at 5-minute frequency attributable to each component: the leverage effect and
the persistent volatility component explain, respectively, less than 5% and 4%
of the total variance and, therefore, both components can be safely disregarded
for the purpose of improving the high frequency volatility process.

First, we consider a standard diffusion model for the 5-minute volatility
process. We will then introduce jumps in our volatility specification, which will
significantly improve our return density estimates.

In order to describe the intraday volatility dynamics, we maintain the stan-
dard Gaussian Ornstein-Uhlenbeck specification employed in the daily model to
characterize the evolution of the transient component, and we make use of the
information available on high frequency returns to obtain improved estimates
for the parameters of the process.

To avoid imposing strong structural assumptions, high frequency volatility
estimates are obtained and updated through a simple non-linear filtering tech-
nique based on observed intraday market returns. A range of possible discrete
values for the log volatility ln(σj) for j = 1, . . . , N is specified, together with the
corresponding set of initial probabilities Pj assigned to each value. These initial
probabilities are then combined with the transition probabilities P a

i,j between
log volatility values j and i to produce a discrete set of prior probabilities P ∗

i

for i = 1, . . . , N as follows:13

P ∗

i,t ≈
N

∑

j=1

P a
(i,t),(j,t−∆t)Pj,t−∆t (5)

which will then be applied to the corresponding volatility values in the range
in order to return the intraday variance estimate σ∗

2

=
∑N

i=1 P ∗

i,tσ
2
i . Within

13For simplicity of exposition, here t denotes the intraday moment previously indicated as
it, hence t = 1, . . . , 82T .
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this framework, the discretization of our continuous time volatility process is
achieved by evolving the analogous discrete mean reverting process on a tri-
nomial grid structure. The resulting transition probabilities, which we assume
constant, are derived in the standard way, by equating the first two moments
of the continuous process to those of its discretization.14

Under the assumption of normality for the conditional returns, justified on
the basis of the results derived earlier, a density forecast for the unconditional
de-seasonalized returns rf

t is represented by a mixture of normal densities, where
each component is a normal with zero mean and standard deviation equal to
one of the volatility values in the range multiplied by

√

π/2, and the mixing
probabilities are given by the prior probabilities for the individual values in the
volatility range:

rf
t ∼

N
∑

i=1

P ∗

i,tN(0, σi

√

π/2) (6)

Once the 5-minute unconditional de-seasonalized return rt/st is observed,
the probability P r

i,t that such return represents an observation from each of the
Gaussian components of the mixture is computed and a Bayesian probability
update is applied to the set of prior probabilities, producing a corresponding
set of posterior probabilities P p

i,t:

P p
i,t ≈

P r
i,tP

∗

i,t
∑N

j=1 P r
j,tP

∗

j,t

(7)

which will replace the initial probabilities Pi in order to re-start the process.
Volatility and return density forecasts are then updated every 5 minutes on the
basis of the actual evolution of returns observed in the financial market.

An important empirical issue concerning the implementation of our contin-
uous time specification is the choice of the time step ∆t. Our data seems to
support a time step equal to 1/106 for 5-minutes intervals, and 25/106 for the
overnight period, during which the process evolves only on the grid, and the
Bayesian update of the probability does not occur until the opening price for
the day is known. Since the variance of the unconditional overnight returns is
about 25 times the variance of the corresponding 5-minute returns, this choice
is equivalent to expressing time in calendar terms during the trading day and
in volatility terms overnight.15

We then need estimates of both the mean reverting coefficient αs and the
volatility parameter βs such that the likelihood that the observed returns are
realizations of our non-linear filtering model, given by:

14For the practical implementation of the model, we choose a log volatility range between
−1.5 and 1.5, with step size equal to 0.1, roughly equal to three times the estimated volatility
of the mean reverting process. Alternative choices for the volatility range and the step size
have been investigated, and the results do not seem to differ too significantly.

15We have also attempted to estimate our model in calendar time only and in volatility time
only, by applying the same measure to all subintervals, but such alternative specifications have
been rejected by the data.
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L(rT ) ≈
T

∏

t=1





N
∑

j=1

P r
j,tP

∗

j,t



 (8)

is maximized and that, on average, the volatility of the intraday changes in the
log volatility estimates is equal to the volatility parameter βs of the process.16

Working on a grid of possible values for αs and β2
s (spaced at a step of, re-

spectively, 0.05 and 0.01, which turns out to be a good compromise between
complexity and accuracy) we have found that estimated values of αs = 0.6 and
βs = 0.28 meet these requirements.

We have employed very simple filtering and estimation techniques to produce
step-by-step volatility and return density forecasts and to obtain estimates of the
relevant parameters. Much more sophisticated econometric methods have been
recently developed in the literature: auxiliary particle filtering techniques for
volatility filtering (see [34], [21]), Markov Chain Monte Carlo (MCMC) methods
([20], [25]) and GMM procedures ([37]) for parameter estimation of a variety of
diffusion and jump-diffusion processes. The implementation of such techniques
would certainly improve the accuracy of our results but at the cost of an in-
creased complexity which would not be justified in our context given that the
best possible estimation accuracy is not our main concern.

Once the model is fully parametrized, 5-minute volatility estimates and re-
turn density estimates can be extracted. The time series of conditional returns
is now obtained by normalizing unconditional returns rit upon the intraday
volatility forecasts σ∗

it computed 5-minutes earlier, and the analysis aimed at
investigating shape and constancy of the conditional return distribution across
the different subintervals of the day is replicated.

Again we compute summary sample statistics for the time series of condi-
tional returns for each of the 82 intraday intervals and we report plots of the
standard deviation (Fig. 7, top) and the excess kurtosis (bottom) across the
individual subintervals. A few spikes due to the presence of very large outliers,
rather than to the effect of some external source of information not captured by
our model, can still be easily detected. If we ignore these outliers, we observe
values for both the standard deviation and the excess kurtosis very close to
the values we would have for normally distributed conditional returns, with a
standard deviation closely oscillating around the value of

√

π/2 and an average
excess kurtosis of 0.9. In accordance with the hypothesis of a Gaussian specifi-
cation, the summary sample statistics for the conditional return densities also
exhibit very similar values across all the intervals of the trading day.

These findings are entirely in line with our expectations: volatility estimates
updated at a high frequency level can account for most of the fat-tailness left
in the conditional return density after normalizing upon the volatility estimates
which remain constant across the day. The assumption of a Gaussian conditional

16The likelihood function for mixture models is known to be unbounded at some points
on the edge of the parameter space (see [30]). In our case, however, we do not attempt to
maximize the likelihood per se, and we only use it to discriminate between various set of
parameters that satisfy the volatility constraint.
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return distribution turns out to work surprisingly well, actually better than
expected.

At this stage, to correct for the presence of the outliers and for the resid-
ual fat-tailness while maintaining a specification valid in continuous time, we
propose to introduce jumps in the model.

4.7 A process with jumps in intraday volatility

The introduction of jumps can take place in the return process, in the volatility
process, or in both. To avoid arbitrary assumptions, we analyze the nature of
the outliers (i.e. all conditional returns larger, in absolute value, than 3

√

π/2) to
decide whether they are more likely to represent jumps in returns or in volatility.

To investigate if the increased volatility consequent to a jump is persistent,
we run the regression (| rt+∆t/st+∆t | −σ∗

t+∆t) = a + b(| rt/st | − | ¯r/s |) at a
5-minute level on both the entire sample and the sub-sample where rt are all
outliers. The estimated coefficients of a = −0.014 (s.e. 0.010) and b = 0.027
(s.e. 0.014) for the entire sample, and a = 0.03 (s.e. 0.058) and b = 0.109 (s.e.
0.017) for the outliers suggest that the impact of the jumps seems to persist
and not to die out immediately as the nature of jumps in returns would predict.
Also, the temporal distribution of the outliers highlights a significant clustering
in the incidence of jumps, which again contradicts the i.i.d. assumption of the
jumps in returns. Our empirical results indicate that the outliers exhibits more
the features of jumps in volatility than those of jumps in returns. This is in line
with some recent findings which point out how models with diffusive stochastic
volatility and jumps in returns are incapable of capturing the empirical features
of equity returns (see [33], [24]). A more rigorous specification would also allow
for jumps in returns. For simplicity, here we restrict our attention to jumps in
volatility, which still yields good results.

We then need to ascertain how persistent the impact of jumps on the in-
traday volatility is, in order to decide to which volatility process (transient or
permanent) the jumps should be added. In Fig. 8 we plot the average (com-
puted across all outliers) difference between post-jump volatility levels and the
average 5-minute volatility level across the 82 subintervals preceding the jump.17

We do that for several post-jump intervals, ranging from five minutes to three
day after the outlier has occurred. The rapid decay in the volatility difference
suggests that the inclusion of the jumps can be safely restricted to the transient
volatility component.

The continuous time process for the dynamics of intraday volatility then
becomes:

d ln(σs,t) = −αsdt ln(σs,t) + βs

√
dtdWs,t +

N(t)
∑

i=1

Yi − λdtE[Y ] (9)

where N(t) denotes the total number of jumps in dt (arrivals of a Poisson process
with intensity λ) and Yi are i.i.d. random variables corresponding to the Poisson

17The intraday volatility is approximated by 5-minute absolute returns.
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jump magnitudes. A compensated jump process has been chosen to maintain
the mean of the volatility process unchanged.

We choose to model the jumps in volatility such that the corresponding
outliers in returns Y r

i follow a power law distribution: P (Y r
i > x) ∼ x−ζ , for

x above 3 standard deviations. This specification is in line with the findings
of a rich literature (see, for instance, [3], [4]), which show that conditional
financial returns over various time scales have a power law distribution. [2]
have also modelled the fast-decaying component of the volatility with a power
law specification. The estimate for ζ is obtained via calibration of the power law
specification to the frequency at which empirical outliers occur, which yields a
value of ζ = 4. In order to fit the discrete version of the stochastic volatility
model in (9) into our trinomial grid structure, we need to work with jumps of
discrete size, expressed as a multiple of our step size ∆r. The jump intensities
are derived from the power law probabilities of the corresponding outliers in
returns, originated from the jumps in volatility.

Once the jump sizes and intensities have been specified, the Bayesian filtering
procedure illustrated in the previous section can be entirely replicated here,
with the difference that the log volatility process evolving on the grid is now
the mean reverting model augmented by the jumps component. The transition
probabilities must be recomputed, following the procedure for discretized jump
diffusion processes suggested by [5]. The values for log volatility range, initial
probabilities, step size and time step are the same as before. The estimates for
the remaining parameters of the volatility process are equal to αs = 0.7 and
βs = 0.25.

As before, we obtain 5-minutes ahead volatility and return density forecasts,
whose accuracy in both absolute and relative terms needs to be assessed.

5 The appraisal of intraday volatility and den-

sity estimates

The assessment of our high frequency volatility and return density estimates is
based on statistical techniques borrowed from both point and density forecast
evaluation practice.

Point forecast evaluation techniques are used to assess the 5-minute volatility
estimates, through a comparison with the absolute value of de-seasonalized high
frequency returns, taken as a proxy of the actual intraday volatility level. In
line with the existing literature, we first regress the absolute return on the
volatility prediction, |rt/st| = α + βσ∗

t + ǫt. The forecast is unbiased only if
α = 0 and β = 1 and, what is most important for a good prediction, has
got small forecast errors if R2 is large. However, the presence of a very noisy
component in our volatility proxy induces very small R2 coefficients per se: the
regression performed on returns simulated from exact volatility forecasts yields
an R2 = 0.2244, which is indicative of the best we could expect to achieve.

We also report a standard Mean Absolute Deviation measure, determined
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as simple average of the absolute deviations of the volatility forecasts from the
volatility proxies.

The findings from the point forecast evaluation of constant and changing
5-minute volatility estimates are displayed in Table 5.

Table 5: Intraday volatility estimates evaluation.

Daily update 5-minute update 5-minute with jumps

Regression

α -0.0164* -0.0487 -0.0382
(0.0139) (0.0083) (0.0093)

β 1.0505 1.0416 1.0216
(0.0158) (0.0173) (0.0195)

R2 0.0895 0.1596 0.1698

MAD 0.6433 0.6364 0.6328

* not significantly different from zero at 5% level.

As expected, the results indicate a very poor forecasting performance in all
cases, given the distortion induced by the noise in the high frequency absolute
returns. In a relative comparison, the forecasts updated on an intraday basis
(with and without jumps) perform significantly better than the ones updated on
a daily basis, as suggested by a higher R2 (0.16 against 0.09) of the regression,
as well as a slightly smaller MAD (0.635 against 0.64).

Density forecast evaluation techniques are employed to assess the intraday
density forecasts for the returns.18 Following a standard procedure, from the
sequence of 5-minutes ahead density forecasts ft(r), we derive the series of the
probability integral transforms of the realized intraday returns as follows:

zt =

∫ rt/st

−∞

ft(r) dr (10)

If the forecasts and the true densities coincide, then the sequence of PITs is
distributed as i.i.d. U(0, 1). Equivalently, the sequence of transformed PITs,
where a transformation to normality is applied to the PITs series, follows an
i.i.d. N(0, 1).

To guarantee more robust results against possible misspecifications of dif-
ferent type, several goodness-of-fit techniques have been implemented. The
popular Kolmogorov-Smirnov and Watson statistics have been chosen to test

18We briefly recall what our intraday density forecasts for the returns look like, under the
assumption of normally distributed conditional returns. When the volatility forecasts stay the
same across the day, the 5-minutes ahead density forecast for the unconditional returns on
each of the intraday intervals is given by a Gaussian with zero mean and standard deviation

equal to the forecasted volatility for that day multiplied by
√

π/2. For changing intraday
volatility forecasts, the density forecast for the returns is represented by the mixture of normal
densities derived in the previous section.
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for uniformity. The normality is assessed via the Jarque-Bera test, as well as
via normal Q-Q plots. Two likelihood ratio tests are performed to test for inde-
pendence (LR1) and for the joint hypothesis of independent observations with
zero mean and unit variance (LR2). The results from the density forecast tests
are reported in Table 6.

Table 6: Distributional forecast evaluation.

Uniformity Normality LR tests

tests tests

K-S Watson J-B LR1 LR2
(1.36) (0.19) (5.99) (3.84) (7.81)

Entire sample

(78720 obs)

Daily 3.76* 3.32* 13,995* 249.18* 1,418.0*
5-minute 3.67* 4.66* 2,271* 2.36 4.36
5-m. jumps 3.82* 5.69* 461* 0.98 6.54

4 Sub-samples

Daily

Low vol. 2.08* 1.09* 3,452* 51.78* 348.61*
Medium low 2.19* 1.32* 2,724* 62.80* 277.21*
Medium high 2.48* 0.75* 2,322* 68.76* 359.43*
High vol. 2.62* 0.67* 5,844* 67.04* 445.56*

5-minute

Low vol. 2.79* 2.69* 975* 2.37 14.58*
Medium low 2.40* 1.96* 686* 1.06 5.16
Medium high 2.08* 1.04* 312* 2.11 5.54
High vol. 2.88* 0.50* 425* 1.41 11.91*

5-m. jumps

Low vol. 1.62* 0.31* 75* 1.25 30.09*
Medium low 2.21* 0.50* 81* 1.89 9.33*
Medium high 2.33* 1.25* 142* 0.98 8.40*
High vol. 3.61* 1.81* 186* 1.51 8.80*

* rejected at 5% level.

Since the size of our sample is huge (82 observations for 960 days), virtually
any distributional forecast, even a very good one, can be easily rejected. To
overcome, at least partially, this problem, we have sorted our sample in four
sub-samples according to the level of the volatility forecast.

The null hypothesis that the return density forecasts represent accurate pre-
dictions of the actual distribution of the returns is generally rejected by all our
goodness-of-fit statistics, for both constant and changing intraday volatility es-
timates. However, a substantial improvement in the forecasting performance is
recorded when volatility estimates are updated every 5 minutes, which becomes
even more striking when jumps are introduced in the volatility process. The
values of the goodness-of-fit statistics are now much closer to their critical val-
ues. The normal Q-Q plots for the case of changing volatility estimates (Fig.
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9) display empirical quantiles fairly close to the normal ones, especially for the
model with jumps. The fat-tailness induced by the jumps in volatility seems to
correct for most of the misspecification in the tails recorded for both the daily
updating method and the intraday method without jumps.

In the light of our findings, we can conclude that in order to correctly model
the dynamics at an intraday frequency, our estimates must be updated every
5 minutes on the basis of the current value of returns observed in the market.
Also, a simple diffusion process for the intraday volatility is not appropriate and
a specification which allows for jumps is to be preferred.

A stochastic volatility model of the kind in (4) which works well at high and
lower frequency level can be obtained by combining the permanent component
(whose parameters are estimated on a daily basis) with the transient component
with jumps (whose parameters are estimated with a non-linear intraday filtering
model).

6 A Monte Carlo Simulation Exercise

Throughout the previous sections the relevant features in the evolution of the
observed returns have been carefully isolated, studied and modelled. All the
individual components have then been assembled together to produce a complete
continuous time model for the intraday returns rt as follows:19

rt = siσtεt

dMt = θ(ln(St) − Mt)dt

ln(σt) = κ(ln(St−dt) − Mt−dt) + ln(σs,t) + ln(σl,t)

d ln(σs,t) = −αsdt ln(σs,t) + βs

√
dtdWs,t +

N(t)
∑

i=1

Yi − λdtE[Y ]

d ln(σl,t) = −αldt ln(σl,t) + βl

√
dtdWl,t

(11)

where:

1. si denotes the deterministic seasonal component of the intraday volatility,
estimated by fitting smoothed cubic B-splines to the average absolute
returns for the individual subintervals.

2. σt stands for the stochastic intraday volatility component, independent of
si, whose dynamics is driven by:

• a leverage effect component, as a proportion κ of the lagged distance
between the (log) level of the index and its exponentially weighted
moving average M . The values for the parameters, κ = −4.34 and
θ = 0.03, are derived at a daily level, as explained in Section 4.3;

19Again, t denotes time on a 5-minute, and not daily, basis, and dt indicates the intraday
interval.
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• a slowly-decaying volatility component, σl,t, whose log is modelled
as a Gaussian Ornstein-Uhlenbeck process. The estimates for the
parameters, αl = 0.018 and βl = 0.044, are those obtained on a daily
basis in Section 4.4;

• a fast-decaying volatility component, σs,t, whose log is modelled as
a compensated jump diffusion process, with Gaussian innovations
independent of the innovations of the persistent volatility component.
The jumps Yi follow a power law distribution, with parameter ζ =
4, obtained via calibration to the empirical frequency of the actual
outliers. The parameter values αs = 0.7 and βs = 0.25 are obtained
as a result of the intraday non-linear filtering procedure described in
Sections 4.6 and 4.7.

3. εt denotes the intraday conditional return, independent of both si and
σt. Given our findings from the analysis of the shape of the conditional
return distribution, realizations for εt are obtained by sampling from the
Gaussian density N(0,

√

π/2).

In order to: 1) test whether the dynamics of the high frequency returns
generated from our model in (11) does actually mirror the empirical one; 2) as-
sess whether our simple estimation procedure produces reliable estimates; we
perform a simple Monte Carlo simulation experiment. A number of 82 intraday
unconditional returns is generated each day for a total of 960 days according to
our model, parametrized as specified above.

For simplicity, we only simulate one full sample, whose properties will be
compared to the empirical ones, with the purpose of verifying whether our data
set could actually represent a random sample generated from the model. Four
more samples are simulated to assess the estimation technique.

We start by looking at the plots of skewness and excess kurtosis, computed
across the time series of high frequency returns for each of the intraday intervals,
which indicate very similar values for both simulated and observed returns (Fig.
10). We then aggregate the simulated high frequency values to derive daily
log volatility proxies as averages of absolute de-seasonalized returns, and daily
measures of leverage. The time series of these daily simulated variables are
contrasted with their daily empirical counterparts (Fig. 11, bottom). The
dependence between log volatility and leverage component from simulated data
has also been investigated, via scatter plot (Fig. 11, top) and computation of the
correlation coefficient, equal to ρ = −0.527. The results are very encouraging,
since both the temporal evolution of simulated volatility proxy and leverage
measure and their correlation structure closely resemble the empirical ones.
These findings at both high frequency and daily level, suggest that the model
in (11) seems capable of capturing and replicating the most significant features
observed in futures equity returns.

To evaluate the adequacy of the estimation techniques employed so far, we
have derived estimates of our model from each of the five simulated samples
and compared the resulting parameters with the actual parameters of the data

24



Table 7: Estimates from simulated samples.

Samples 1 2 3 4 5 Avg. Std.Dev. Data

Daily model

κ -4.52 -4.20 -4.07 -4.66 -4.24 -4.338 0.244 -4.34
αs 0.67 0.68 0.64 0.66 0.62 0.660 0.032 0.73
αl 0.01 0.02 0.02 0.02 0.01 0.016 0.005 0.02
βs 0.21 0.23 0.18 0.22 0.23 0.214 0.021 0.21
βl 0.05 0.03 0.03 0.05 0.03 0.038 0.011 0.04
ρ -0.53 -0.48 -0.43 -0.44 -0.51 -0.478 0.043 -0.54

Intraday model

αs 0.75 0.70 0.65 0.70 0.60 0.680 0.057 0.65
βs 0.22 0.23 0.21 0.20 0.24 0.220 0.016 0.24
ζ 4.0 4.0 5.0 4.0 5.0 4.4 0.548 4.0

generating process. Following the steps of our data analysis, we start by investi-
gating the seasonal component, whose pattern, for all five simulated samples, is
indistinguishable from the one shown by the market data (results not reported
here, but available on request). Daily measures of log volatility and leverage
computed on simulated data are then used to obtain estimates for the leverage
model through the regression in (3), and for the two-factor stochastic volatility
model via Kalman filter on the residuals from the previous regression. The esti-
mates, displayed in Table 7, are in all cases very close to the original parameters
of the process from which the samples have been simulated, and only the mean
reversion parameter of the transient volatility component is slightly underesti-
mated in all samples. In relative terms, the larger dispersion can be observed
for the estimates of the parameters of the permanent volatility component.

As before, the non-linear filtering technique with intraday updating of volatil-
ity and return density estimates is implemented in order to refine the high
frequency volatility process. First we produce estimates of the volatility specifi-
cation without jumps and we employ the resulting volatility forecasts to obtain
a series of conditional returns. Again the inspection of the outliers provides us
with information on the characteristics of the jumps. The actual frequencies
of the empirical outliers are employed to re-estimate the power-law parameter
ζ. Finally, we re-estimate the parameters of mean reversion and volatility of
volatility on the grid. The estimates for the log volatility process with jumps,
shown in the bottom part of Table 7, are fairly satisfactory, as they are quite
close to the actual parameters of the data generating process. However, we can
detect an underestimate of the incidence of jumps, as well as of the mean rever-
sion and volatility parameters of the diffusion component. On the whole, our
findings suggest that the estimates produced by applying our simple techniques
are quite reliable and adequate for our purposes.
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7 Conclusions and Further Work

In the present work we have attempted to build a simple and accurate continuous
time model capable of describing and replicating the dynamics of both high and
moderate frequency index returns. In our approach, we have performed a careful
analysis of a set of intraday data, aimed at: 1. identifying the relevant features
that need to be modelled; 2. investigating the best possible model specification,
without imposing too much structure a priori, and by testing step by step the
assumptions made.

Let us briefly recap the stages that led us to the identification of the complete
model. We have started by specifying a very general multiplicative structure
for the model of 5-minute unconditional returns, as a function of a seasonal
and a stochastic volatility component, and of intraday conditional returns. We
have then examined the nature of the seasonal component in intraday volatility,
which has proved to be deterministic. As for the analysis of the stochastic
volatility component, given the large amount of noise present in high frequency
data, we have derived much less noisy daily average measures of volatility, which
represent a considerably more useful starting point for studying the volatility
dynamics. On the basis of these daily volatility proxies we have first investigated
the presence of a leverage effect in our data and devised a simple specification
for its modelling. Following the evidence of the existence of both a transient
and a persistent feature in the volatility, we have then explored how to model
the ex-leverage volatility dynamics. A two-factor short memory volatility model
has been successfully estimated on the daily volatility measures. The volatility
estimates obtained from the daily model have also been employed to provide
insights on the distribution of the conditional returns, which has turned out
to be very close to a Gaussian and fairly stable across the various subintervals
of the day. At this stage, the estimation of our model has been refined at
an intraday level by exploiting the information content of the 5-minute return
series, so as to obtain a specification capable of describing the dynamics of high
frequency data. The fine-tuning of the model has been performed by means of a
simple non-linear filtering technique, in which the estimates are updated every
five minutes, following the observed intraday market returns. Finally, in order
to account for the presence of some outliers and for the residual fat-tailness in
the model, we have introduced jumps in our volatility specification.

An attractive feature of our work that would deserve further investigation is
the possibility to obtain simplified versions of our general model specification,
which will possess the correct properties for various specific time horizons of
interest.
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Figure 5: Standard deviation and excess kurtosis of conditional returns by in-
traday intervals using daily updated volatility estimates.
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Figure 6: Intraday and interday serial correlation of absolute returns.
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Figure 7: Standard deviation and excess kurtosis of conditional returns by in-
traday intervals using 5-minute updated volatility estimates.
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Figure 8: Persistence of jumps impact on volatility measured in 5-minute intra-
day intervals.

33



−5 0 5
−10

−5

0

5

10
First subsample (lowest vol. forecasts)

−5 0 5
−10

−5

0

5

10
Second subsample

−5 0 5
−10

−5

0

5

10
Third subsample

−5 0 5
−10

−5

0

5

10
Fourth subsample (highest vol. forecasts)

−5 0 5
−5

0

5
First subsample (Lowest vol. forecasts)

−5 0 5
−5

0

5
Second subsample

−5 0 5
−5

0

5
Third subsample

−5 0 5
−5

0

5
Fourth subsample (Highest vol. forecasts)

Figure 9: Normal QQ plots - return density forecasts using changing intraday
volatility without (top) and with (bottom) jumps in volatility.
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Figure 10: Skewness and excess kurtosis for intraday simulated and observed
returns.
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Figure 11: Scatter plot and time series of leverage measure against log volatility proxy - Market data (left) and simulated
sample (right).
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