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Abstract 
We explore the ability of alternative popular continuous-time diffusion and jump diffusion 

processes to capture the dynamics of implied volatility over time. The performance of the 

volatility processes is assessed under both econometric and financial metrics. To this end, 

data are employed from major European and American implied volatility indices and the 

rapidly growing CBOE volatility futures market. We find that the simplest diffusion/jump 

diffusion models perform best under both metrics. Mean reversion is of second order 

importance. The results are consistent across the various markets. 
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1. Introduction 
The dynamics of the instantaneous and implied volatility are of crucial importance for 

option pricing and risk management purposes. While the dynamics of the former notion of 

volatility have been considered extensively, this is not the case for those of implied 

volatility3F

1. This study fills this void by exploring the ability of alternative popular 

diffusion and jump diffusion processes to capture the dynamics of implied volatility 

indices over time. 

 There is a voluminous literature on the specification of the stochastic process that 

governs the dynamics of instantaneous volatility in continuous time. This literature first 

emerged in a stochastic volatility option-pricing context. In this setup, the underlying asset 

price and the instantaneous volatility of the underlying asset returns are modeled jointly. 

In the late eighties, a plethora of stochastic volatility option pricing models were 

developed by assuming a volatility process with continuous paths (see e.g., Hull and 

White, 1987, Johnson and Shanno, 1987, Scott, 1987, Wiggins, 1987, Stein and Stein, 

1991, Heston, 1993, and Jones, 2003 for a more flexible specification, among others); the 

underlying asset price was also assumed to follow a diffusion process. In the late nineties, 

new type stochastic volatility option pricing models were introduced based on a jump 

diffusion process for the underlying asset price and a diffusion volatility process (see e.g., 

Bakshi et al, 1997, Bates, 1996, 2000, Andersen et al. 2002, and Pan, 2002). Recently, 

there have appeared option-pricing models where both the underlying asset price and the 

instantaneous volatility follow jump-diffusion processes (see e.g., Duffie et al., 2000, 

Bakshi and Cao, 2004, Broadie et al., 2004, Eraker, 2004). The validity of the 

specification of the process of the instantaneous volatility has also been examined jointly 

with that of the underlying asset price by using data only from the underlying assets’ 

market (see e.g., Eraker et al., 2003), and in a Value-at-Risk framework (Lehar et al., 

2002). 

On the other hand, not much attention has been devoted to the complete 

specification of the autonomous process that implied volatility follows in continuous 

                                                 
1 The implied volatility is usually used as a proxy for the instantaneous volatility. Usually, it is interpreted as 
the average instantaneous volatility to be realized over the life of the option. However, this is strictly true in 
a Hull and White (1987) world, where the instantaneous volatility is uncorrelated with the asset price, the 
market price of volatility risk is zero, and the option is linear with respect to volatility (i.e. at-the-money). In 
the case where these conditions do not hold, the implied differs from the instantaneous volatility. 
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time 4F

2. In a discrete-time context, Poterba and Summers (1986) were among the first to 

document that implied volatility mean-reverts. The paper by Franks and Schwartz (1991) 

suggests that the changes in implied volatility can be regarded as being stochastic, since 

they are attributed to shocks to various economic variables. Within a continuous time 

setup, Merville and Pieptea (1989), Moraux et al. (1999), and Daouk and Guo (2004) 

estimated implied volatility mean-reverting processes. All these papers have considered 

at-the-money short maturity implied volatilities. However, no comparison with alternative 

specification of the implied volatility processes was performed, and no jumps in volatility 

were considered. Wagner and Szimayer (2004) were the first to investigate the presence of 

jumps in implied volatility by estimating an autonomous mean reverting jump diffusion 

process using data on the implied volatility indices VIX and VDAX. They found evidence 

of significant positive jumps in implied volatilities. However, they adopted the rather 

restrictive assumption that the volatility jump size is constant rather than being random. 

Again, their specification was not compared with alternative ones. Finally, in a very recent 

paper, Bakshi et al. (2005) estimated various general specifications of the autonomous 

instantaneous variance diffusion process. To this end, they used the squared implied 

volatility index VIX as a proxy to the unobserved instantaneous variance. However, their 

study did not address the empirically documented presence of jumps in implied volatility 

(see e.g., Malz, 2000, Wagner and Szimayer, 2004). 

The complete specification of the autonomous implied volatility process as well as 

deciding on whether the process is diffusion and/or presents jumps is important for a 

number of reasons. First, understanding the dynamics of implied volatility is a step 

towards understanding the dynamics of the equity risk premium; Merton (1980) showed 

that there is a linear relationship between the equity risk premium and the variance of 

equity returns (see also Poterba and Summers, 1986, for an empirical analysis). Second, 

knowledge of the process that governs the evolution of implied volatility over time is 

particularly useful for (volatility) trading and hedging purposes. This is because the 

implied volatility is a reparameterisation of the market option price, and is used as an 

input to calculate the sensitivities of the option price with respect to various risk factors 
                                                 
2 Kamal and Derman (1997), Skiadopoulos et al. (1999), Alexander (2001), Ané and Labidi (2001), Cont 
and da Fonseca (2002), and Fengler et al. (2003) have studied only the volatility structure of diffusion 
implied volatility processes, i.e. the number and form of shocks that drive implied volatilities over time. 
Their analysis has been placed in multivariate context where they investigate the evolution of the implied 
volatility surface. These studies have left unanswered the specification and estimation of the drift, though. 
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(hedge ratios). Third, specification of the implied volatility process is necessary so as to 

price and hedge derivatives written on implied volatility; these derivatives fall in the class 

of volatility derivatives. Volatility derivatives depend on some measure of volatility. They 

are traded over the counter for a long time and very recently, in March 2004, CBOE 

introduced volatility futures on the implied volatility measured by VIX. CBOE has also 

announced the imminent introduction of volatility futures on the implied volatility index 

VXD and volatility options. Various volatility option-pricing models have already been 

developed (see e.g., Whaley, 1993; Grünbichler and Longstaff, 1996, Detemple and 

Osakwe, 2000) 5F

3. The models rely on different specifications of the process that implied 

volatility follows in continuous time and the volatility risk premium. However, these 

alternative specifications and the corresponding option pricing models have not been 

assessed empirically; the comparative empirical examination of various implied volatility 

process will shed light on which model to use 6F

4. Finally, the implied volatility process is an 

indispensable tool to measure the market risk of positions in volatility derivatives, e.g., 

calculate Value-at-Risk by means of Monte Carlo simulation.  

This paper explores for the first time the ability of alternative univariate diffusion 

and jump diffusion processes to capture the dynamics of implied volatility indices over 

time 7F

5. The choice of the specifications for the implied volatility processes is motivated by 

the extensive use of the corresponding instantaneous volatility processes in the option 

pricing literature. Three affine volatility diffusion processes are examined: the standard 

Geometric Brownian motion, the mean reverting, and the square root mean reverting 

process. In the jump-diffusion setting, the three volatility diffusion processes are 

augmented by adding a jump component. 

                                                 
3 The growing interest in volatility derivatives has emerged after the 1987 crash. Brenner and Galai (1989, 
1993) first suggested options written on a measure of volatility that would serve as the underlying asset. 
Other types of volatility derivatives include variance/volatility swaps and variance options that are traded 
over-the-counter (see Demeterfi et al., 1999, Chriss and Morokoff, 1999, and Carr and Lee, 2005, for details 
on the pricing and hedging aspects of variance/volatility swaps, and Carr et al., 2005, for the pricing of 
variance options). Brenner et al. (2006) proposed and priced an option written on a straddle. 
4 Daouk and Guo (2004) have investigated the impact of model error to the pricing performance of only one 
(Grünbichler and Longstaff, 1996) of the developed volatility option pricing models. Psychoyios and 
Skiadopoulos (2006) have looked at the hedging and pricing performance of various volatility option pricing 
models. However, their application is placed within a simulation setup where no market data are employed. 
5 In a very recent paper, Wu (2005) has also investigated the presence of jumps in the specification of the 
process that dictates the dynamics of the variance over time. To this end, he has also considered the process 
of the variance independently of the process that governs the dynamics of the asset price. However, he has 
examined specifications of the process of the instantaneous variance rather than that of the implied 
volatility. 
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The validity of the six alternative implied volatility processes is assessed under 

both econometric and financial metrics. The use of various metrics is necessary so as to 

get a full understanding of the properties of the volatility processes (see for instance, 

Daouk and Guo, 2004, for a similar approach). It is often the case that the performance of 

a model is not consistent under a statistical and a financial criterion. The performance of 

the model may also depend on a particular data set. To check whether there is such a 

dependence, data on a plethora of European and American implied volatility indices (VIX, 

VXN, VXO, VXD, VDAX, VX1 & VX6, and VSTOXX) over various time periods, and 

the rapidly evolving CBOE volatility futures market are employed.  

On any given point in time, an implied volatility index represents the implied 

volatility of a synthetic option that has constant time to maturity. The data on the implied 

volatility indices are the natural choice to estimate the unobservable parameters of the 

implied volatility process. This is because the various methods to construct the index are 

informative and precise. They take as input the implied volatilities of options with various 

strikes and expiries, and they “average” them so as to minimize the notorious 

measurement errors in implied volatilities (see Hentschel, 2003, for a study on the 

construction method of VXO). Moreover, the fact that the data sets on most implied 

volatility indices are extensive allows incorporating periods of market stress and hence 

learning about rare events such as jumps, as Broadie et al. (2004) argue. Furthermore, the 

study of the properties of an implied volatility index in continuous time deserves attention 

since the index is of great importance to both academics and practitioners. This is because 

it can be used in a number of applications. It serves as the underlying asset to volatility 

options and futures. In addition, it affects the pricing and hedging of variance/volatility 

swaps; an implied volatility index can be interpreted as the variance/volatility swap rate 

(see Carr and Wu, 2004b, 2004c, and the references therein) that affects the market value 

of these volatility derivatives (Chriss and Morokoff, 1999). The implied volatility index 

can also be used for Value-at-Risk purposes (Giot, 2005), to identify buying/selling 

opportunities in the stock market (Whaley, 2000), and to forecast the future market 

volatility (see e.g., Fleming et al., 1995, Moraux et al., 1999, Simon, 2003, Giot, 2005). 

Within the econometric framework, (conditional) Maximum Likelihood 

Estimation (MLE) is used to estimate the parameters of the various volatility processes. In 

the case where the conditional density function does not have a closed-form, the 
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characteristic function is derived. Then, Fourier inversion of the characteristic function is 

employed. Standard statistical tests are used to compare the alternative processes. From 

the econometric perspective, our paper is analogous to studies that have been conducted in 

the interest rate literature where the validity of alternative processes for the short-term 

interest rate has been investigated (see e.g., Chan et al., 1992).  

Within the financial metric, the CBOE volatility futures market is used to rank the 

alternative processes within a futures pricing context. Under the risk-adjusted probability 

measure, the volatility futures price equals the expected value of volatility. Hence, the 

valuation of volatility futures is not model-free; for any given process, the pricing 

performance of the corresponding volatility futures pricing model is examined. To the best 

of our knowledge, Zhang and Zhu (2006) is the only study that has investigated the 

pricing of volatility futures empirically. However, they do this for a specific model 

without conducting a horse race among different models. 

The econometric analysis finds discontinuities in implied volatility while mean 

reversion is of second order importance. The simplest Merton type (1976) jump diffusion 

model performs best. The results obtained from the financial metric confirm this finding. 

The remainder of the paper is structured as follows. In the next Section the 

specifications of the implied volatility processes are presented. Section 3 describes the 

data set. Next, the econometric methodology is outlined. Section 5 discusses the results 

from the econometric estimation, and it checks their robustness. In Section 6, the 

properties of the various volatility futures pricing models are discussed and the alternative 

processes are ranked based on the evidence from the volatility futures markets. The last 

Section concludes, it presents the implications of the study and it suggests directions for 

future research. 

 

2. The Processes 
We examine diffusion and jump diffusion implied volatility processes. The diffusion 

processes are nested in the general stochastic volatility process described by the following 

equation: 

  ( ), ( , )t t t tdV V t dt V t dWμ σ= +  (1) 
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where Vt is the value of the implied volatility index at time t, dWt is a standard Wiener 

process, ( ),tV tμ  is the drift, and ( ),tV tσ  is the diffusion coefficient (i.e. the volatility of 

volatility). The jump diffusion processes are nested in the general jump diffusion 

stochastic volatility process, described by the following equation: 

  ( ) ( ), , ( , )t t t t t tdV V t dt V t dW y V t dqμ σ= + +  (2) 

where tdq  is a Poisson process with constant arrival parameter λ (intensity), that is 

Pr{dqt=1}= λdt, and Pr{dqt=0}= 1-λdt, and y is the jump amplitude. dW, dq and y are 

assumed to be mutually independent processes. Equations 1H(1) and 2H(2) are defined under 

the actual probability measure P. The drift, diffusion and jump size coefficients are 

assumed to be general functions of time and volatility. The following specifications are 

examined: 

Geometric Brownian Motion Process (GBMP) t t t tdV V dt V dWμ σ= +  

Mean-Reverting Gaussian Process (MRGP) ( )t t tdV k V dt dWθ σ= − +  

Mean Reverting Square-Root Process (MRSRP) ( )t t t tdV k V dt V dWθ σ= − +  

Geometric Brownian Motion Process augmented by 

Jumps (GBMPJ) 

( 1)t t t t t tdV V dt V dW y V dqμ σ= + + −  

Mean-Reverting Gaussian Process augmented by 

Jumps (MRGPJ) 
( )t t tdV k V dt dW ydqθ σ= − + +  

Mean Reverting Square-Root Process augmented 

by Jumps (MRSRPJ) 
( )t t t t tdV k V dt V dW ydqθ σ= − + +  

 

The analogous processes that researchers have used to model the evolution of 

instantaneous volatility/variance in a stochastic volatility option pricing setting motivate 

the specifications of the processes that are considered in this paper. For instance, Hull and 

White (1987) and Johnson and Shanno (1987) have assumed a GBMP. Similarly, the 

MRGP has been used by Hull and White (1987), Scott (1987), Stein and Stein (1991), and 

Brenner et al. (2006), among others. The MRSRP has been proposed as an alternative to 

the MRGP, so as to constrain volatility from taking negative values (see e.g., Hull and 

White, 1988, Heston, 1993, Grünbichler and Longstaff, 1996, Bates, 1996, 2000, 

Andersen et al., 2002, and Pan, 2002, among others). The presence of mean reversion has 

been documented empirically. 
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To examine the possible presence of jumps in implied volatilities, the GBMPJ, 

MRGPJ, and the MRSRPJ are the natural extensions to their diffusion analogues. The 

GBMPJ is a Merton (1976) type of model, while the MRGPJ has been used by Das (2002) 

to model the evolution interest rates over time. The MRSRPJ has been used by Duffie et 

al. (2000), Eraker et al. (2003), Bakshi and Cao (2004), Broadie et al. (2004), and Eraker 

(2004) to model the dynamics of the instantaneous volatility. 

 
3. Data Description 

3.1 Implied Volatility Indices 

We use daily data (closing prices) on four major American and four European implied 

volatility indices: VIX, VXO, VXN, VXD, VDAX, VX1, VX6, and VSTOXX. For any 

given index, the data cover a period from the first date that there is an available quote until 

24/03/2004.  

The first four indices are traded in CBOE. VIX and VXO are constructed from the 

implied volatilities of options on the S&P 500 and S&P 100, respectively. VXN and VXD 

are based on the implied volatilities of options on the Nasdaq 100 and on Dow Jones 100, 

respectively. VDAX is constructed from the implied volatilities of options on DAX 

(Germany), while VX1 and VX6 are constructed from the implied volatilities of options 

on CAC 40 (France). VSTOXX is constructed from the implied volatilities of options on 

the DJ EURO STOXX 50 index. The data for VDAX are obtained from Bloomberg while 

for the other indices are obtained from the websites of the corresponding exchanges. All 

indices represent the implied volatility of a synthetic option that has fixed strike (or 

incorporates information from all strikes) and constant time-to-maturity at any point in 

time. The constant time to maturity is the same (thirty calendar days) for almost all indices 

under scrutiny. The only exceptions are VDAX (45 days) and VX6 (185 days). 3HTable 1 

provides a synopsis of the methods that are used to construct the various implied volatility 

indices (see the web sites of the various exchanges for further details on the construction 

of the indices). The use of implied volatility indices that are based on different 

construction methods, have different horizons, and cover different time periods allows us 

to check whether their properties are affected by these factors. 
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4HFigure 1 shows the evolution of the eight indices over time (up to 24/03/2004). We 

can see that prima facie, there is evidence of mean reversion and (up and down) spikes. 

5HTable 2 shows the summary statistics for the eight implied volatility indices (in levels and 

daily differences, Panels A and B, respectively), as well as the time periods over which 

the data are collected and the number of observations. Application of the Jarque-Bera test 

rejects the null hypothesis of normality. The evidence of non-normality may be attributed 

to the presence of jumps in implied volatility. The first order autocorrelation coefficients 

of the daily differences are also reported in Panel B (one asterisk denotes significance at a 

5% confidence level). They are all negative indicating the presence of mean reversion; the 

only exception is that of VXN8F

6. The dependence of the observations should be taken into 

account by the method that will be used to estimate the parameters of the various 

processes. The sample size ranges from 787-4,608 observations across indices. This 

ensures that we obtain reliable ML estimates since the results on the statistical inference 

of the ML estimators hold asymptotically.  

3.2 Volatility Futures 

Daily data (settlement prices) on the CBOE volatility index futures (ticker name VX) are 

used over the period from 26/03/2004 to 17/06/2005. CBOE volatility futures were 

introduced in March 26, 2004. The underlying asset is an “Increased-Value index” (VBI) 

that is 10 times the value of VIX at any point in time. The contract size of the volatility 

futures is $100 times the value of VBI. On any day, four futures contracts are traded: the 

two near-term contract months plus two contract months on the February quarterly cycle 

(February, May, August, and November). The contracts are cash settled on the 

Wednesday prior to the third Friday of the expiring month.  

Three time series of futures prices were constructed by ranking the data according 

to their expiry date: the shortest, second shortest and third shortest maturity series. To 

minimise the impact of noisy data, we roll to the second shortest series in the case where 

the shortest contract has less than five days to maturity. Also quotes that correspond to a 

volume of less than five contracts were omitted. 6HTable 2 (Panel C) shows the summary 

statistics of the first three shortest futures series (in levels and daily differences). We can 

                                                 
6 Alternatively, the negative sign may be attributed to the presence of measurement errors in implied 
volatilities (see Harvey and Whaley, 1992). 
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see that the daily changes of the volatility futures prices are not normally distributed; the 

departure from normality is greatest for the shortest futures series. 

 

4. The Econometric Methodology 
The parameters of the various processes are estimated by the conditional Maximum 

Likelihood (ML) method (see Hamilton, 1994, for a description of the method). We rely 

on the conditional MLE because it takes into account the empirically documented 

dependence of the observations. MLE has been commonly used to estimate continuous 

time models in finance (see Sundaresan, 2000, for a review, and the references therein). 

This is because it has desirable statistical properties. The set Θ̂  of the ML estimators are 

consistent, asymptotically efficient achieving the Cramer-Rao lower bound for consistent 

estimators, and they are normally distributed 1ˆ [ ,{ ( ) }]N I −Θ Θ Θ∼ , where 
2

1 1log ( )[ ( )] ( [ ])
'

LI E− −∂ Θ
Θ = −

∂Θ∂Θ
. Moreover, Ait-Sahalia (2004) has shown that alternative 

estimation methods such as the generalized method of moments cannot attain the 

efficiency of the ML estimators. Moreover, he has found that MLE can disentangle the 

diffusion from the jump component. 

The conditional MLE requires the conditional (transition) density function 

[ ( ) ( ), ]f V t V tτ+ Θ  (τ>0) of the process Vt, where τ denotes the sampling frequency of 

observations and Θ is the set of parameters to be estimated. For a sample { } 1
( ) T

t
V t

=
, the 

log-likelihood function that is maximized is given by 

 ( )( )
1

max log ( ) ( ),
T

t

f V t V t
τ

τ
−

Θ
=

ℑ = + Θ∑  (3) 

The standard errors of the ML estimators are retrieved from the inverse Hessian, evaluated 

at the obtained estimates. 

In the cases where the conditional density function does not exist in a closed form 

(MRGPJ and MRSRPJ), then the corresponding conditional characteristic function is 

derived. The required conditional density function is obtained by Fourier inversion of the 

characteristic function. Maximizing the likelihood function via Fourier inversion, though 

computationally intensive, provides asymptotically efficient estimates of the unknown 

parameters (see Singleton, 2001, for a discussion and applications). Moreover, even 
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though the likelihood function of jump diffusion processes may be unbounded, as in the 

case of the GBMPJ (Honoré, 1998), its Fourier transform is always bounded (Yu, 2004). 

To make the exposition concrete, let { } 1

T
t t

V
=

 be a discretely-sampled time series of 

implied volatilities drawn from an affine diffusion/jump diffusion process. Let 

( , ; ) ( ; )tisV
t tF V s E e Vττ +≡ Θ  be the conditional characteristic function of Vt, where 1i = − . 

Duffie et al. (2000, page 1351) prove that under technical regularity conditions, the 

characteristic function for affine diffusion/jump diffusion processes has an exponential 

affine form (see Singleton, 2001, for an extensive discussion) 

 ( )( , ; , ) exp ( ; ) ( ; )t tF V s A s B s Vτ τ τΘ = +  (4) 

where the functions ( ), ( )A Bi i  satisfy complex-valued ordinary differential equations that 

may or may not have explicit solutions. 

Assume we stand at time t. The Fourier inversion of the characteristic function 

provides the required conditional density function [ ( ) ( )]f V t V tτ+ , i.e. 

 ( )

0

1[ ( ) ( ), ] Re[ ( ( ), ; , )]isV tf V t V t e F V t s dsττ τ
π

∞ − ++ Θ = Θ∫ , (5) 

where Re denotes the real part of complex numbers. Then, the conditional log-likelihood 

function is maximised (equation 7H(3)). 

4.1 Estimation of Diffusion Processes 

Geometric Brownian Motion Process 

Under the GBMP, Vt is log-normally distributed. The conditional density of the GBMP is 

given by: 

 ( ) ( ) ( )2

22

1(log ( ) log ( )), exp
(2 )2
tx

f V t V t
ατ

τ
σ τπσ τ

⎞⎛ −
⎟⎜+ Θ = −

⎜ ⎟
⎝ ⎠

 (6) 

where 21
2

a μ σ= −  and ( )2( )log ~ ,
( )t

V tx
V t

τ ατ σ τ⎛ ⎞+
= Ν⎜ ⎟

⎝ ⎠
. The set of parameters Θ to be 

estimated is Θ={μ,σ}. 

 

The Mean-Reverting Gaussian Process (MRGP) 

Under the MRGP, Vt is normally distributed. The conditional density of the MRGP 

processes is given by: 
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 ( )2

22

( )1( ( ) ( ), ) exp
22

tV t m
f V t V t

ss

τ
τ

π

⎞⎛ + −
⎟⎜+ Θ = −

⎜ ⎟
⎝ ⎠

, (7) 

where ( ) k
t tm V e τθ θ −≡ + − , and ( )

2
2 21

2
ks e

k
τσ −≡ − . The set of parameters Θ to be 

estimated is Θ={κ, θ, σ}. 

 

The Mean-Reverting Square Root Process (MRSRP) 

Under the MRSRP process, the implied volatility is distributed according to a non-central 

chi-squared distribution (Cox et al., 1985). The transition density is given by: 

 ( )2 1 2( ( ) ( ), ) ( ) 2( )u v q
qf V t V t ce v u I uvτ − −+ Θ =  (8) 

where 22 ( (1 ))kc k e τσ −≡ − , ( ) ku cV t e τ−≡ , ( )v cV t τ≡ + , 22 1q kθ σ= −  and ( )qI i  is the 

modified Bessel function of the first kind of order q. The set of parameters Θ to be 

estimated is Θ={κ, θ, σ}. 

4.2 Estimation of Jump-Diffusion Processes 

A critical issue in the complete specification of jump diffusion processes is the assumption 

about the distribution of the jump size. This assumption needs to be both numerically 

tractable for the estimation purposes and realistic, i.e. to account for the possible presence 

of both up and down jumps in implied volatility. 

In the GBMPJ model, we follow Merton (1976) by assuming that the logarithm of 

the jump is distributed normally. This assumption delivers the transition density in closed-

form. It also allows for both up and down jumps in implied volatility, and it can be used as 

a benchmark against alternative assumptions for the distribution of the jump size that have 

been proposed recently. In the MRGPJ and the MRSRPJ models, we follow Kou (2002) 

by assuming that the jump size is drawn from an asymmetric double exponential 

distribution: 

 { } { }
1 2

1 20 0( ) 1 1y y
y yf y p e q eη ηη η−
≥ <= +  (9) 

where p, q ≥0 and p+q=1, represent the probabilities of the upward and downward jump, 

respectively, and 1/η1, 1/η2 are the mean sizes of the upward and downward jumps, 

respectively. 

The double exponential distribution makes possible the derivation of the 

characteristic function for the mean-reverting processes under consideration. In addition, 
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it enables capturing the empirically observed both upward and downward jumps in 

implied volatility, as well; the two types of jumps have the same intensity but their 

amplitudes are drawn from different (exponential) distributions9F

7. Previous researchers 

(see e.g., Duffie et al., 2000, Bakshi and Cao, 2004, Broadie et al., 2004, Eraker, 2004) 

have assumed that the jump size of volatility is distributed exponentially and hence they 

allow only for up jumps. This ensures that volatility remains positive but it comes at the 

cost that it cannot account for the down jumps in volatility that have been observed 

empirically. 

 

The Geometric Brownian Motion Process augmented by Jumps (GBMPJ) 

Conditional on a Poisson event, the logarithm of the jump size y is distributed normally 

with mean and variance γ and δ2, respectively. In the GBMPJ process case, Press (1967) 

has shown that the probability density function of the log-returns ( )log
( )t

V tx
V t

τ⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
 is 

described as a discrete Poisson mixture of j normal probability density functions where j 

tends to infinity, i.e. 

 ( ) ( ) ( )
( )

( )2

2 22 2
0

1(log ( ) log ( ) , ) exp
! 2( )2

j
t

j

e x j
f V t V t

j jj

λτλτ ατ γ
τ

σ τ δπ σ τ δ

∞ −

=

⎞⎛ − −
⎟⎜+ Θ = −

⎜ ⎟++ ⎝ ⎠
∑  (10) 

where j is the number of jumps, τ is the sampling frequency, and 21
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To perform MLE in the GBMPJ case, two numerical issues have to be dealt with. 

The infinite sum in equation 8H(11) is truncated to j=10; Ball and Torous (1985) have found 

that this truncation provides accurate ML estimates (see also Jorion, 1998, for an 

application of this approach to the forex and stock market). Second, the mixture density 

9H(10) has the property that a global maximum of the log-likelihood does not exist; in some 

cases the log-likelihood may become infinite (singularity problem, see Hamilton, 1994, 
                                                 
7 Alternatively, the assumption of a normally distributed jump size would allow capturing both upward and 
downward jumps (see Das, 2002). However, in this case, the estimation process is much more time 
consuming since the characteristic function for the mean-reverting processes can only be evaluated 
numerically. 



 14

page 689). In this case, “strange” estimates (e.g., negative σ and/or δ2) come up as a 

warning (see Honoré, 1998, and the references therein). However, the singularity problem 

can be avoided provided that the numerical maximization algorithm converges to a local 

maximum. This can be achieved by using a new starting value in the case where the 

algorithm becomes stuck (see Hamilton, 1994). We feel comfortable with our estimated 

values since we have followed this route, and no “strange estimates” were encountered.  

 

The Mean-Reverting Gaussian Process augmented by Jumps (MRGPJ) 

The MRGPJ and the MRSRPJ processes do not have a known density regardless of the 

assumption on the jump size distribution. In the MRGPJ where the jump size follows an 

asymmetric double exponential distribution, the parameters A and B in the formula of the 

characteristic function [equation 10H(4)] are given by10F
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The Mean-Reverting Square Root Process augmented by Jumps (MRSRPJ) 

In the MRSRPJ where the jump sizes are drawn from an asymmetric double exponential 

distribution with up and down jumps, the parameters A and B in equation 11H(4) are given by11F

9 
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where 

                                                 
8 Das (2002) derives the characteristic function for the case where η1=η2, the so-called Bernoulli signed 
exponential distribution. 
9 Bakshi and Cao (2004) derive the characteristic function for the case of upward only exponential jumps. 
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 In general, to perform the maximization of the conditional log-likelihood function 

[equation 12H(3)] initial values are required for the parameters to be estimated. In the case of 

the MRSRPJ and MRGPJ processes, the starting values of the parameters are obtained 

from the Bernoulli mixture of normal densities introduced by Ball and Torous (1983, see 

also Das, 2002, for an application to interest rates of a more general version of the 

algorithm). The numerical integration is performed by the Gauss-Legendre quadrature 

method. 

 

5. MLE Results  
In this Section, first the parameters of the proposed implied volatility processes are 

estimated and the results are discussed. Then, the robustness of the results is checked. A 

subtle point should be noticed. The parameters of the GBMP/GBMPJ are estimated by 

using the density of the log-returns while the parameters of the other processes have been 

estimated using the density of the level of volatility. This does not allow direct 

comparison of the maximized log-likelihood values across the estimated processes for any 

given data set. In addition, for any given process, the maximized log-likelihood values 

cannot be compared directly across the various data sets since the sample sizes are 

different. To deal with the first issue, the following Proposition is developed. 

Proposition 1. Let log t
t

t

Vx
V

τ
τ

+
+

⎞⎛
= ⎟⎜

⎝ ⎠
, ( ) ( )| , , | ,t t t tg x V f V Vτ τ+ +Θ Θ  be the conditional 

probability density functions of the log-returns and levels of volatility, respectively and 
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=

ℑ = Θ∑ . Then,  
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1 1
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R t t t
t t

V f V Vτ τ+ +Θ
= =

ℑ = + Θ∑ ∑  (16) 

Proof. It follows directly from the rule of change of variables for probability density 

functions. 
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To address the second issue, the maximised log-likelihoods are standardised by 

dividing with (T-1).  

5.1 Results & Discussion 

Tables 3-10 show the MLE results for VIX, VXO, VXN, VXD, VSTOXX, VDAX, VX1 

and VX6, respectively. Within the jump diffusion processes, we also consider the cases 

where only up jumps are allowed since this was a common assumption in the previous 

literature. Hence, we study the MRGPJ and the MRSRPJ augmented by only up jumps 

(MRGPUJ and MRSRPUJ, respectively). For each one of the processes under scrutiny, 

the estimated parameters, the t-statistics (within the parentheses), the Akaike Information 

Criterion (AIC), the Bayes Information Criterion (BIC), and the maximised log-likelihood 

values ℑ  (unstandardised and standardised with the number of observations) are reported; 

ℑ  is reported in terms of the density of the levels of volatility by applying Proposition 1. 

The likelihood ratio test (LRT) is also used to compare the goodness-of-fit of nested 

models. The LRT results support the ranking obtained from the other criteria; they are not 

reported due to space limitations. 

We can see a number of points with interesting implications12F

10. First, all parameters 

are significant at a 1% level of significance; the only exception appears in the VXN case 

where most of the estimated parameters are not statistically significant. This may be 

attributed either to the nature of the Nasdaq100 index (technology index), or to the fact 

that the VXN sample size that is employed for the MLE is the smallest among all samples; 

the distribution of the t-statistic as well as the properties of the ML estimators hold 

asymptotically. 

Second, we find that the best model is the GBMPJ. The worst model is the MRGP. 

Depending on the data set, the MRSRPJ model is either the second or third best model 

despite the fact that the mean reversion and the up and down jumps are statistically 

significant. These results are confirmed by all statistical criteria. Interestingly, the 

standardised ℑ  value shows that the best fit of the GBMPJ is obtained for VXO and the 

worst for VX1. 

                                                 
10 Our results cannot be compared directly with those found in the earlier literature on the properties of the 
instantaneous volatility. This is because the latter is developed in a two-dimensional (stochastic volatility 
option pricing) context where the underlying asset price and volatility are modeled jointly; the impact of the 
joint estimation on the estimated parameters of the volatility process cannot be filtered out. 
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Third, the addition of mean-reversion decreases the goodness-of-fit despite the fact 

that the mean reversion parameter is statistically significant per se; this holds for both the 

diffusion/jump diffusion models. Fourth, all jump diffusion models outperform their 

diffusion counterparts 13F

11. This implies that the implied volatility presents jumps, i.e. it has 

large movements that cannot be explained by diffusion models. In particular, in the mean 

reverting jump diffusion processes, these jumps are both upwards and downwards and 

they are asymmetric; in all cases the mean size and the probability of the up jump is 

greater than those of the down jump. Along these lines, it is also informative to compare 

the estimated parameters in the cases where only up jumps are allowed (MRGPUJ and 

MRSRPUJ) with the cases where down jumps are also allowed (MRGPJ and MRSRPJ). 

In the former case, we can see that the intensity λ is much smaller. The mean jump sizes, 

the speed of mean reversion and the volatility of volatility are greater. These results also 

suggest the presence of down jumps in the data, as well. This is due to the following 

reason. Suppose that the occurrence of down jumps is not modelled, yet down jumps do 

occur. Then, conditional on an upward jump, the mean reversion has to increase so as the 

process to revert to its long run mean. By the same token, the volatility of volatility has to 

increase so as to capture the down jumps. 

Fifth, there is interplay between jumps, the characteristics of mean-reversion 

(speed and long-run average), and the volatility of volatility. In particular, the introduction 

of jumps decreases the volatility of volatility (see also Das, 2002, for similar result in the 

interest rate literature). This implies that jumps account for a substantial component of σ, 

as expected intuitively. This also explains why the GBMP model provides implausible 

values of volatility (in most of the cases above 70%). On the other hand, the incorporation 

of jumps increases the speed of mean reversion (κ), and decreases the long-run average 

volatility (θ). Therefore, jumps cannot substitute the speed of mean-reversion in implied 

volatilities. This is in contrast to the results found in the interest rate literature where the 

incorporation of jumps decreases the speed of mean reversion (see e.g., Das, 2002). 

Finally, within each class of models several interesting points also arise. Within 

the class of diffusion processes, the MRSRP performs better than the MRGP. Similarly, 

the MRSRPPJ performs better than the MRGPJ. Interestingly, the intensity (λ) increases 

                                                 
11 Exceptions occur in the cases of VXO, VXN, VXD, VDAX, and VX1 where the MRSRP performs better 
than the MRGPUJ. 
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dramatically in the MRGPJ case compared with the MRSRPPJ; for instance, in the case of 

VIX the intensities are 256 and 34 per year, respectively. This again implies that the 

MRGPJ model is mis-specified since it cannot disentangle the continuous from the 

abnormal movements of the implied volatility indices. Therefore, within the class of jump 

diffusion models, a more complex volatility structure can account for the heavy tails of the 

volatility distribution in preference to the jump intensity. The out-performance of the 

square-root processes in both the diffusion and jump-diffusion cases can be attributed to 

the empirical fact that the variability of implied volatility depends on the level of implied 

volatility (see Jones, 2003). 

The general patterns that have been discussed above appear in all implied volatility 

indices despite the fact that these cover different time periods. Therefore, our results are 

robust in the sense that they do not depend on a particular data set and the time period 

under scrutiny. 

5.2 Robustness of the MLE Results 

To ensure that the obtained parameters correspond to a global rather than a local 

maximum of the log-likelihood, three rounds of estimation were conducted for each series 

with different starting values. Moreover, the accuracy of the obtained 

MRSRPJ/MRSRPUJ ML estimates was examined by Monte-Carlo simulation. To this 

end, the obtained ML estimates were used as the true parameters. For each one of the two 

processes, 500 simulation runs were conducted with the same stream of random numbers. 

A number of implied volatility observations equal to the size of the sample where the 

original MLE was implemented were simulated. On each simulated path, MLE was 

performed. Then, the 500 obtained estimates were averaged and the standard deviation 

was calculated. A t-statistic tested the null hypothesis that the true parameter is equal to 

the (average) estimated parameter. The null hypothesis could not be rejected for either of 

the two processes. Due to space limitations these results are not reported. Therefore, the 

accuracy of the obtained ML MRSRPJ/MRSRPUJ estimates is confirmed. Finally, the 

issue of the possible existence of structural breaks in the data generating process was 

addressed for each index by performing the MLE for various sub-samples and 

investigating whether the ranking of the processes had been altered. No structural break 

was detected. 
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6. Ranking the Processes: Evidence from the Volatility Futures 
In this Section, the alternative implied volatility processes are ranked according to a 

financial criterion. To this end, we use the data from the CBOE volatility futures on VIX. 

A volatility futures pricing model corresponds to each process. Then, the processes are 

ranked according to the pricing performance of the corresponding model in the volatility 

futures market. Given that data on the VIX volatility futures are available from 

26/03/2004 onwards, this application may also be viewed as a test of the out-of-sample 

performance of the econometrically estimated models on VIX. 

It should be noticed that the pricing of volatility futures is not model-free since 

VIX is not a tradable asset; Carr and Wu (2004a) have derived arbitrage bounds to the 

price of volatility futures by assuming that the index futures price has continuous paths. 

This is in contrast to the case of volatility/variance swaps that can be replicated by trading 

in standard European options, assuming a general jump diffusion process for the evolution 

of the index futures price (see Carr and Wu, 2004b, 2004c, and Carr and Lee, 2005). 

Therefore, an assumption about the implied volatility process needs to be made in order to 

develop a volatility futures pricing model.  

6.1 The Volatility Futures Pricing Models 

Let Gt(V,T) denote the futures price at time t for a futures contract on V with maturity T. 

Under the risk-adjusted equivalent martingale measure Q, Gt(V,T) equals the conditional 

expected value of VT at time T; the expected value is conditional on the information up to 

time t, i.e. 

 ( , ) ( ),Q
t t TG V T E V t T= <  (17) 

Therefore, the corresponding expected value of volatility is required in order to 

price volatility futures under the alternative diffusion/jump diffusion processes. In the case 

of the MRGPJ and the MRSRPJ processes, the expected value of volatility is derived from 

the characteristic function since the conditional density function is not known in closed 

form. This is done by differentiating the characteristic function once with respect to s and 

then evaluating the derivative at s=0. 

13HTable 11 shows the expected value of volatility of each one of the eight processes 

under scrutiny. Interestingly, the expected value of volatility is the same under the MRGP 
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and the MRSRP. Similarly, the expected value of volatility is the same under the MRGPJ 

and the MRSRPJ. The expected value is also the same in the cases where only up jumps 

are considered. This is because the above-mentioned pairs of processes have the same 

drift; the expected value depends only on the characteristics of the drift (this is not the 

case for the higher order moments).  

The expected value under the GBMP resembles the cost-of-carry relationship for 

futures written on a tradable asset. The expected value under the MRSRP is the 

Grünbichler and Longstaff (1996) volatility futures model. A direct comparison between 

the diffusion and the jump diffusion formulae is possible; this is valid under the 

assumption that the estimates of the parameters that appear in both processes are the same. 

The comparison of the volatility futures model derived under the GBMPJ with that 

derived under the GBMP shows that the difference between the two model prices depends 

on the sign of the mean of the log jump (γ). In the case where γ>0 (γ<0), the GBMPJ 

futures price will be greater (smaller) than the GBMP price. In the case of the mean-

reverting diffusion/jump diffusion processes, we recall that ( )
1 2

1
( )

ppE y
η η

−
= − . Therefore, if 

E(y)>0, then the volatility futures price under the MRGPJ/MRSRPJ will be greater than 

the price delivered by its diffusion counterpart (MRGP/MRSRP).  

Finally, the pricing performance of the various models is expected to depend on 

the remaining time-to-maturity. As the time-to-maturity increases the futures price that 

corresponds to the mean-reverting processes (non-mean-reverting processes) tends to a 

constant (grows exponentially). Therefore, the “mean-reverting” volatility futures models 

are expected to perform worse as the time-to-maturity increases since they cannot capture 

the stochastic evolution of volatility. 

6.2 Pricing Performance: Results & Discussion 

The assessment of the pricing performance of the volatility futures models is done as 

follows. The parameters of the pricing models are the risk-adjusted parameters. These can 

be obtained either by calibration or by making an assumption about the market price of 

volatility/jump risk and then apply Girsanovs’ theorem (see Runggaldier, 2003, for the 

jump diffusion version). In the case of calibration, a natural approach would be to 

calibrate each model to the market futures prices of the shortest futures series. Then, the 

pricing performance of each model would be investigated for the remaining futures series. 
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To this end, a generalized non-linear least squares regression method was used (see also 

Bates, 1996, 2000). However, calibration is an ill-posed problem in the case of the jump-

diffusion processes under consideration. This is because there are more parameters to be 

estimated than the number of equations delivered by the first order conditions in the 

optimization method; these equations collapse to one equation (under-identified problem).  

Therefore, we have to resort to an assumption about the market price of the 

volatility/jump risk. Let G(T)t,i
M and G(T)t

A be the T-expiry i-model and market volatility 

futures prices, respectively (T=1,2,3, i=1,…,8) on date t. Let also , 2( ) ( )
( )

( )

M A
t i t

A
t

G T G T
G T

−  be the 

squared percentage pricing error on date t. For any given futures pricing model, the T-

expiry mean squared percentage pricing error is calculated for the shortest, second 

shortest, and third shortest contract; the averaging of the daily percentage pricing errors is 

done over the available observations for each one of the futures series. 14HTable 12 shows the 

mean squared percentage pricing errors for each one futures pricing model that 

corresponds to the processes of implied volatility under consideration. The results are 

reported for the shortest, second shortest, and third shortest contract. The market prices of 

the volatility/jump risk are assumed to be zero. Hence, the pricing performance of the 

various models is examined by using as inputs the estimated parameters obtained from the 

MLE under each process. 

We can see that under the financial metric the GBMPJ process performs best (for 

all three maturities) with the (driftless) GBMP following closely just as was the case with 

the econometric analysis of VIX. Moreover, the pricing performance of the models 

depends on the maturity of the contract; it decreases as we move to the more distant 

expiries. To confirm the robustness of our results to the choice of the value of the market 

price of volatility risk, pricing errors were calculated for a range of negative values of the 

volatility risk premium; negative values were chosen so as to be consistent with the 

empirical evidence that the volatility risk premium is negative (see e.g., Bakshi and 

Kapadia, 2003). We found that the ranking of the processes does not depend on the chosen 

values. This is in accordance with Daouk and Guo (2004) and Psychoyios and 

Skiadopoulos (2006) who found that the choice of the value of the volatility risk premium 

does not affect the pricing and hedging results, respectively. 
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7. Conclusions 
The accurate modeling of implied volatility in continuous time is important for option 

pricing and risk management. Yet, this topic has received limited attention, to date. The 

objective of this paper is to identify the process that describes well the evolution of 

implied volatility in continuous time. To this end, we have examined alternative affine 

specifications of the process that drives the dynamics of implied volatility in continuous 

time. Various diffusion and jump diffusion processes have been compared. A rich data set 

has been employed from the European and U.S. volatility derivatives markets; eight 

implied volatility indices and the recently introduced CBOE volatility futures were used. 

The alternative processes have been examined under both an econometric (conditional 

maximum likelihood) and a financial metric (CBOE volatility futures market). This 

research approach has enabled us to decide on whether the results are robust across 

different implied volatility indices, time periods, and metrics and therefore should 

constitute a solid basis for continuous-time financial applications. 

 We found that under both metrics, the simplest jump diffusion model à la Merton 

(1976) performed best followed closely by the simplest diffusion specification (geometric 

Brownian motion). The econometric results hold regardless of the implied volatility index 

under scrutiny. 

 The study has at least three implications. First, a diffusion model does not suffice 

to describe the dynamics of implied volatility. The addition of jumps is necessary. On the 

other hand, the mean reversion in implied volatilities is of second order importance. 

Second, the pattern of the behavior of implied volatility indices is the same across 

different European and US markets. It is not affected by the time horizon that they refer 

to, the time period under consideration, and the construction method that is used. Third, 

naïve models perform better than more complex models for volatility futures pricing 

purposes. This is in accordance with the results found in the standard options literature 

where the pricing models that are based on simpler assumptions about the evolution of the 

price of the underlying asset perform better than more “elegant” models (see e.g., Bakshi 

et al., 1997, Dumas et al., 1998). 

Future research should look at the presented specification of the implied volatility 

process by using alternative econometric techniques, e.g., regime switching models (see 

e.g., Daouk and Guo, 2004); yet, our approach suggests that there is no structural break in 
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the data generating process of volatility. In a second step, it is also worth investigating 

more complex specifications of the implied volatility process. For example, non-linear 

specifications of the drift/volatility structure in the spirit of Bakshi et al. (2005) could be 

examined in the presence of jumps in volatility. It may be the case that the presence of 

jumps removes any such non-linearities, as found in the interest rates literature (see e.g., 

Das, 2002). However, the non-linear specification makes the affine structure to be lost and 

it does not make possible the derivation of the characteristic function. This calls for an 

alternative econometric methodology. The jump intensity could also be allowed to depend 

on the level of volatility rather than being constant (see e.g., Wu, 2005). Alternative 

financial metrics (e.g., Value-at-Risk) should also be considered in order to rank the 

alternative implied volatility processes. 
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Implied Volatility Index Option 
Pricing 
model 

Underlying Asset Options used  Represents 

VXO  Merton 
(1973) 

S&P 100 4 puts and calls 
of 2 nearest to 30 

days expiries, 
with 2 strikes 

around an at-the-
money (ATM) 

point.  

The implied 
volatility of an 

ATM option with 
constant 30 

calendar days to 
expiry. 

, , ,VIX VXN VXD VSTOXX  Independent 
of model 

S&P 500, Nasdaq 
100, Dow Jones 
100, DJ EURO 

STOXX 50 

Out-of-the-
money (OTM) 

puts and calls of 
2 nearest to 30 
days expiries, 

covering a wide 
range of strikes.   

The square root of 
implied variance 
across options of 
all strikes, with 

constant 30 
calendar days to 

expiry.   

VDAX  Black’s 
model 
(1976) 

DAX 8 pairs of puts 
and calls of 2 
nearest to 45 
days expiries, 
with 4 strikes 

around an ATM 
point.   

The implied 
volatility of an 

ATM option with 
constant 45 

calendar days to 
expiry. 

1, 6VX VX  Merton 
(1973) 

CAC 40 4 calls of 2 
nearest to 31 
(185) days 

expiries, with 2 
strikes around an 

ATM point.  

The implied 
volatility of an 

ATM option with a 
constant 31 (VX1) 

and 185 (VX6) 
calendar days to 

expiry. 

Table 1: Synopsis of the methods that are used to construct the implied volatility indices under 

consideration. 
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Panel A: Implied Volatility Indices - Summary Statistics (Levels) 
 VIX  VXO VXN VXD VSTOXX VDAX VX1 VX6 

Starting Date 2/1/1990 2/1/1986 2/2/2001 6/10/1997 4/1/1999 2/1/1992 14/10/97 14/10/97
# Observations 3586 4608 787 1625 1327 3070 1614 1613 
Mean  0.20 0.21 0.42 0.24 0.30 0.22 0.26 0.25 
Std. Dev. 0.06 0.07 0.12 0.06 0.09 0.09 0.08 0.06 
Skewness 0.85 1.16 0.08 0.78 1.34 1.15 1.20 0.95 
Kurtosis 3.62 5.18 2.05 3.45 4.11 4.08 4.24 4.69 
         

Panel B: Implied Volatility Indices – Summary Statistics (First Differences) 
 VIX  VXO VXN VXD VSTOXX VDAX VX1 VX6 

Mean  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Std. Dev. 0.01 0.01 0.02 0.01 0.02 0.01 0.04 0.02 
Skewness 0.55 2.15 0.19 0.58 1.40 0.76 0.68 0.71 
Kurtosis 8.78 39.77 6.93 6.95 17.34 10.42 15.19 19.12 
First Order Autocorrelation -0.038* -0.078* 0.029 -0.016 -0.038 -0.058* -0.373* -0.384* 

         

Panel C: CBOE Volatility Futures: Summary Statistics 
 Levels First Differences   

 
Shortest 

Series 
Second 

Shortest
Third 

Shortest
Shortest 

Series 
Second 

Shortest
Third 

Shortest 
  

# Observations 307 306 268 306 305 267   

Mean  0.15 0.17 0.17 0.00 0.00 0.00   

Std. Dev. 0.02 0.02 0.02 0.00 0.00 0.00   

Skewness 0.35 0.28 0.20 1.77 0.64 0.20   

Kurtosis 2.23 1.91 1.75 11.09 7.83 6.73   

First-Order Autocorrelation    -0.006 0.035 -0.137*   

 

Table 2: Summary statistics: Implied Volatility indices (levels and daily differences) and CBOE 

Volatility futures data on VIX (shortest, second shortest, third shortest series – levels and daily 

differences). The data for the implied volatility indices have been collected from the introduction of 

each one of the indices up to 24/03/2004. The data for the volatility futures data on VIX have been 

collected from 26/03/2004 up to 17/06/2005. The asterisk denotes statistical significance at a 5% 

confidence level. 
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 Diffusion Processes  Jump Diffusion Processes 

Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ
0.4083   -0.8333 

μ (1.6903) - -  (-3.3155) - - - - 
4.9297  4.7457   7.0253  8.4433  6.5453  7.4405  

k - (5.8680) (5.8359)  - (7.9735) (30.4745) (7.9786) (9.2933) 
0.2018  0.2010   0.1374  0.1210  0.1497  0.1538  

θ - (18.6286) (19.6533)  - (7.5593) (17.0505) (17.7136) (21.6877) 
0.8927  0.2014  0.4145   0.6662  0.0885  0.1315  0.3268  0.3537  

σ (84.6468) (83.7275) (83.8146)  (13.0338) (8.3235) (77.7601) (39.4030) (60.3589) 
 74.5825  256.4492  71.1278  34.7677  18.9503  

λ - - -  (1.9569) (3.5268) (7.9360) (4.5514) (4.3467) 
 0.0143  

γ - - -  (2.4456) -  - - - 
 0.0659  

δ - - -  (6.2621) - - - - 
 0.5435  0.7944  

p - - -  - (7.0056) 1  (10.4569) 1  
 0.0086  0.0105  0.0151  0.0173  

1/η1 - - -  - (8.8749) (13.2825) (8.8639) (7.9531) 
 0.0066  0.0143  

1/η2 - - -  - (5.4747) - (4.3912) - 
AIC -22,296 -21,200 -21,946  -22,570 -21,946 -21,696 -22,266 -22,228 
BIC -22,283 -21,181 -21,927  -22,539 -21,903 -21,665 -22,223 -22,197 

ℑ  11,150 10,603 10,976   11,290 10,980 10,853 11,140 11,119 

( )/ 1nℑ −  3.1102 2.9576 3.0616  3.1492 3.0628 3.0273 3.1074 3.1015 
 

 

Table 3: VIX: Parameter estimation and their corresponding t-statistic (in parentheses) for the diffusion and 

jump diffusion processes. The Information Criterion and (AIC), the Bayes Information Criterion (BIC), and 

the Log-Likelihood are also reported. The estimation period is from 2/01/1990 to 24/03/2004. 
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 Diffusion Processes  Jump Diffusion Processes 

Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ
0.4192   -0.7710 

μ (1.9524) - -  (-4.3054) - - - - 
5.3942  4.9225   6.0211  8.5424  6.9146  8.4111  

k - (6.9467) (6.7125)  - (12.8327) (43.2010) (10.0023) (12.1524) 
0.2145  0.2138   0.1620  0.1501  0.1574  0.1693  

θ - (20.7327) (21.6975)  - (15.2341) (22.7930) (21.8533) (29.9071) 
0.9174  0.2387  0.4540   0.6178  0.0895  0.1604  0.3002  0.3743  

σ (95.9681) (94.8588) (94.9907)  (27.3371) (27.7992) (105.8486) (44.7147) (63.0857) 
 75.2667  201.1133  33.4097  55.2801  13.9803  

λ - - -  (5.2891) (11.5511) (8.5509) (7.5369) (5.5614) 
 0.0154  

γ - - -  (3.7403) - - - - 
 0.0754  

δ - - -  (13.7406) - - - - 
 0.5134  0.6953  

p - - -  - (15.5880) 1  (14.4348) 1  
 0.0113  0.0192  0.0169  0.0277  

1/η1 - - -  - (18.7457) (11.7861) (12.4523) (9.0053) 
 0.0089  0.0161  

1/η2 - - -  - (13.2364) - (8.1050) - 
AIC -27,862 -25,698 -27,104  -29,156 -27,692 -27,018 -28,040 -27,830 
BIC -27,850 -25,679 -27,085  -29,125 -27,649 -26,987 -27,997 -27,799 

ℑ  13,933 12,852 13,555   14,583 13,853 13,514 14,027 13,920 

( )/ 1nℑ −  3.8876 3.5859 3.7821  4.0689 3.8652 3.7706 3.9138 3.8839 
 

 

Table 4: VXO: Parameter estimation and their corresponding t-statistic (in parentheses) for the diffusion 

and jump diffusion processes. The Information Criterion and (AIC), the Bayes Information Criterion (BIC), 

and the Log-Likelihood are also reported. The estimation period is from 2/01/1986 to 24/03/2004. 
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 Diffusion Processes  Jump Diffusion Processes 

Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ
-0.0750  -0.5426 

μ (-0.2314) - -  (-0.5206) - - - - 
2.2147  1.8302   2.1608  3.4241  1.9376  2.6763  

k - (1.8060) (1.7748)  - (1.5384) (2.8459) (1.7542) (2.4332) 
0.3806  0.4178   0.3449  0.3468  0.3695  0.3477  

θ - (5.3794) (6.4142)  - (2.0891) (6.8152) (5.1615) (6.7435) 
0.5727  0.2616  0.3798   0.4820  0.2150  0.2443  0.3496  0.3640  

σ (39.6270) (39.4201) (39.4604)  (2.8535) (10.2045) (34.1544) (31.5595) (36.8908) 
 99.9997  40.0174  5.6682  7.7714  2.7800  

λ - - -  (0.2587) (0.7383) (1.0473) (1.4256) (1.1275) 
 0.0045  

γ - - -  (0.6672) -  - - - 
 0.0309  

δ - - -  (0.8892) - - - - 
 0.5490  0.4378  

p - - -  - (1.2664) 1  (1.3714) 1  
 0.0168  0.0293  0.0351  0.0386  

1/η1 - - -  - (1.2978) (1.8510) (1.7453) (1.6814) 
 0.0163  0.0252  

1/η2 - - -  - (1.9840) - (1.7453) - 
AIC -4,414 -4,224 -4,352  -5,347 -4,288 -4,265 -4,372 -4,369 
BIC -4,405 -4,210 -4,338  -5,323 -4,255 -4,242 -4,340 -4,345 

ℑ  2,209 2,115 2,179   2,678 2,151 2,138 2,193 2,189 

( )/ 1nℑ −  2.8106 2.6910 2.7723  3.4075 2.7366 2.7195 2.7902 2.7855 
 

 

Table 5: VXN: Parameter estimation and their corresponding t-statistic (in parentheses) for the diffusion 

and jump diffusion processes. The Information Criterion and (AIC), the Bayes Information Criterion (BIC), 

and the Log-Likelihood are also reported. The estimation period is from 2/02/2001 to 24/03/2004. 
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 Diffusion Processes  Jump Diffusion Processes 
Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ

0.2956   -1.5370 
μ (0.9456) - -  (-2.5647) - - - - 

6.6559  6.7265   9.8184  9.1150  9.0769  9.4792  
k - (4.5528) (4.6803)  - (6.4060) (12.7875) (6.3722) (6.7368) 

0.2385  0.2376   0.1957  0.1766  0.1970  0.1979  
θ - (19.6561) (21.3593)  - (11.6560) (10.6615) (16.9805) (18.1749) 

0.7957  0.2050  0.3995   0.5094  0.1438  0.1624  0.3418  0.3468  
σ (56.9679) (56.1566) (56.1979)  (3.9600) (13.6866) (35.1637) (32.6790) (38.7023) 

 212.2382  100.7100  49.9911  27.4933  24.7722  
λ - - -  (1.1475) (2.1742) (2.8281) (2.4940) (2.6124) 

 0.0084  
γ - - -  (1.4158) -  - - - 

 0.0415  
δ - - -  (3.7760) - - - - 

 0.6105  0.9502  
p - - -  - (3.4103) 1 (9.2680) 1 

 0.0119  0.0123  0.0153  0.0156  
1/η1 - - -  - (5.9444) (5.2884) (5.0355) (4.9948) 

 0.0079  0.0166  
1/η2 - - -  - (3.2803) - (1.0178) - 
AIC -9,844 -9,555 -9,758  -10,677 -9,762 -9,737 -9,858 -9,861 
BIC -9,833 -9,539 -9,742  -10,650 -9,724 -9,710 -9,821 -9,834 

ℑ  4,924 4,780 4,882   5,343 4,888 4,874 4,936 4,935 

( )/ 1nℑ −  3.0320 2.9436 3.0062  3.2902 3.0099 3.0009 3.0395 3.0390 
 

Table 6: VXD: Parameter estimation and their corresponding t-statistic (in parentheses) for the diffusion 

and jump diffusion processes. The Information Criterion and (AIC), the Bayes Information Criterion (BIC), 

and the Log-Likelihood are also reported. The estimation period is from 6/10/1997 to 24/03/2004. 
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 Diffusion Processes  Jump Diffusion Processes 
Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSGPUJ

0.4351  -1.7871 
μ (0.9277) - -  (-4.1537) - - - - 

4.8028  5.3184  13.2346 15.6751 9.6566  10.6469  
k - (3.3372) (3.3946)  - (11.6877) (16.0767) (6.5836) (7.0949) 

0.3000  0.2996  0.1720  0.2095  0.2046  0.2183  
θ - (9.5409) (10.9136)  - (9.2511) (16.1404) (9.9314) (13.8151) 

0.8375  0.2822  0.4764  0.5394  0.1128  0.1843  0.3067  0.3697  
σ (56.1398) (55.6805) (55.6992)  (13.5302) (12.7196) (25.7743) (21.7294) (39.3090) 

99.8906  233.1253  78.0693  85.6988  40.4363  
λ - - -  (2.9256) (5.3390) (5.4009) (4.3990) (3.6958) 

0.0202  
γ - - -  (3.3463) - - - - 

0.0576  
δ - - -  (8.1031) - - - - 

0.7826  0.8285  
p - - -  - (17.6612) 1 (11.5063) 1 

0.0119  0.0173  0.0159  0.0195  
1/η1 - - -  - (9.5065) (9.3060) (8.1062) (6.8248) 

0.0110  - 0.0165  
1/η2 - - -  - (6.4732)  (3.8801) - 
AIC -7,378 -6,942 -7,226  -7,573 -7,386 -7,272 -7,466 -7,448 
BIC -7,367 -6,926 -7,210  -7,547 -7,350 -7,246 -7,430 -7,422 

ℑ  3,691 3,474 3,616   3,792 3,700 3,641 3,740 3,729 

( )/ 1nℑ −  2.7834 2.6199 2.7270  2.8594 2.7903 2.7459 2.8205 2.8122 
 

Table 7: VSTOXX: Parameter estimation and their corresponding t-statistic (in parentheses) for the 

diffusion and jump diffusion processes. The Information Criterion and (AIC), the Bayes Information 

Criterion (BIC), and the Log-Likelihood are also reported. The estimation period is from 4/01/1999 to 

24/03/2004. 
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 Diffusion Processes  Jump Diffusion Processes 
Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ

0.3120   -1.0467 
μ (1.5284) - -  (-5.2494) - - - - 

2.2772  2.1753   5.1353  4.1091  4.3868  5.8575  
k - (3.7390) (3.7031)  - (87.1684) (95.7415) (7.3239) (10.2716) 

0.2296  0.2229   0.1576  0.0862  0.1423  0.1486  
θ - (9.5908) (10.4636)  - (22.1287) (20.6334) (13.3190) (19.2789) 

0.7121  0.1900  0.3563   0.4496  0.0978  0.0930  0.2329  0.2779  
σ (78.3108) (77.8723) (77.9313)  (20.0012) (72.0869) (179.0919) (29.2241) (57.9741) 

 100.0000  107.6290  67.0833  62.5958  29.8565  
λ - - -  (4.8889) (9.1897) (13.6009) (6.7281) (6.4975) 

 0.0129  
γ - - -  (3.9813) -  - - - 

 0.0522  
δ - - -  (13.1137) - - - - 

 0.5484  0.6856  
p - - -  - (8.9674) 1  (11.8399) 1  

 0.0160  0.0126  0.0142 0.0167 
1/η1 - - -  - (16.5864) (20.4242) (11.4697) (10.2020) 

 0.0093  0.0121 
1/η2 - - -  - (22.5484) - (7.0980) - 
AIC -19,950 -18,477 -19,422  -21,269 -19,487 -19,086 -19,889 -19,779 
BIC -19,938 -18,459 -19,404  -21,239 -19,445 -19,056 -19,847 -19,749 

ℑ  9,977 9,242 9,714   10,639 9,751 9,548 9,952 9,895 

( )/ 1nℑ −  3.2508 3.0112 3.1652  3.4667 3.1771 3.1111 3.2426 3.2240 
 

Table 8: VDAX: Parameter estimation and their corresponding t-statistic (in parentheses) for the diffusion 

and jump diffusion processes. The Information Criterion and (AIC), the Bayes Information Criterion (BIC), 

and the Log-Likelihood are also reported. The estimation period is from 2/01/1992 to 24/03/2004. 
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 Diffusion Processes  Jump Diffusion Processes 
Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ

1.7636   -0.2336 
μ (2.3723) - -  (-1.5694) - - - - 

24.8323  24.9986  15.8909  20.9334  16.3983  21.9061  
k - (8.4796) (8.5560)  - (8.7761) (13.6715) (8.4947) (26.1470) 

0.2572  0.2570   0.1852  0.2096  0.2025  0.1939  
θ - (27.9724) (31.3129)  - (15.3561) (23.6205) (20.2394) (33.5075) 

1.8743  0.5774  1.0296   1.0135  0.1786  0.3715  0.4564  0.5052  
σ (56.7805) (54.0784) (54.0360)  (28.8598) (22.1648) (78.9908) (23.4670) (27.9841) 

 47.6852  152.7927  22.9904  85.6176  42.1697  
λ - - -  (7.3783) (9.2828) (10.8861) (7.0320) (9.9335) 

 0.0429  
γ - - -  (0.9634) -  - - - 

 0.2416  
δ - - -  (13.6018) - - - - 

 0.6530  0.6555  
p - - -  - (14.6191) 1  (13.0744) 1  

 0.0266  0.0551  0.0355 0.0491 
1/η1 - - -  - (11.8912) (6.9328) (8.4002) (25.7780) 

 0.0306  0.0408 
1/η2 - - -  - (8.1942) - (7.9158) - 
AIC -6,840 -6,263 -6,668  -7,890 -7,254 -6,550 -7,356 -6,692 
BIC -6,830 -6,247 -6,652  -7,863 -7,216 -6,523 -7,318 -6,665 

ℑ  3,422 3,135 3,337   3,950 3,634 3,280 3,685 3,351 

( )/ 1nℑ −  2.1216 1.9434 2.0688  2.4487 2.2529 2.0335 2.2846 2.0775 
 

 

Table 9: VX1: Parameter estimation and their corresponding t-statistic (in parentheses) for the diffusion and 

jump diffusion processes. The Information Criterion and (AIC), the Bayes Information Criterion (BIC), and 

the Log-Likelihood are also reported. The estimation period is from 14/10/1997 to 24/03/2004. 
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 Diffusion Processes  Jump Diffusion Processes 
Parameter GBMP MRGP MRSRP  GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ

0.7321   -0.5185 
μ (1.5266) - -  (-2.5193) - - - - 

17.4189  16.8043  6.6523  7.8561  7.3739  7.4687  
k - (7.4984) (7.4145)  - (5.2821) (59.5406) (5.5122) (69.9909) 

0.2429  0.2427   0.1999  0.2031  0.1982  0.9951  
θ - (33.8459) (34.7921)  - (17.1465) (26.0354) (19.5780) (39.6537) 

1.2700  0.3315  0.6372   0.4724  0.0873  0.0958  0.2046  0.1805  
σ (59.5305) (57.4619) (57.5411)  (17.5460) (17.0578) (40.6159) (17.6625) (315.7771) 

 91.2083  150.8600  55.3563  122.7977  52.3661  
λ - - -  (7.9672) (10.2950) (12.7496) (9.2603) (14.8853) 

 0.0126  
γ - - -  (1.2223) -  - - - 

 0.1158  
δ - - -  (14.8516) - - - - 

 0.5410  0.5640  
p - - -  - (14.7022) 1  (14.1569) 1  

 0.0176  0.0214  0.0193 0.0223 
1/η1 - - -  - (12.0346) (14.3580) (12.2437) (21.9923) 

 0.0168  0.0189 
1/η2 - - -  - (11.3449) - (9.7596) - 
AIC -8,470 -8,802 -9,034  -10,206 -10,044 -9,516 -10,092 -9,763 
BIC -8,460 -8,786 -9,018  -10,179 -10,006 -9,489 -10,054 -9,736 

ℑ  4,237 4,404 4,520   5,108 5,029 4,763 5,053 4,887 

( )/ 1nℑ −  2.6350 2.7388 2.8109  3.1765 3.1275 2.9621 3.1424 3.0389 
 

 

Table 10: VX6: Parameter estimation and their corresponding t-statistic (in parentheses) for the diffusion 

and jump diffusion processes. The Information Criterion and (AIC), the Bayes Information Criterion (BIC), 

and the Log-Likelihood are also reported. The estimation period is from 14/10/1997 to 24/03/2004. 
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Implied Volatility Process Expected Value 

t t t tdV V dt V dWμ σ= +  ( ) ( )T t
t T tE V V eμ −=  

( )t t tdV k V dt dWθ σ= − +  

( )t t t tdV k V dt V Wθ σ= − +  

 

( ) ( ) ( )[1 ]k T t k T t
t T tE V V e eθ− − − −= + −  

t t t t t tdV V V dW yV dqμ σ= + +  ( ) [ ]( ) ( ) exp( ) 1e T t T t
t T tE V V μ λ γ− + − −=  

( )t t tdV k V dt dW ydqθ σ= − + +  

( )t t t t tdV k V dt V dW ydqθ σ= − + +  

( ) ( )( ) ( ) ( )

1 2

1
(1 ) (1 )[ ]k T t k T t k T t

t T t

ppE V V e e e
k
λθ

η η
− − − − − − −

= + − + − −  

Table 11: Implied Volatility Processes and the corresponding expected value of volatility ( )t TE V  at time T 

formed at time t (t<T). 

 

 GBMP MRGP MRSRP GBMPJ MRGPJ MRGPUJ MRSRPJ MRSRPUJ
Shortest 0.0086 0.0094 0.0086 0.0063 0.0148 0.0292 0.0131 0.0161 

Second Shortest 0.0213 0.0184 0.0169 0.0131 0.0264 0.0512 0.0238 0.0282 
Third Shortest 0.0335 0.0326 0.0305 0.0145 0.0363 0.0630 0.0344 0.0372 

Table 12: Ranking of the Alternative Processes according to their pricing performance in the CBOE 

Volatility futures Market. The mean squared percentage pricing error , 2

1

( ) ( )1 ( )
( )

M AN
t i t

A
t t

G T G T
N G T=

−
∑  over the 

period 26/03/2004-17/06/2005 is reported where G(T)t,i
M and G(T)t

A be the T-expiry i-model and market 

volatility futures prices, respectively (i=1,…,8), and N is the number of observations. Zero volatility/jump 

risk premia have been assumed. 
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Figure 1: Evolution of the implied volatility indices VIX, VXO, VXN, VXD, VDAX, VSTOXX, 

VX1, VX6 over time (from the introduction of the index up to 24/03/2004). 
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Appendices 

Appendix A1: Derivation of the characteristic function for the MRGPJ 

Das (2002) shows that the conditional characteristic function ( , ; ) ( ; )tisV
t tF V s E e Vττ += Θ of 

the MRGPJ must satisfy the following Kolmogorov backward differential equation  

 [ ]
2

2
2

10 ( ) ( ) ( )
2t t t

t t

F F Fk V F V y F V
V V

θ σ λ
τ

∂ ∂ ∂
= − + − + Ε + −
∂ ∂ ∂

 (18) 

subject to the boundary condition  

 ( , 0; ) tisV
tF V s eτ = =  (19) 

where 1i = − . Differentiating the characteristic function given by equation 15H(4) yields 

 

( )

2
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VV

F BF

F B F
F F A VBτ τ τ

=

=
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 (20) 

where the subscripts denote the corresponding partial derivatives. Replacing equations 

16H(20) in equation 17H(18) and rearranging yields 

 ( ) 2 21 1 0
2

yB
tV kB B k B B A eτ τθ σ λ⎛ ⎞⎡ ⎤− − + + − + Ε − =⎜ ⎟⎣ ⎦⎝ ⎠

 (21) 

where E(·) is the expectation operator over the asymmetric double exponential 

distribution. Since 0tV ≠ , the expressions in the parentheses in equation 18H(21) must equal 

zero. Therefore we obtain the following ordinary differential equations (ODEs) 

 0kB Bτ− − =  (22) 

 2 21 1 0
2

yBk B B A eτθ σ λ ⎡ ⎤+ − + Ε − =⎣ ⎦  (23) 

Also, 

 1 2 1 2
1 20 0

1 2

1 1 1y yyB yB yBe p e e dy q e e dy p qη η η ηη η
η η

+∞ +∞−⎡ ⎤Ε − = + − = + −⎣ ⎦ − Β + Β∫ ∫  (24) 

Equations 19H(12) and 20H(13) are the solutions of the ODEs 21H(22) and 22H(23), respectively. The 

ODEs are solved subject to the boundary conditions ( 0; ) 0A sτ = = , ( 0; )B s isτ = =  that 

are implied by equation 23H(19). 
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Appendix A2: Derivation of the characteristic function for the MRSRPJ 

Bakshi and Cao (2004) show that the characteristic function of the MRSRPJ must satisfy 

the following Kolmogorov backward differential equation  

 [ ]
2

2
2

1( ) ( ) ( ) 0
2t t t t

t t

F F Fk V V F V y F V
V V

θ σ λ
τ

∂ ∂ ∂
+ − + − + Ε + − =
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 (25) 

subject to the boundary condition given by equation 24H(19). Following the same steps as in 

Appendix A1 yields the following ODEs 

 

 
2 21 0

2
kB B Bτ σ− − + =  (26) 

 1 0yBk B A eτθ λ ⎡ ⎤− + Ε − =⎣ ⎦  (27) 

Using equation 25H(24), equations 26H(14), and 27H(15) are the solutions of the ODEs 28H(26) and 29H(27), 

respectively. The ODEs are solved subject to the boundary conditions ( 0; ) 0A sτ = = , 

and ( 0; )B s isτ = = . 
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