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Abstract

Several recent studies have studied the use of predictive variables in enhancing asset al-

location, focusing mainly on various business cycle indicators. While the statistical evidence

is mixed, they have found that even small levels of predictability from a statistical viewpoint

can have a substantial effect on both the investor’s portfolio decision as well as portfolio per-

formance. This study is one of the first to focus on the use of market variables. We use the

VIX, open interest and hedging pressure on our base assets, all of which allow us to exploit the

linkages between spot and derivatives markets. These variables have been studied separately

by both academics and practitioners, but their linkages have not been examined before. Using

the S&P 500, gold and Treasury bond index as our base assets, we study the performance of

these variables by examining both the out of sample performance of unconditionally efficient

portfolios based on our predictive variables as well as their in-sample performance using a

statistical test. We find that different sets of variables have predictive power in bear and bull

markets. Our trading strategies can successfully time the market and avoid losses during the

collapse of the ‘dot.com’ bubble in the second half of 2000, as well as during the earlier bull

run. The in-sample results confirm our out of sample experiments with p-values of less than

1% in all cases. The performance of the strategies deteriorates considerably if we remove any

of the predictive variables, indicating that it is the correlations between these variables that

drives the strategies.

JEL Classification: C12, C32, G11, G14
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1 Introduction

The economic value of return predictability has been the focus of much recent research.

While the statistical evidence is mixed, several studies, for example Kandel and Stambaugh

(1996), Campbell and Vicera (2001), Avramov and Chordia (2006), or Abhyankar, Basu,

and Stremme (2005), have found that even small levels of predictability from a statistical

viewpoint can have a substantial effect on both the investor’s portfolio decision as well as

portfolio performance. Almost all of these studies have focused on predictive variables that

are closely linked to the business cycle such as dividend yield and various term structure and

macroeconomic variables. This paper focuses on the use of market variables that exploit the

linkages between spot, futures and derivatives markets.

Spot and futures market linkages are exploited by using open interest and hedging pressure as

the predictive variables. Hedging pressure is defined as the number of long futures contracts

divided by the total number of futures contracts and may be regarded as a proxy for non-

marketable risks. In an incomplete market the non-marketable risk fraction affects expected

returns on assets, as noted by De Roon, Nijman, and Veld (2000). This result is similar to

the CAPM with non-tradable assets as discussed in Mayers (1976). The effect of hedging

pressure in futures markets has been extensively investigated. For example, Bessembinder

(1992) finds that hedging pressure has considerable effect on currency futures risk premia.

He suggests that the effects of hedging pressure in this market is larger than that predicted

by theoretical models, as firms hedge in the currency markets for a variety of reasons beyond

that predicted by theoretical models such as the CAPM with non-traded assets. In recent

years hedge funds have become active players in the futures markets and their activities

could influence expected returns in futures and spot markets. De Roon, Nijman, and Veld

(2000) have documented that hedging pressure has predictive ability for spot markets and

our study is the first to explore its effect on asset allocation.

The linkages between the derivatives and spot markets are exploited using the VIX index,
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a proxy for implied volatility. There is considerable recent evidence1 that volatility timing

has large economic benefits. However all of these studies have used various statistical or

econometric proxies for volatility such as realized volatility. Various studies find that im-

plied volatility is a good predictor of future volatility and the VIX index is used by several

investment firms in their asset allocation decisions. A recent study by Connolly, Stivers, and

Sun (2005) finds that the use of implied volatility as a predictive variable could significantly

improve stock-bond diversification.

We study the effect of these variables on market timing, and our risky base assets are the

S&P 500, a Treasury bond index, and Gold. In addition we also have a conditionally risk

free asset, the Fed Funds rate which may also be regarded as a very short term T-bill.

Our predictive variables are the level of the VIX, and for each base asset the corresponding

futures market open interest and hedging pressure. While hedging pressure is a directional

indicator, open interest measures the size of the outstanding position. Our data is at a

weekly frequency.

Our dynamic strategies are unconditionally efficient minimum variance or maximum return

strategies. This focus on unconditionally efficient strategies, as opposed to conditionally

efficient strategies which have been employed in most other studies, including Fleming,

Kirby, and Ostdiek (2001), and Fleming, Kirby, and Ostdiek (2003), is an important aspect

of our analysis. Unconditionally efficient strategies are theoretically optimal (Hansen and

Richard 1987), utilize the predictive information more effectively (Abhyankar, Basu, and

Stremme 2005) and also exhibit a ‘conservative response’ to extreme values of the predictive

variables (Ferson and Siegel 2001), unlike unconditionally efficient strategies that tend to

take extreme long or short positions.

We first investigate whether out-of-sample, these linkages predict extreme market movements

1For example Fleming, Kirby, and Ostdiek (2001), and Fleming, Kirby, and Ostdiek (2003).
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and thus help avoid losses in market crashes or periods of high volatility2. We find that pure

market timing strategies based on these predictive variables would not have incurred any

significant losses during the collapse of the ‘dot.com’ bubble in late 2000. These strategies

seem to allow asset managers to ‘de-couple’ their portfolios from the business cycle during

a bear market (with betas between 0.2 and 0.5) and thus successfully time the market, with

a management fee of over 1,100 basis points. The superior performance of these strategies

appears to be a bear market phenomenon as the corresponding out of sample strategy dur-

ing the earlier bull market is a high beta strategy that does not outperform the index. The

performance of the strategies deteriorates considerably if we remove any of the predictive

variables, indicating that it is the correlations between these variables that drives the strate-

gies. Adding gold as an additional hedge together with its own hedging pressure and open

interest further improves the performance of timing strategy during the bear market, with

the management fee rising to almost 1300 basis points.

The long run performance of these bear market strategies confirms the out of sample findings.

The minimum variance pure market timing strategy using the S&P together with the VIX

and its own hedging pressure and open interest as predictive variables underperforms the

index over the 1992-2000 period but significantly outperforms it from the end of 2000 to

the end of 2005. Investing in the market timing strategy would have yielded a total return

of around 400%, while the index had a total return of around 100%. The strategy is low

beta (0.34) and high alpha (8.4%). The maximum return strategy matches the index over

the first period and achieves a total return of over 1,000% with an alpha of 15.2%. It is

however significantly more volatile than the minimum variance strategy and is reflected in

the lower management fee of 10.2 percentage points of annual return as management fee for

this strategy relative to 18.8 percentage points for the minimum variance strategy. Adding

gold and its predictive variables improves the performance of the strategies somewhat, but

2We focus on two sample periods for our out sample analysis, the first being the bull run starting at the

end of 1992 until April 2000 and then from April 2000 until the end of the sample period (September 2005).
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overall the gains are of the same order of magnitude as before.

We next see whether it is possible to benefit from these strategies in a bull run. An out of

sample strategy using S&P together with Treasury bond index with the VIX, and hedging

pressure and open interest on both assets in the first period achieves a annual return of 60%,

an alpha of 42% and a management fee of 16.6 percentage points. This strategy does not

perform well over the second period indicating that it is a bull market strategy.

To assess the statistical significance of our results, we use a test developed in Abhyankar,

Basu, and Stremme (2005). This test is based on the difference in the slope of the efficient

frontiers with and without the optimal use of predictive information. As this test has a

known statistical distribution (both in finite sample as well as asymptotically), we can assess

whether the expansion of the frontier due to predictability is statistically significant or just

a product of sampling error. The in-sample results confirm our out of sample experiments.

In our first period, the VIX together with hedging pressure and open interest on the S&P

and gold does not significantly expand the investor’s opportunity set with p-values between

8 and 11%. In contrast in the second period the Sharpe ratios of the dynamic strategy

rise sharply with the difference in Sharpe ratios being significant at the 1% level both for

the S&P by itself and the S&P together with gold. Conversely in the first period the VIX

together with hedging pressure and open interest on the S&P and the bond index leads to

a Sharpe ratio of 2.43, the difference having a p-value of 0.

The remainder of this paper is organized as follows. Section 2 describes our methodology.

The results of our empirical analysis are presented in Section 3. Section 4 concludes.

2 Measuring and Exploiting Predictability

In this section, we describe our methodology for measuring the economic gains and statistical

significance of return predictability. Details are provided in Appendix A.
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2.1 Dynamically Efficient Trading Strategies

Most of the existing literature on predictability and market-timing focuses on ‘myopically

optimal’ (conditionally efficient) strategies. In contrast, we focus here on ‘dynamically op-

timal’, i.e. unconditionally efficient strategies, as studied in Ferson and Siegel (2001), and

Abhyankar, Basu, and Stremme (2005). While the portfolio weights of the former are deter-

mined ex-post on the basis of the conditional return moments, the weights of the latter are

determined ex-ante as functions of the predictive instruments. In this sense, dynamically

optimal strategies are truly actively managed, while myopically optimal strategies can be

though of as sequences of one-step-ahead efficient static portfolios. Because dynamically

optimal strategies are designed to be efficient with respect to their long-run unconditional

moments, they display a more ‘conservative’ response to changes in the predictive instru-

ments3. This is an important consideration in particular with respect to transaction costs.

Studies that have examined market-timing using predictive variables such as the short rate

(Breen, Glosten, and Jagannathan 1989), or time-variation in the conditional Sharpe ratio

Whitelaw (2005), have employed naive portfolio strategies related to conditional efficiency. In

contrast, unconditionally efficient strategies optimally utilize both the predictive information

and the time-variation in the conditional Sharpe ratio (Cochrane 1999), and can significantly

outperform naive market-timing strategies.

We provide precise specifications of the weights of dynamically efficient strategies in Ap-

pendix A.1. In our empirical applications, we consider both efficient minimum-variance

strategies (designed to track a given target average return), as well as efficient maximum-

return strategies (designed to track a given target volatility). The former are particularly

useful in risk management as they provide portfolio insurance against crashes and periods of

excess volatility. The latter can be though of as ‘active alpha’ strategies, designed to achieve

maximum performance at a tolerable level of risk.

3See also Ferson and Siegel (2001) or Abhyankar, Basu, and Stremme (2005).
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2.2 Measuring the Value of Return Predictability

We employ a variety of performance criteria to measure the gains due to the optimal use of

return predictability. To assess the long-run performance of dynamically managed strategies

based on business cycle and sentiment indicators, we use a variety of standard ex-post port-

folio performance measures. These include Sharpe ratios, Jensen’s alpha, and information

ratios.

Measures of Statistical Significance

To capture the incremental gains due to the optimal use of predictive information, we com-

pare the performance of optimally managed portfolios with that of traditional ‘fixed-weight’

strategies, i.e. those for which the weights do not depend on the instruments). We wish

measure the extent to which the optimal use of predictive information expands the efficient

frontier, and hence the opportunity set available to the investor. Because the location of

the global minimum-variance (GMV) portfolio is virtually unaffected by the introduction of

predictive variables (see also Figure 1), we use the asymptotic slope of the frontier (i.e. the

Sharpe ratio relative to the zero-beta rate associated with the mean of the GMV) as such a

measure. Because we can show that the difference in (squared) slopes of the frontiers with

and without the optimal use of predictability has a known (χ2) distribution, we are able to

assess the statistical significance of any gains due to predictability. A precise definition of

our test statistic is given in Appendix A.2.

Measures of Economic Value

In addition to our statistical tests, we also employ a utility-based framework to assess the

economic value of return predictability. Following Fleming, Kirby, and Ostdiek (2001), we

consider a risk averse investor whose preferences over future wealth are given by a quadratic

von Neumann-Morgenstern utility function. Consider now an investor who faces the decision

whether or not to acquire the skill and/or information necessary to implement the active

portfolio strategy that optimally exploits predictability. The question is, how much of their
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expected return would the investor be willing to give up (e.g. pay as a management fee)

in return for having access to the superior strategy? Put differently, by how much does

the return on the inferior strategy have to be increased to make the investor indifferent

between the optimal and the inferior strategy. A precise definition of this premium is given

in Appendix A.3.

3 Empirical Analysis

3.1 Data Description

As base assets, we use weekly returns on the S&P 500, a Treasury bond index, and gold.

The data are obtained from the CBOE (www.cboe.com). Returns are calculated based on

closing prices and we record them on the date they are made public. For the return on the

risk-free asset we use the Federal Funds rate.

We use two types of predictive instruments. The first one is the VIX, a derivative market

indicator which aggregates implied volatilities of S&P 500 (SPX) index options. Second, for

each base asset, we include two futures market indicators, namely open interest and ‘hedging

pressure’. Open interest is defined as the total of all futures contracts entered into and not

yet closed out by an offsetting transaction. The aggregate of all long open interest is equal

to the aggregate of all short open interest. Hedging pressure is defined as total commercial4

long positions divided by the sum of long and short commercial positions. All data are

4When an individual reportable trader is identified to the Commission, the trader is classified either as

‘commercial’ or ‘non-commercial’. All of a trader’s reported futures positions in a commodity are classified

as commercial if the trader uses futures contracts in that particular commodity for hedging as defined in the

Commission’s regulations (1.3(z)). A trading entity generally gets classified as a ”commercial” by filing a

statement with the Commission (on CFTC Form 40) that it is commercially “...engaged in business activities

hedged by the use of the futures or option markets”.
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obtained from the CFTC web site (www.cftc.gov).

3.2 Empirical Analysis

We estimate a linear predictive model of the form,

( Rt − rf1 ) = ( µ̄− rf1 ) + B · Zt−1 + εt, (1)

where Zt−1 is the vector of (lagged) predictive instruments, and Rt is the vector of risky

asset returns. We assume that the residuals εt are serially independent and independent of

Zt−1. This implies that the conditional variance-covariance matrix Σ does not depend on

Zt−1. However, because we estimate (1) jointly across all assets, we do not assume the εt to

be cross-sectionally uncorrelated, i.e. we do not assume Σ to be diagonal.

In-Sample Results

We focus on two sample periods, the first covering the period from October 1992 until

April 2000, and the second covering the period from April 2000 until the end of our sample

period (September 2005). The former captures the bull run leading up to and including the

‘dot.com’ bubble, while the latter covers the subsequent collapse of the bubble. The results

of our in-sample estimation are reported in Tables 1 and 2, respectively. We first investigate

pure market timing, using only the S&P 500 and the risk-free asset (Panel B1 in Tables 1

and 2). Next, we add either the bond index or gold5 (Panel B2).

As predictive instruments we include the level of the VIX, and for each set of assets the

corresponding open interest and hedging pressure variables. For the S&P alone over the first

sample period (Table 1) these variables do not possess enough predictive power (with an R2

of only 1.7%). This is reflected by our statistical test where, although the Sharpe ratio rises

from 0.86 to 1.27, the p-value is only 8%. When we add the bond index, we find that the

5The return on gold is derived from the quoted price per troy ounce of Gold Bullion.
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Sharpe ratio increases to 2.43, the difference having a p-value of 0. The maximal R2 in this

case is also considerably higher at 5.3%.

The in-sample results are quite different in the second sample period (Table 2). For the S&P

alone, the R2 rises sharply to 4.6%, and the Sharpe ratios increases from 0.25 to 1.62 (with

a p-value of less than 1%). The maximal R2 rises to 7.23% when gold is added to the asset

universe, with Sharpe ratios more than tripling from 0.56 to 2.09 (the change being highly

significant with a p-value of almost zero).

To illustrate the overall effect of our predictive variables, we also estimated the model on the

full sample (from 1992 to 2005), using all three assets. Figure 1 shows the efficient frontiers

with (solid line) and without (dashed line) the optimal use of predictive information.

3.3 How to Beat a Bear Market

Given the in-sample results it is natural to ask whether the increased predictive power of

the instruments during the bear market could have been exploited by portfolio managers.

We thus conduct an out-of-sample experiment, estimating the predictive model using data

until April 2000 (pre-dating the collapse of the ‘dot.com’ bubble by several months), then

constructing dynamically efficient portfolio strategies on the basis of the model estimates,

and studying their performance over the remainder of the sample period. We focus here on

strategies that are designed to minimize volatility at a given level of mean return, as we are

interested in avoiding losses during this period. The results are reported in Panel B of Table

3.

We first consider a market timing strategy with the S&P 500, using the VIX, and hedging

pressure and open interest on SPX futures as predictive variables. The fixed-weight strategy

mirrors the decline of the S&P over this period, with a mean return of -0.75% per annum

and a Sharpe ratio of -0.29. Our dynamically optimal strategy on the other hand has a much

higher mean of 9.69% with a Sharpe ratio of 0.60. It achieves an (annualized) alpha of 8%
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relative to the S&P by successfully ‘de-coupling’ from the market index (with a beta of only

0.21). An investor with a risk aversion coefficient of 5 would be willing to pay a management

fee of over 1,100 basis points per annum to switch to this strategy.

The cumulative returns on both strategies, and the portfolio weights of the dynamic strategy,

are shown in Panel (A) of Figure 2. Even using only market-timing, the dynamic strategy

avoids sharp losses during the collapse of the ‘dot.com’ bubble and, and although designed

to minimize variance, has a buy-and-hold return of over 50% over the 2000-2005 period,

while the S&P sustains losses of over 20% during this period. The strategy, as illustrated

by the portfolio weight shown in the bottom part of the figure, is very much a ‘long-short’

strategy and avoids the crash by shorting the S&P.

When we add gold as an additional asset, and include its hedging pressure and open interest

as predictors, the performance of the strategies improves further, with the mean of increasing

to 10.2% and the Sharpe ratio rising to 0.69. Although designed to minimize variance, the

strategy is again a low-beta, high-alpha strategy (with a beta of 0.28 and an alpha of

8.9%). The management fee now increases to almost 1,300 basis points. The corresponding

cumulative returns and portfolio weights are shown in Panel (C) of Figure 2.

Performance in Bull Markets

To see that this performance is a bear market phenomenon we conduct the same experiment

during the bull market 1992-2000 period. We estimate the model during the first half of the

period and run the strategy over the second half. In the case of using the S&P only, although

the dynamic minimum-variance strategy has a higher mean and Sharpe ratio than the index,

the volatility is almost twice as high at 34.2%. Even the minimum-variance strategy has

now become a high-beta strategy (with a beta of 1.7), and as such is not fundamentally

different from an index-tracking strategy. Given the high risk of the strategy, a moderately

risk averse investor would not be willing to pay a positive management fee. The performance

deteriorates even further when gold is added to the asset universe, achieving a much lower

Sharpe ratio than the index itself.
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3.4 How to Benefit From a Bull Run

During the 1992-2000 bull market, we consider dynamic strategies designed to maximize

return rather than minimize variance. A pure market-timing strategy, while achieving an

overall gain above the index, however experiences very sharp losses of more than 50% (see

Panel A of Figure 3). In fact, the dynamic maximum-return strategy has a volatility of

67.2%, making it unacceptably risky. The picture changes dramatically when the bond

index is included (Panel B). The dynamic strategy now outperforms the S&P. The out-of-

sample maximum-return strategy has a mean return of 60.5% (and an alpha of 42%), but

its volatility is only marginally higher than that of the index. The strategy has a low beta of

0.44 and maintains an almost constant moderate long position in the index, while actively

managing a large position in the Treasury term spread (with a long position in T-bills and

a short position of almost equal size in the bond index).

Unlike in a bear market, adding Gold does not provide any benefit at all in a bull market.

Gold together with the S& only, while achieving a cumulative return similar to the index

(Panel C of Figure 3), has a volatility of almost twice that of the index. In contrast,

adding gold to the S&P and the bond index improves the strategy’s performance only very

marginally. In fact, in this case the position in gold is virtually constant and slightly negative.

In other words, while gold is a valuable vehicle for hedging the risks in falling markets, it is

not of any value in a bull market.

3.5 Transaction Costs

As our strategies are dynamically managed, the issue of transaction costs is of natural

importance. Because the strategies are implementable using futures contracts, we assume

transaction costs of 5 basis points (i.e. 5 cents per $1 transaction). We find that for all of

our minimum-variance strategies, transaction costs are below 50 basis points per year, while

for the maximum-return strategies are at most 160 basis points. While the latter may seem
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high, it is insignificant in comparison with cumulative (annualized) returns of 64.2%.

An important aspect in this is our focus on unconditionally efficient (as opposed to con-

ditionally efficient) strategies. Unconditionally efficient strategies are theoretically optimal

(Hansen and Richard 1987), utilize the predictive information more effectively (Abhyankar,

Basu, and Stremme 2005) and also exhibit a conservative response to extreme values of the

predictive variables (Ferson and Siegel 2001). In contrast, the portfolio weights of condi-

tionally efficient strategies are much more volatile, often requiring extreme long or short

positions. Moreover, the conditionally efficient strategies significantly underperform their

unconditionally efficient counterpart out-of-sample, confirming the above findings. For ex-

ample, the conditionally efficient minimum-variance strategy achieves a Sharpe ratio of only

0.23, compared with 0.60 for the unconditionally efficient strategy. On the other hand, the

conditionally efficient strategy incurs transaction costs of almost 980 basis points per annum

(compared with only 37 basis points for the corresponding unconditionally efficient strat-

egy). Conversely, while conditionally efficient maximum-return strategies tend to be slightly

cheaper than their unconditionally efficient counterparts, they also achieve a considerably

lower return. We thus see that investors, and indeed empirical studies, utilizing the condi-

tionally efficient strategy would have failed to observe any real economic gains from return

predictability while those implementing the unconditionally efficient strategy would have.

3.6 Long Run Portfolio Performance

Next we investigate the long-run performance of the different strategies over the entire sample

period.

Pure Market Timing

Focusing first on pure market-timing strategies, we find that overall the predictive variables

do enlarge the investor’s opportunity set with the Sharpe ratios increasing to 1.22 from 0.36,

the difference being significant at the 1% level . The dynamic minimum-variance portfolio
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strategy tracks the target variance very closely, although the ex-post Sharpe ratio is not

quite as high as the ex-ante value at 0.98. It is again a low-beta (0.34) and high-alpha

(8.4%) strategy. A risk-averse investor (we used a moderate coefficient of risk aversion of 5

would be willing to give up 18.8 percentage points of annual return as management fee for

the optimal strategy.

The dynamic maximum-return strategy in contrast slightly overshoots its volatility target,

but achieves a much higher mean relative to the fixed-weight strategy (24.1% compared to

9.7%). This strategy performs as well as the index during the bull run, even though there

is quite a bit of levering in and out of the index during this period and spectacularly out-

performs the index after 2000. The strategy achieves an incredible (annualized) alpha of

15.2%, while its volatility is only about 2% higher than that of the index itself. An investor

with a risk aversion coefficient of 5 would be willing to give up 10.2 percentage points of

annual return as management fee for this strategy.

Adding Other Assets

In line with our out-of-sample results, adding gold or the bond index to the asset set (and

their respective open interest and hedging pressure to the predictive variables) further im-

proves performance. For example, adding gold increases the Sharpe ratio with predictability

from 1.22 to 1.61. Relative to the fixed-weight case, the increase in Sharpe ratio is more

than four-fold, with a p-value indistinguishable from zero. The results obtained by adding

the bond index are very similar (with the Sharpe ratio increasing to 1.58). Including all

assets further increases the Sharpe ratio to 2.02.

The performance of the corresponding dynamically efficient strategies match the theoreti-

cal predictions closely. The ex-post risk and return of both the minimum-variance and the

maximum-return strategies are plotted in Figure 1, relative to the theoretical efficient fron-

tier. Figure 4 shows the cumulative return and portfolio weights of the minimum-variance

strategy that uses all assets (and their associated predictive instruments). The strategy

achieves an (annualized) cumulative return of 16.4% at a volatility of only just over 5%.
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The corresponding maximum-return strategy yields a return of 38.4% per annum at a mod-

erate volatility of 15.2%.

3.7 How do the Strategies Work?

First, we note (Table 3) that our dynamic strategies tend to have much lower betas (between

0.2 and 0.5) than the fixed weight ones. Thus our variables seem to allow asset managers to

‘de-couple’ their portfolios from the business cycle and thus successfully time the market.

An inspection of the coefficients on the predictive variables (Tables 1 and 2) shows the

coefficients on hedging pressure are very different in the two sample periods. In the bull

market the beta is quite low (0.06) while it is 0.32 over the second period. The coefficients

on the VIX are lower in the second period than in the first period but the difference is not

particularly great (0.0006 versus 0.0004).

To gain insights into how the strategies work over the two periods, we examine the correla-

tions between the weights on the risky asset and the various predictive variables for the two

out of sample strategies. The correlation between the weights on the S&P and its hedging

pressure for the strategy in the first period is 0.21 while it is -0.13 for the bear market strat-

egy. This clearly shows how the nature of the strategy changes in the two periods and it

appears to be the main driver of the success of the dynamic strategy in the second period. It

seems that in the second period hedging pressure is driven by institutional investors and is

high, for example when investors are covering short options positions and could be a leading

indicator of market declines. Our strategy seems to be able to exploit this fact. In the bear

market when hedging pressure has much greater predictive power, our strategy decreases the

weight on the risky asset when the number of long positions increases and this significantly

improves its performance. The correlation with open interest also changes from positive

to negative in the two periods (0.06 to -0.38). The correlations with the VIX are positive

and considerably higher over the second period (0.90 versus 0.62) but the correlation with

changes in the VIX is negative in the second period (-0.13) while it is positive in the first
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period (0.15). Thus in the bear market a rising VIX causes the strategy to decrease holdings

in the risky asset while the opposite is the case in the bull market.

4 Conclusions

The economic value of return predictability has been the focus of much recent research.

While the statistical evidence is mixed, several studies have found that even small levels of

predictability from a statistical viewpoint can have a substantial effect on both the investor’s

portfolio decision as well as portfolio performance. This paper focuses on the use of market

variables that exploit the linkages between spot, futures and derivatives markets, as opposed

to the business cycle indicators employed in most of the earlier studies.

Spot and futures market linkages are exploited by using hedging pressure as the predictive

variable while the linkages between the derivatives and spot markets are exploited using the

VIX index, a proxy for implied volatility. Using the S&P 500, gold and a 5 year Treasury

Bond as our base assets, we study the performance of these variables by examining both

the out of sample performance of unconditionally efficient portfolios based on our predictive

variables as well as their in-sample performance using a statistical test. We find that differ-

ent sets of variables have predictive power in bear and bull markets. Our trading strategies

can successfully time the market and avoid losses during the bursting of the ‘dot.com’ bub-

ble in the second half of 2000, as well as during the earlier bull run. The in-sample results

confirm our out of sample experiments with p-values of less than 1% in all cases. The perfor-

mance of the strategies deteriorates considerably if we remove any of the predictive variables,

indicating that it is the correlations between these variables that drives the strategies.
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A Appendix

A.1 Dynamically Efficient Strategies

To specify a dynamically managed trading strategy, we denote by θk
t−1 = θk(Zt−1) the fraction

of portfolio wealth invested in the k-th risky asset at time t − 1, given as a function of the

vector Zt−1 of (lagged) predictive instruments. The return on this strategy is given by,

rt(θ) = rf +
n∑

k=1

( rk
t − rf )θk

t−1, (2)

where rk
t is the return on the k-th risky asset, and rf denotes the return on the risk-free

Treasury bill. The difference in time indexing indicates that, while the return rf on the

risk-free asset is known at the beginning of the period, the returns rk
t on the risky assets

are uncertain ex-ante and only realized at the end of the period. Note however that we do

not assume rf to be unconditionally constant. It can be shown6 that the weights of any

unconditionally efficient managed strategy can be written as,

θ∗t−1 =
w − rf

t−1

1 + H2
t−1

· Σ−1
t−1 ( µt−1 − rf1 ). (3)

Here, µt−1 and Σt−1 are the conditional (on Zt−1) mean vector and variance-covariance

matrix of the base asset returns, and w ∈ IR is a constant. By choosing w ∈ IR in (3)

appropriately, we can construct efficient strategies that track a given target expected return

or target volatility.

A.2 Measures of Statistical Significance

To measure the economic gain due to predictability, we measure the extent to which the

optimal use of predictive information expands the unconditionally efficient frontier, i.e. the

6See for example Ferson and Siegel (2001), or Abhyankar, Basu, and Stremme (2005).
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opportunity set available to the investor. In the absence of an unconditionally risk-free asset,

the efficient frontier is described by three parameters, the location (mean and variance) of

the GMV, and the asymptotic slope of the frontier (i.e. the maximum Sharpe ratio relative

to the zero-beta rate corresponding to the mean of the GMV). Note however that because

of the low volatility of T-bill returns, the location of the GMV will be virtually unaffected

by the introduction of predictive instruments (see also Figure 3). Therefore, we focus here

on the change in asymptotic slope of the frontier as a measure of predictability. Denote

by λ∗ the slope of the frontier with optimal use of predictability, and by λ0 the slope in

the fixed-weight case (without making use of predictive information). In a slight abuse of

terminology, we often refer to λ∗ and λ0 simply as Sharpe ratios.

One can now show7 that up to a first-order approximation, the (squared) maximum slope of

the dynamically managed frontier is given by,

λ2
∗ ≈ E( H2

t−1 ), where H2
t−1 = ( µt−1 − rf1 )′ Σ−1

t−1 ( µt−1 − rf1 ). (4)

Here, µt−1 and Σt−1 are the conditional mean vector and variance-covariance matrix of

the base asset returns. The error in the above approximation is of the order var( H2
t−1 ).

To obtain the corresponding expression for λ0, we simply replace µt−1 and Σt−1 by their

unconditional counterparts.

Note that Ht−1 is the conditional Sharpe ratio, once the realization of the conditioning

instruments is known. From (3), it is clear that Ht−1 plays a key role in the behavior of

the optimal strategy. Moreover, the above result shows that the maximum unconditional

Sharpe ratio is given by the unconditional second moment of the conditional Sharpe ratio8.

Consequently, time-variation in the conditional Sharpe ratio improves the ex-post risk-return

trade-off for the mean-variance investor, a point also noted by Cochrane (1999).

To measure the effect of predictability, we define the test statistic Ω = λ2
∗ − λ2

0. Our null

7See, for example, Abhyankar, Basu, and Stremme (2005).
8In the case of a single risky asset, this was shown by Jagannathan (1996).
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hypothesis is that predictability does not matter, i.e. Ω = 0. As the set of fixed-weight

strategies is contained in the set of dynamically managed strategies, we always have Ω ≥ 0.

In the linear predictive setting (1) used in our empirical analysis, one can show9 that under

the null, the test statistic

T −K − 1

K
· Ω is distributed as FK,T−K−1 in finite samples,

and T · Ω is distributed as χ2
K asymptotically. Here, K is the number of instruments in

Zt−1, and T is the number of time-series observations. This result allows us to assess the

statistical significance of the economic gains due to predictability.

A.3 Measures of Economic Value

In addition to our statistical tests, we also employ a utility-based framework to assess the

economic value of return predictability. Following Fleming, Kirby, and Ostdiek (2001), we

consider a risk averse investor whose preferences over future wealth are given by a quadratic

von Neumann-Morgenstern utility function. They show that, if relative risk aversion γ is

assumed to remain constant, the investor’s expected utility can be written as,

Ū = W0

(
E( rt )− γ

2(1 + γ)
E( r2

t )
)
,

where W0 is the investor’s initial wealth and rt is the return on the portfolio they hold.

Consider now an investor who faces the decision whether or not to acquire the skill and/or

information necessary to implement the active portfolio strategy that optimally exploits

predictability. The question is, how much of their expected return would the investor be

willing to give up (e.g. pay as a management fee) in return for having access to the superior

strategy? To solve this problem, we need to find the solution δ to the equation

E( r∗t − δ )− γ

2(1 + γ)
E

(
(r∗t − δ)2

)
= E( rt )− γ

2(1 + γ)
E( r2

t ), (5)

9See for example Abhyankar, Basu, and Stremme (2005).
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where r∗t is the optimal strategy and rt is a fixed-weight strategy that does not take pre-

dictability into account. The solution δ represents the management fee (as a fraction of

portfolio returns) that the investor would be willing to pay in order to gain access to the

superior strategy. Graphically, the premium can be found in the mean-variance diagram

by plotting a vertical line downwards, starting from the point that represents the optimal

strategy r∗t , and locating the point where this line intersects the indifference curve through

the point that represents the inferior strategy rt.
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Figure 1: Efficient Frontier)

This graph show the unconditionally efficient frontiers with (solid line) and without (dashed line) the
optimal use of predictability. We use all available assets (the S&P 500, the bond index, and gold), and
all predictive instruments (the VIX, and open interest and hedging pressure for each asset). Also shown
are the ex-post mean and variance (‘+’) of the maximum-return and minimum-variance strategies. The
circles indicate the performance of these strategies net of transaction costs.
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Asset
RF S&P500 BOND GOLD

Panel (A) Summary Statistics

Average Return 4.9% 19.5% −0.4% −2.0%
Volatility 0.1% 15.5% 4.4% 12.8%
Sharpe Ratio 0.84 −1.19 −0.53

Instrument Regression Coefficients

Panel (B1) S&P 500 only

VIX 0.0006
Open Interest 0.0000
Hedging Pressure 0.0624

Maximum R2 1.7%
Fixed-Weight Sharpe Ratio 0.86

Optimal Sharpe Ratio 1.28
(p-Value) (8.14%)

Panel (B2) S&P 500 + Bond

VIX 0.0894 0.0006
Open Interest 0.0242 0.0000
Hedging Pressure 0.0586 −0.0073

Maximum R2 5.3%
Fixed-Weight Sharpe Ratio 1.68

Optimal Sharpe Ratio 2.43
(p-Value) (0.03%)

Table 1: In-Sample Results (Bull Market, 1992 – April 2000)

This table reports the summary of the sub-sample estimates for the period leading up to and including
the ‘dot.com’ bubble. The table reports the mean-variance performance (Panel A) of the assets them-
selves, the coefficients of the predictive regression and the theoretically optimal Sharpe ratios (Panel
B). Panel (B1) focuses on pure market-timing, while in Panel (B2) we add the bond index to the asset
set. The predictive instruments in all cases are the VIX, and open interest and hedging pressure for
each of the assets. The p-values are obtained from the asymptotic χ2-distribution of the test statistic
Ω (see Appendix A.2).
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Asset
RF S&P500 BOND GOLD

Panel (A) Summary Statistics

Average Return 2.7% −2.0% 2.0% 10.2%
Volatility 0.3% 18.0% 4.6% 13.8%
Sharpe Ratio −0.26 −0.14 0.51

Instrument Regression Coefficients

Panel (B1) S&P 500 only

VIX 0.0004
Open Interest 0.0000
Hedging Pressure 0.3154

Maximum R2 4.7%
Fixed-Weight Sharpe Ratio 0.25

Optimal Sharpe Ratio 1.62
(p-Value) (0.35%)

Panel (B2) S&P 500 + Gold

VIX 0.0007 −0.0004
Open Interest 0.0000 0.0000
Hedging Pressure 0.2750 0.0065

Maximum R2 7.2%
Fixed-Weight Sharpe Ratio 0.56

Optimal Sharpe Ratio 2.09
(p-Value) (0.06%)

Table 2: In-Sample Results (Bear Marker, April 2000 – 2005)

This table reports the summary of the sub-sample estimates for the period following the collapse of the
‘dot.com’ bubble. The table reports the mean-variance performance (Panel A) of the assets themselves,
the coefficients of the predictive regression and the theoretically optimal Sharpe ratios (Panel B). Panel
(B1) focuses on pure market-timing, while in Panel (B2) we add gold to the asset set. The predictive
instruments in all cases are the VIX, and open interest and hedging pressure for each of the assets. The
p-values are obtained from the asymptotic χ2-distribution of the test statistic Ω (see Appendix A.2).
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S&P 500 + Gold
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Figure 2: Out-of-Sample Performance (Bear Market, April 2000 – 2005)

These graphs show the performance and portfolio weights of three different strategies during the period
following the collapse of the ‘dot-com’ bubble (from 2000 until 2005). In each panel, the top graph
shows the cumulative return of the minimum-variance strategy (solid line) and the market index (dashed
line), normalized to have unit value in April 2000. The bottom graph shows the portfolio weights on
the risk-free asset (dashed line), the market index (‘+’), and the bond index or gold (‘◦’), respectively.
Panels (A) focuses on market-timing (i.e. allocating between the risk-free asset and the index), while
Panels (B) and (C) add the bond index or gold, respectively. The predictive instruments in all cases
are the VIX, and open interest and hedging pressure for each of the assets.
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Panel (C)
S&P 500 + Gold
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Figure 3: Out-of-Sample Performance (Bull Market, June 1996 – 2000)

These graphs show the performance and portfolio weights of three different strategies during the period
leading up to and including the ‘dot-com’ bubble (from 1996 until 2000). In each panel, the top graph
shows the cumulative return of the maximum-return strategy (solid line) and the market index (dashed
line), normalized to have unit value in June 1996. The bottom graph shows the portfolio weights on
the risk-free asset (dashed line), the market index (‘+’), and the bond index or gold (‘◦’), respectively.
Panels (A) focuses on market-timing (i.e. allocating between the risk-free asset and the index), while
Panels (B) and (C) add the bond index or gold, respectively. The predictive instruments in all cases
are the VIX, and open interest and hedging pressure for each of the assets.

29



Panel (A) Bull Market (Maximum-Return Strategy)

S&P Only S&P + Bond
Fixed-Weight Optimal Fixed-Weight Optimal

Expected Return 35.4% 98.9% 54.0% 60.5%
Volatility 31.3% 67.2% 29.0% 20.1%
Sharpe Ratio 0.80 0.95 1.32 2.10
CAPM Beta 1.60 3.29 1.33 0.44
Jensen’s Alpha 0.0% 13.1% 18.9% 42.4%
Management Premium −43.2% 16.63%

Panel (B) Bear Market (Minimum-Variance Strategy)

S&P Only S&P + Gold
Fixed-Weight Optimal Fixed-Weight Optimal

Expected Return −0.7% 9.7% −2.1% 10.2%
Volatility 11.9% 11.0% 10.8% 10.1%
Sharpe Ratio −0.29 0.60 −0.44 0.69
CAPM Beta 0.66 0.21 0.54 0.27
Jensen’s Alpha 0.0% 8.0% −2.0 8.8%
Management Premium 11.1% 12.9%

Table 3: Out-of-Sample Portfolio Performance

This table reports the out-of-sample performance of the maximum-return strategies (Panel A) during
the bull run, and the minimum-variance strategy (Panel B) during the bear market, respectively, both
with (‘optimally managed’) and without (‘fixed-weight’) the optimal use of predictability. The base
assets are the risk-free asset, the S&P 500 index and, in the right-hand side column, the bond index
(in Panel A) or gold (in Panel B), respectively. All figures are annualized. .
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Figure 4: In-Sample Portfolio Performance)

This graph show the performance of the market index (dashed line) and the minimum-variance strategy
(solid line) over the entire sample period (from 1992 to 2005). The top graph shows the cumulative
returns, normalized to have unit value in October 1992. The bottom graph shows the portfolio weights
on the risk-free asset (dashed line), the market index (‘+’), and the bond index (×’) and gold (‘◦’),
respectively. The predictive instruments are the VIX, and open interest and hedging pressure for each
of the assets.
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