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INTRODUCTION

Multivariate options are widely used when there is a need to hedge

against a number of risks simultaneously; such as when there is an

exposure to several currencies or the need to provide cover against

an index such as the FTSE100, or indeed any portfolio of assets.

In the case of a basket option the payoff depends on the value of

the entire portfolio or basket of assets where the basket is some

weighted average of the underlying assets. The principal reason for

using basket options is that they are cheaper to use for portfolio

insurance than a corresponding portfolio of plain vanilla options on

the individual assets. This cost saving depends on the correlation

structure between the assets; the lower the correlation between

currency pairs in a currency portfolio for instance, the greater the

cost saving.

However, the accurate pricing of basket options is a non-trivial

task when, as is generally the case, there is no accurate analytic

expression of the distribution of the weighted sum of the underlying

assets in the basket. Apart from using Monte Carlo methods, basket

options are often priced by assuming the basket or index is a single

underlying and then applying standard option pricing theory based

on the Black-Scholes (1973) framework. However, a weighted sum of

log-normals is not itself log-normally distributed and potentially sig-

nificant errors are introduced through this approximation by ignoring

the distributional characteristics of the individual underlying assets
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and the nature of their dependencies beyond simple correlation.

Recent surveys of pricing multiple contingent claims can be found

for instance in Carmona and Durrleman (2003 and 2006).

In this paper we exploit recent developments in the use of copula

methods by Hurd, Salmon and Schleicher (2005) to price multivariate

currency options and in doing so we extend related approaches

put forward in the limited literature in this area – for instance

by Bennett and Kennedy (2004), Taylor and Wang (2005), Beneder

and Baker (2005), van den Goorbergh, Genest and Werker (2005),

and Cherubini and Luciano (2002). One property of copulas is that

they split a complex task (modelling a joint-distribution) into two

simpler tasks (modelling the margins and the dependence pattern).

This property makes it substantially easier to construct multivariate

distributions in general and hence to accurately price multivariate

options as we demonstrate below.

In the next section we describe the approach we have taken to

derive the prices for basket, spread and best of two options following

the general procedure developed by Hurd, Salmon and Schleicher

(2005). We first describe the theoretical argument for deriving

the risk neutral measure consistent estimation of the implied joint

density. Hurd et al. (2005) were unable to find suitable parametric

copulas that closely fitted the data. We therefore use the Bernstein

copula, which exhausts the space of all possible copula functions, as

a general approximation procedure for copulas before turning to the

application and drawing some conclusions.

THE METHODOLOGY

Our methodology builds on earlier unpublished work by Bikos

(2000), who uses one-parameter copulas such as the Gaussian and

the Frank copula to model the joint distribution of the dollar-sterling

and euro-sterling exchange rates. The marginal distributions are

given by univariate risk-neutral densities estimated using the Malz

(1997) method and the parameter of the copula function is chosen

in such a way that the empirical correlation coefficient (computed

from the variances of the two bilateral exchange rates and the cross-

rate) equals the implied correlation coefficient (computed from ATM

volatilities). A very similar approach has been taken in a recent

contribution by Taylor and Wang (2005), who also fit to the implied

correlation coefficient, but use a more refined setup which ensures
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that the implied joint density belongs to a common risk-neutral

numeraire measure. Both studies (Bikos, and Taylor and Wang)

suggest that one-parameter copulas provide a reasonable fit to the

data but essentially use one observation to fit a single parameter.1

A more general approach is taken by Bennett and Kennedy

(2004), who use copulas in conjunction with a triangular no-arbitrage

condition to price quanto FX options, i.e. FX options whose payout

is in a third currency. Similar to Bikos and Taylor and Wang, they

use option-implied densities as margins for the bivariate distribution.

However, they estimate their copula function by fitting an entire

set of option contracts in the third bilateral (over different strike

prices) instead of fitting just the implied correlation coefficient. This

additional information enables them to use a Gaussian copula which

is perturbed by a cubic spline and which therefore allows for a more

flexible dependence structure between the three currency pairs. In

the context of the quanto pricing problem this approach is appealing

because the perturbation function indicates the extent of departure

from the standard Black Scholes model corresponding to a joint

lognormal distribution.

Estimating copulas consistent with triangular no-arbitrage

We extend these previous methods by estimating a joint distribution

that is consistent with the option-implied marginal distribution of

the third bilateral over its entire support. In order to do this we

proceed in the following steps:

Step 1 Let Si,j
t denote the price of one unit of currency j in terms

of currency i at time t and M i,j
t1,t2

the forward exchange rate at time

t1 with maturity at time t2 ≥ t1. Next we define za,b
0,t,T , zc,a

0,t,T , zc,b
0,t,T

to be the logarithmic deviations of three triangular exchange rates

S
a,b
t , Sc,a

t , Sc,b
t from their respective forward ratesMa,b

0,T , M c,a
0,T , M c,b

0,T ,

i.e.

z
i,j
0,t,T ≡ logSi,j

t − logM i,j
0,T = log

S
i,j
t

M
i,j
0,T

. (1.1)

For ease of notation we will usually write zi,j instead of zi,j
0,t,T ,

unless the time-subscripts are necessary to avoid ambiguity. Hurd

et al. (2005) show that at any time t≤ T the relationship between

the univariate PDF of za,b under the risk-neutral measure Qa
2 and

the bivariate PDF of zc,a and zc,b under the risk-neutral measure Qc
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is given by

f
Qa

za,b(s) =

∫ ∞

−∞
f

Qc

zc,a,zc,b(u, u+ s)eudu. (1.2)

The additional term eu is necessary, because the left hand side and

the right hand side of equation (1.2) are expressed under different

measures. Note also that triangular arbitrage implies that

za,b = zc,b − zc,a. (1.3)

Step 2 By Sklar’s theorem there exists a copula C(·) with density

c(·) which allows us to write the bivariate distribution of zc,a
T and

z
c,b
T in its canonical representation

f
Qc

zc,a,zc,b(u, v) = c
(

F
Qc

zc,a(u), FQc

zc,b(v)
)

f
Qc

zc,a(u)fQc

zc,b(v). (1.4)

Step 3 We then estimate a parametric representation, ĉ(·; θ̂),

of the copula density by minimizing the L2-distance between the

option-implied third bilateral fQa

za,b and its copula-implied counter-

part f̂Qa

za,b(·; θ̂), where

θ̂ = arginfθ

[
∫ ∞

−∞

(

f
Qa

za,b(s) − f̂
Qa

za,b(s, θ̂(s; θ))
)2

ds

]
1

2

, (1.5)

and

f̂
Qa

za,b(s; θ̂) =

∫ ∞

−∞
ĉ
(

F
Qc

zc,a(u), FQc

zc,b(u+ s); θ̂
)

f
Qc

zc,a(u)fQc

zc,b(u+ s)eudu

(1.6)

is the distribution of the third bilateral implied by the estimated

parameters θ̂.

The Bernstein copula

The underlying idea of the Bernstein copula is to define a function

α(ω) on a set of grid points and then use a polynomial expansion to

extend the function to all points in the unit square. In our application

we use an evenly spaced grid of (m+ 1)2 points, ω = k
m

× l
m

, k, l =

0, ..., m. The bivariate Bernstein copula or Bernstein(m) copula is

then defined as

CB(u, v) =
m
∑

k=0

m
∑

l=0

α

(

k

m
,
l

m

)

Pk,m(u)Pl,m(v), (1.7)
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where

Pj,m(x) =

(

m

j

)

xj(1 − x)m−j

is the j-th Bernstein polynomial of order m (for j = 0, ..., m).

Sancetta and Satchell (2004) show that this function will be a

copula as long as α(ω) satisfies the basic three conditions of a

copula (grounded, consistent with margins and two increasing3) for

all points on the grid.

Similarly, the density of the bivariate Bernstein copula is given by

cB(u, v) =m2
m−1
∑

k=0

m−1
∑

l=0

β

(

k

m
,
l

m

)

Pk,m−1(u)Pl,m−1(v), (1.8)

where

β

(

k

m
,
l

m

)

= α

(

k + 1

m
,
l + 1

m

)

− α

(

k + 1

m
,
l

m

)

−α

(

k

m
,
l + 1

m

)

+ α

(

k

m
,
l

m

)

.

Note that the two-increasing property of α ensures that the density

is non-negative.

The Bernstein copula allows us to compute the third marginal

distribution in equation (1.2) as a linear combination of basis

functions

f
Qa

za,b(s; θ) =

∫ ∞

−∞
c
(

F
Qc

zc,a(u), FQc

zc,b(u+ s); θ
)

×fQc

zc,a(u)fQc

zc,b(u+ s)eudu

=

m−1
∑

k=0

m−1
∑

l=0

θk,lψk,l(s), (1.9)

where θk,l = β
(

k
m
, l

m

)

and

ψk,l(s) = m2

∫ ∞

−∞
Pk,m−1

(

F
Qc

zc,a(u)
)

Pl,m−1

(

F
Qc

zc,b(u+ s)
)

×fQc

z
c,a

T

(u)fQc

zc,b(u+ s)eudu. (1.10)

These basis functions have the property that ψk,l(·) ≥ 0 and
∫∞
−∞ ψk,l(s)ds= 1, for all k, l = 0, ..., m− 1.
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Due to the properties of α, the coefficients θk,l satisfy the following

restrictions

θk,l ≥ 0, k, l = 0, ..., m− 1, (1.11)
m−1
∑

k=0

θk,l =
1

m
, l = 0, ..., m− 1, and (1.12)

m−1
∑

l=0

θk,l =
1

m
, k = 0, ..., m− 1. (1.13)

These restrictions also imply that the sum of all coefficients equals

unity.

The optimization problem (1.5) can be restated as

inf{θk,l}m−1

k,l=0

∫∞
−∞

(

∑m−1
k=0

∑m−1
l=0 θk,lψk,l(s) − f

Qa

za,b(s; θ)
)2

ds

subject to restrictions on {θk,l}
m−1
k,l=0, (1.14)

which can be simplified to

infθ θ
′Hθ − 2gθ, subject to R1θ ≤ q1, R2θ = q2, (1.15)

where

H =

∫ ∞

−∞
ψ(s)ψ′(s)ds, g =

∫ ∞

−∞
fQa

z (s)ψ′(s)ds,

θ = [θ0,0, ..., θ0,m−1, θ1,0, ..., θ1,m−1, ..., θm−1,0, ..., θm−1,m−1]
′,

ψ(s) = [ψ0,0(s), ..., ψ0,m−1(s), ψ1,0(s), ..., ψ1,m−1(s), ...,

ψm−1,0(s), ..., ψm−1,m−1(s)]
′,

and the matrices Rj and vectors qj impose the equality (j = 1) and

inequality (j = 2) constraints (1.11) to (1.13). Expression (1.15) is a

standard quadratic programming problem that can be solved using

a Lagrangian approach (see e.g. Greene (1993)).

PRICING MULTIVARIATE CURRENCY OPTIONS

Our empirical examples focus on options that depend on the relative

performance of different currencies and for this purpose we define

the gross-return of a currency as the ratio of the spot rate over the
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forward-rate fixed at some time 0:

Z
a,b
0,t,T ≡ ez

a,b

0,t,T =
S

a,b
t

M
a,b
0,T

. (1.16)

With some abuse of notation we abbreviate this as Za,b
t . We then

consider call options with strike price K and European exercise with

payout G(Zc,a
T , Z

c,b
T , K) denominated in currency c. We consider

three different options, given by the following payoff profiles:

G1(Z
c,a
T , Z

c,b
T , K) = max

{

(Zc,a
T )

ωa(Zc,b
T )

ωb

−K, 0
}

(1.17)

G2(Z
c,a
T , Z

c,b
T , K) = max

{

ωaZ
c,a
T + ωbZ

c,b
T −K, 0

}

(1.18)

G3(Z
c,a
T , Z

c,b
T , K) = max

{

max
(

Z
c,a
T , Z

c,b
T

)

−K, 0
}

(1.19)

The first (G1(·)) represents an option on a geometric index. When

(ωa, ωb) = (1,−1) it becomes an option on a ratio. The second

(G2(·)) corresponds to basket options which include the spread

option ((ωa, ωb) = (1,−1)) as a special case. Finally, G3(·) is the

payoff of a best-of-two-assets option.

Under the assumption of a non-stochastic discount rate for

currency c, any of these options can be valued using the Feynman-

Kaç formula

V0 = e−rcT

∫ ∞

0

∫ ∞

0

G(u, v)fQc

Z
c,a

T
,Z

c,b

T

(u, v)dudv. (1.20)

The bivariate returns distribution f
Qc

Z
c,a

T
,Z

c,b

T

can be recovered from

f
Qc

z
c,a

T
,z

c,b

T

(equation (1.2)) by using the same copula and transforming

the margins as

f
Qc

Z
c,a

T

(s) = f
Qc

z
c,a

T

(es)es. (1.21)

Estimating the margins and the copula

For our empirical examples we use over-the-counter (OTC) quotes

from the 13th of January 2006 provided by a major market maker.

These data are described in Table 1 and contain at-the-money

(ATM) contracts as well as 25 and 10 delta risk-reversals and

butterflies for the three bilateral currencies JPY/EUR, JPY/USD

and USD/EUR. The table also includes the discount rates for the

three currencies. A positive sign on the risk-reversal indicates that

the base currency is favored.
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Table 1 One-month contracts for January 13, 2006.

JPY/EUR JPY/USD USD/EUR

ATM 9.30 9.15 8.95
25D RR -0.70 -1.05 0.18
10D RR -1.20 -1.75 0.28
25D Fly 0.20 0.20 0.15
10D Fly 0.65 0.80 0.40

EUR JPY USD
discount rate 2.4811 0.0506 4.6171

Our method is independent of the way in which the margins are

estimated. For example, we could use a mixture of log-normals (as

in Bennett and Kennedy (2004), and Taylor and Wang (2005)) or

the smoothing spline-method of Bliss and Panigirtzoglou (2002).

Here we follow Hurd et al. (2005) and use an extension of Malz’s

(1997) smile interpolation method which is specifically tailored to

the FX OTC market. Malz models the volatility smile as a function

of delta by fitting a quadratic function to the three most liquid

contracts (the ATM and 25 delta risk-reversal and butterfly). We

include the additional two 10 delta contracts, which are liquid for

major bilaterals at short horizons, by fitting a spline consisting of

two cubics (in the intervals between 0.1 and 0.25 and 0.75 and 0.9)

and a quartic (in the interval between 0.25 and 0.75). We impose

the restriction that the first three derivatives are continuous. The

marginal distributions are then obtained easily by converting the

smile into the call-price function and taking the second derivative

with respect to the strike price (Breeden and Litzenberger, 1978).

The left panel of Figure 1 shows the three margins fQUSD

zUSD,EUR ,

f
QJP Y

zUSD,JP Y , and f
QEUR

zEUR,JP Y .4 The width of the three distributions is

very similar, however, the two yen-bilaterals are more lepotkurtic and

exhibit a marked skew towards yen appreciation. This is a reflection

of the larger (absolute) value of yen-butterflies and risk-reversals.

We then apply the method described in the previous section to

link the two dollar-bilaterals using a Bernstein copula. We find that

we need at least an order of m= 11 for the Bernstein expansion

to obtain a good fit for the EUR/JPY margin. The estimated

Bernstein(11) copula is shown in the right-hand panel of Figure 1.

It clearly exhibits the characteristics of positive dependence in the

sense that most probability mass is concentrated near the (0,0) and
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Figure 1 Marginal distributions of currency returns (left panel) and

the estimated Bernstein(11) copula density (right panel).
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(1,1) corners. However, there is a notable degree of asymmetry: First,

large appreciations of the dollar against the euro and the yen are

more likely to occur than large depreciations. Second, there is a third

local peak of the density near (0.65,0) corresponding to a situation

where the dollar appreciates strongly against the yen but moves little

against the euro.

Options on geometric indexes: smiles and frowns

We first look at options on a geometric index (payoff function G1(·)),

because a simple modification of the standard Black (1976) formula

exists for this particular payoff.5 The Black-model is based on the

assumption of joint (log)normality and takes as an input only the

three (ATM) volatilities σc,a, σc,b, and σa,b. In Figure 2 we compare

the familiar oval-shaped normal density assumed by the Black-model

with the bivariate distribution of the option-implied margins linked

by the Bernstein(11) copula. The distributions are drawn such that

each line represents a decile. Both distributions clearly represent

random variables with overall positive association, but the copula-

based density differs in several aspects:

1. It has less probability mass in the center of the distribution.

2. There is little indication of positive association for small move-

ments – the contour of the first decile is roughly circular, while

that of the normal distribution is oval-shaped.
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Figure 2 Multivariate densities corresponding to the Black model (a),

the Bernstein copula model (b), and their difference (c).
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Figure 3 Smiles of an index option (weights ωa = ωb = 0.5) and a

ratio option (weights ωa = 1, ωb = −1).
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3. The copula-based density gives more probability to events in

which either the euro or the yen can undergo large movements

versus the dollar but changes little against the other currency.

We then use numerical evaluation of the Feynman-Kaç formula to

obtain the prices of an index option with weights ωa = ωb = 0.5 over

a range of strikes. We compare these prices to the standard model

by computing the Black-model implied volatilities which are shown

in the first panel of Figure 3. We find that for most strikes, except

those with deltas close to 0 and 1, the copula-based model predicts

a higher payoff than the Black-model. Options with strikes far from

the current level of the index are relatively cheap, however, leading

to an implied-volatility “frown”. To understand the cause of this
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inverted smile we superimpose the loci corresponding to 5 and 95

delta contracts on the bivariate densities in Figure 2 (downward-

sloping dotted lines). We see that the integration regions for 5 delta

puts (bottom line) and 5 delta calls (top line) both fall outside the

areas where the Bernstein density has higher mass than the bivariate

normal.

We then look at prices for an index option with weights ωa = 1

and ωb = −1, which corresponds to a ratio of cross returns. Here the

implied volatility smile has a more usual convex shape (right panel

in Figure 3) and for deltas larger than 0.35 the copula model yields

lower option prices than the log-normal model. The loci of the 5

and 95 delta contracts are represented by the upward-sloping dotted

lines in Figure 2. For put options that are out-of-the money or near-

the-money, the Bernstein-distribution has lower probability mass

over the integration region (north-west of the strike). For out-of-the-

money calls, on the other hand, the integration region includes the

protuberance around the (1.1,0.95) outcome, and they are therefore

relatively expensive compared to the Black-model.

Baskets, spreads and best-of-two-assets

Next we check whether our results for options with geometric payoff

(G1) also hold for the more common basket and spread options (G2).

In Table 2 we compare the prices of the copula model and the Black

model for out-of-the-money (OTM), near-the-money (NTM) and in-

the-money (ITM) calls. We find that options based on the arithmetic

payoff follow a very similar pattern to those based on a geometric

payoff, in the sense that the differences between the prices implied

by the copula model and the log-normal benchmark always have the

same sign. In general, the magnitude of the difference tends to be

larger for baskets and spreads, indicating that smile effects are more

pronounced. The only exception is the OTM spread call, for which

the two models yield a very similar price (in contrast to the ratio

option).

Finally we briefly look at best-of-two-asset options (payoff G3).

We find, similar to the case of ratios and spreads, that the ITM and

NTM contracts are over-priced by the Black-model, while the OTM

contract is underpriced.
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Table 2 Option prices.

Strike Black-model Copula-model Difference

Index 0.98 2.2293 2.2339 -0.0046
(G1, wa = wb = 0.5) 1.00 0.9191 0.9393 -0.0202

1.02 0.2541 0.2785 -0.0244

Basket 0.98 2.2287 2.2395 -0.0108
(G2, wa = wb = 0.5) 1.00 0.9132 0.9430 -0.0298

1.02 0.2489 0.2807 -0.0318

Ratio 0.98 2.2796 2.2623 0.0173
(G1, wa = 1, wb = −1) 1.00 0.9674 0.9505 0.0169

1.02 0.2828 0.3132 -0.0304

Spread -0.02 2.2880 2.2458 0.0422
(G2, wa = 1, wb = −1) 0.00 0.9878 0.9352 0.0526

0.02 0.2950 0.2996 -0.0046

Best-of-two-assets 0.98 3.1001 3.0465 0.0536
(G3) 1.00 1.5365 1.5144 0.0221

1.02 0.5556 0.5985 -0.0429

CONCLUSIONS

In this chapter we have presented a methodology for computing

prices for bivariate currency options that are consistent with the

observed quotes of univariate instruments on three triangular bilat-

eral exchange rates. We first establish a relationship between the

bivariate distribution of the two bilateral exchange rates involving

the payout currency and the univariate distribution of the cross-rate.

We then express this relationship, which constitutes a no-arbitrage

condition, in terms of three option-implied margins and a Bernstein

copula. The Bernstein copula has the important feature that it

exhausts the space of all possible copula functions. We estimate

the “copula-parameters” by minimizing the L2-distance between the

option-implied distribution of the cross-rate and the distribution

implied by the copula. We then apply the bivariate Feynman-Kaç

formula to compute the price of options with particular payoff

functions corresponding to basket, spread and best of two options.

Compared to other copula-based approaches our method has the

advantage that it uses all available information from the univariate

contracts. The method is also flexible in the sense that it works

independently of the way in which the margins are computed. Since

the Bernstein copula may assume the shape corresponding to any

12



PRICING MULTIVARIATE CURRENCY OPTIONS WITH COPULAS

possible dependence function, a failure to find a good fit to the third

distribution implies that the three margins violate triangular no-

arbitrage in terms of higher moments.6

1 Rosenberg (2003) follows a different route by using a nonparametric method and
a copula which is estimated from historical exchange rate movements.

2 More precisely the risk-neutral measure Qj is the equivalent martingale measure
associated with a discount bond in currency j.

3 See Schmidt (2006) for details.

4 In the notation used so far, we have USD = c, EUR = a, and JPY = b.

5 By simple application of Itô’s lemma to the bivariate geometric Brownian motion

[dZ
c,a
t , dZ

c,b
t ]′ the Black-price for an option on a geometric index is given by

V
BS
0

(M
I
0,T , K, σI , T ) = e

−rc
“

M
I
0,T Φ(d1) − KΦ(d2)

”

, (1.22)

where MI and σI are the forward price and the volatility of the index

M
I

= exp(0.5(ωa(ωa − 1)σ
2

c,a + ωb(ωb − 1)σ
2

c,b + ωaωb(σ
2

c,a + σ
2

c,b − σ
2

a,b))),

σI = ω
2

aσ
2

c,a + ω
2

bσ
2

c,b + ωaωb(σ
2

c,a + σ
2

c,b − σ
2

a,b),

d1 and d2 are defined as usual as

d1 =
log

MI
0,T
K

− 0.5σ2

I T

σI

√
T

, d2 = d1 − σI

√
T ,

and σi,j is the volatility of currency pair Si,j .

6 A simple example is the case where the three margins are log-normally distributed
and the implied volatilities violate the Schwarz-inequality:

|σ2

a,b − σ
2

c,a − σ
2

c,b| > 2σc,aσc,b.
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