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Summary. Financial markets (share markets, foreign exchange markets and oth-
ers) are all characterized by a number of universal power laws. The most prominent
example is the ubiquitous finding of a robust, approximately cubic power law char-
acterizing the distribution of large returns. A similarly robust feature is long-range
dependence in volatility (i.e., hyperbolic decline of its autocorrelation function). The
recent literature adds temporal scaling of trading volume and multi-scaling of higher
moments of returns. Increasing awareness of these properties has recently spurred
attempts at theoretical explanations of the emergence of these key characteristics
form the market process. In principle, different types of dynamic processes could be
responsible for these power-laws. Examples to be found in the economics literature
include multiplicative stochastic processes as well as dynamic processes with mul-
tiple equilibria. Though both types of dynamics are characterized by intermittent
behavior which occasionally generates large bursts of activity, they can be based
on fundamentally different perceptions of the trading process. The present chapter
reviews both the analytical background of the power laws emerging from the above
data generating mechanism as well as pertinent models proposed in the economics
literature.

I. Introduction

While research on power laws in income and wealth dates back to the nine-
teenth century (Pareto), the attention on power laws in financial data is
relatively recent. The first ever manifestation of power laws in finance can
probably be found in Mandelbrot’s seminal “Variation of Certain Speculative
Prices” published in the 1963 volume of the Journal of Business and followed
by Eugene Fama’s elaboration on “Mandelbrot and the Stable Paretian Hy-
pothesis” published as the immediately succeeding paper in the same issue.
This breakthrough very much dominated the discussion over the next thirty
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(1) years or so with an immense number of papers dedicated to providing sup-
porting or contradicting evidence for the Paretian or Levy stable hypothesis.
While the dust has settled over the last decade and the power-law behavior
of large price changes now counts as one of the most pervasive findings in
financial economics, it had remained the only power law under discussion in
this arena for quite some time.

Only recently was it joined by other candidates for Pareto-like behavior.
By now well accepted within the scientific community is a second power law
characterizing the temporal dependence structure of volatility. However one
tries to proxy the unobservable quantity ‘volatility’ (most straightforwardly
via the squares or absolute values of financial returns), the autocorrelations
of these entities appear to decay hyperbolically, i.e. Pareto-like. Although this
feature is linked to the long known clustering of volatility in financial mar-
kets, the fact that the dependency in the fluctuations is of a long-range type
had only been realized in the nineties. Credit for this observation is proba-
bly due to Ding, Engle and Granger’s paper “A Long Memory Property of
Stock Market Returns and a New Model” which appeared in the Journal of
Empirical Finance of 1993. Later on, several papers by physicists emphasized
the power law nature of this finding and its potential root in complex mar-
ket interactions (cf. Lux and Ausloos, 2002). The power law in returns and
in volatility seem to be intimately related: none of them was ever observed
without the other and it, therefore, seems warranted to interpret them as the
joint essential characteristics of financial data.

Very recently additional power laws have entered the scene: transaction
volume (which is strongly correlated to volatility) also appears to be charac-
terized by long-range dependence (although it is not clear whether volatility
and volume share the same degree of long memory). Availability of high-
frequency tick-by-tick data has furthermore revealed other types of power-law
behavior, such as a power law for the number of trades in the New York Stock
Exchange Trades and Quotes Database (Gopikrishnan et al., 2001). Similar
results are reported for the Japanese stock market.

The plan of the remainder of this chapter is the following: sec. I gives
a more formal description of the main financial power laws characterizing
returns and volatility together with a survey of pertinent literature. After
having set the scene, we turn to explanatory models. Sec. III deals with the
so-called rational bubble model which emerged as a potential explanation of
financial power laws from the standard body of rational expectations models
in economics. Interestingly, this approach points to multiplicative stochastic
processes as a type of data generating process with generic power-laws. This
interesting property of the underlying process notwithstanding, the rational
bubble model makes grossly incorrect numerical predictions about the magni-
tude of the exponent. In sec. IV we, therefore, turn to more recently proposed
models in the behavioral finance literature. From the diversity of available
approaches and models, we try to single out the basic ingredients and mecha-
nisms leading to true or at least apparent power laws in simulated data. Sec.
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V attempts to draw some overall conclusions from the hitherto available body
of literature on potential explanations of financial scaling laws.

1I. Empirical Power Laws in Finance

The modern literature in this area starts with Mandelbrot (1963) and Fama
(1963), who both proposed the so-called Paretian or Levy stable distributions
as statistical models for financial returns! (cotton futures were analyzed in
Mandelbrot’s paper). The theoretical appeal of this family of distributions is
its stability under aggregation. At the time of publication of these papers,
it had already been known for some time that a Generalized Central Limit
Law holds for distributions with non convergent (infinite) second moments:
while existence of the second moment warrants convergence of sums of ran-
dom variables (at least in the IID case and under weak dependence) towards
the Gaussian, non-convergence of the variance implies convergence of the dis-
tribution of sums towards members of the family of Levy stable distributions.
Under this perspective, the pronounced deviation of histograms for financial
returns from the shape of the Normal distribution together with their apparent
additivity (daily returns can be expressed as the sum of all intra-daily price
changes) was interpreted as striking evidence in favor of the Levy hypothesis.
The Levy distributions are characterized by an asymptotic power-law behav-
ior of their tails with an index « (called the characteristic exponent) which
implies a complementary cumulative density function of returns (denoted by
ret in the following) which in the tails converges to:

(1) Pr(|ret| > x) = z=¢

The Levy hypothesis restricts the power-law for returns to the admissible
range of @ € (0,2] which indicates the mentioned non-convergence of the
second moment (with a < 1 not even the mean would converge). Empirical
estimates based upon the Levy model typically found « hovering around 1.7.

While this result was confirmed again and again when the parameters of
the Levy laws were estimated themselves, other studies raised doubts in the
validity of the Levy hypothesis by questioning the stability-under-aggregation
property of these estimates (Hall et al., 1989) or pointed to apparent conver-
gence of sample second moments (Lau et al., 1990). From the early nineties,
however, it became common practice to concentrate on the tail behavior of

IThe quantity of interest in empirical research in financial economics is typically
‘returns’ defined as relative (or logarithmic) price changes over a certain time hori-
zon. Research on the statistical properties of returns started with data at weekly or
monthly frequencies but has moved on to high frequency data over time (daily and
intra-daily data up to the highest frequencies at which all tick-by-tick changes are
recorded).
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the distribution itself and estimate its decay parameter via conditional maxi-
mum likelihood without assuming a particular distributional model (cf. Hill,
1975).2 The pertinent literature gradually converged to the insight of an ex-
ponent significantly larger than 2 and mostly close to 3 (cf. Jansen and de
Vries, 1991; Lux, 1996). These results nicely agree with estimates obtained
by physicists via their typical log-log regression approach (Cont et al., 1997;
Gopikrishnan et al., 1998). The approximate cubic form of the power-law of
returns is by now accepted as a universal feature of practically all types of
financial markets (from share markets and futures to foreign exchange and
precious metal markets). Note that this finding implies rejection of the time-
honored Levy hypothesis as a ~ 3 means that the decay of the outer part of
the distribution is faster than allowed by this family of distributions.

The second type of power laws relates to the opalescent concept of volatility
of price fluctuations. Focusing on absolute returns, |ret|, as one of its most
frequently analyzed manifestations, the pertinent power law applies to their
autocovariance function:

(2) E|rety| - |reti—a¢|]] = At™7

Although the precise value of v has received less publicity than that of
« (maybe because it is not estimated directly but rather via its relation to
the so-called Hurst exponent or related measures, cf Lux and Ausloos, 2002),
reported statistics are also remarkably uniform across time series with typical
values around v = 0.2 - 0.3 (Ding, Engle and Granger, 1993; Lobato and Savin,
1998; Vandewalle and Ausloos, 1997, 1998). Fig. 1 provides an example for
the typical behavior of financial data, using a large series of daily observations
for the New York Stock Exchange Corporate Index. The somewhat low decay
parameter v = 0.14 for volatility is a consequence of fitting the whole ensemble
of autocorrelations up to lag 200 by one single power law. Concentrating on
longer lags we would have obtained a larger decay parameter in line with other
estimates.

It is worth mentioning that recently mounting evidence speaks in favor of
multi-scaling in the temporal dependence structure of financial fluctuations:
rather than the simple scaling (power) law (2) we might indeed face a contin-
uum of scaling laws for various powers of absolute returns:

(3) E[[ret|? - |rety— a1 ~ At

Note that any power g of absolute returns can be interpreted as an alter-
native measure of volatility. With the multi-scaling in eq. (3) we, thus, get
a much more detailed picture of the temporal development of financial fluc-
tuations (cf. Mandelbrot, 1999; Calvet and Fisher, 2002; Lux, 2004). Most
excitingly, a non-linear dependence of the scaling parameter vy on the power q

2See chapter 3 for details on maximum likelihood estimation of limiting Pareto
distributions and the underlying concepts from statistical extreme value theory.
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is also a key characteristic of turbulent fluids and has motivated the develop-
ment of so-called multi-fractal models in statistical physics. Recent research
shows that these models may have some potential for modeling financial prices.

It is worth emphasizing that the power-law behavior of large returns and
their fluctuations seem to be truly universal and can be found without excep-
tion in all financial data. This is quite in contrast to many other ‘stylized facts’
in economics, for example concerning macroeconomic data (such as GDP, in-
flation rates etc.). It should also be pointed out that the above power-laws
are not at all esoteric concepts. Quite to the contrary, they are of tantamount
practical importance in financial engineering: the probabilistic law governing
large returns (eq. 1) can be applied directly for an assessment of the inherent
risk of extreme events (i.e., crashes). Similarly, models covering the temporal
dependence of volatility depicted in egs. (2) and (3) are of immediate practical
use in predicting the future extend of price fluctuations.
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Fig. 1. Illustration of the main power law characteristics of financial data. Our
data are daily recordings of the New York Stock Exchange Composite Index over the
period 1988 to 1998 (a total of 2782 observations). Instead of the index itself, we show
its returns defined as the log increments between adjacent trading days (upper left
panel). These already show the two main ‘stylized facts’: a large number of extreme
positive and negative realizations, and the clustering of volatility, i.e. characteristic
switches between turbulent and more tranquil episodes. The power law nature of
the first feature is underlined by inspecting the log histogram of (absolute) returns
(upper right hand). In contrast to a Normal distribution with the same variance
(solid line), the triangles for the empirical distribution show a prolongation in the
tail which in its outer part has an almost linear shape in agreement with eq. (1). The
lower panels show absolute returns as a straightforward measure of volatility (left)
and their autocorrelations (right). The ACF decays extremely slowly and even after
200 lags has significantly positive entries (95% values are demarcated by broken
lines). This hyperbolic rather than exponential decay is in line with eq. (2).
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Some recent research points to additional power laws in the financial arena:
Gopikrishnan et al. (2001) find that high-frequency data from the U.S. stock
market exhibit the following regularities: trading volume (V) behaves like:

(4) Pr(V>az)~a 5

and the number of trades (N) follows a law:

(5) Pr(N >uz)~ z 734

Additional results on the distribution of inter-transaction times and related
quantities can be found in several studies (cf. Takayasu, 2002). So far, these
additional regularities have mainly been discussed in the physics literature but
have hardly been acknowledged by economists. Because of the limited number
of available studies, it is also not clear at present whether these findings are of a
similarly universal structure as (1) to (3). The only exception here is temporal
dependence of transaction volume for which substantial statistical evidence
has already been gathered and for which pretty much the same pattern has
been found as for absolute returns (Lobato and Velasco, 2000).

III. Power Laws in Orthodox Financial Economics:
Stochastic Approaches and Rational Bubbles

Standard textbooks on theoretical and empirical finance (see e.g. O’Hara,
1995, for a comprehensive treatment of behavioral models and Campbell, Lo
and MacKinley, 1997, for a similarly comprehensive survey of empirical tech-
niques) lack explicit entries on the power-law behavior of financial data. It is
only via stochastic processes with asymptotic power law behavior that they
implicitly take into account the existence of the universal scaling laws high-
lighted in sec. II. Until very recently, financial power laws have, therefore, only
been taken into account under a purely statistical perspective. The hallmark of
this literature is the (G)ARCH (Generalized Autoregressive Conditional Het-
eroskedasticity) class of processes introduced in Engle’s seminal (1983) paper.
GARCH essentially models returns as a random process with a time-varying
variance which shows autoregressive dependence, i.e.

rety = 01&

(6)

2 __ 2 2
o; =apt+oaeq_; + ﬁlgtflv

with e; ~ N(0,1). As this type of auto-correlation is readily apparent in any
plot of a financial time series (cf. Fig. 1), it is not too surprising that GARCH
captures the short-run dynamics of volatility quite well. Implying exponential
rather than hyperbolic decay of the volatility autocorrelations it nevertheless
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falls short of providing a stochastic process in accordance with the long mem-
ory property depicted in eq. (2). However, even with a Gaussian distribution
of the increments, the compound unconditional distribution resulting from (6)
produces fat tails of the unconditional distribution and hence is in accordance
with eq. (1). This relatively simple statistical recipe, therefore, already allows
to reproduce one of the universal laws of returns. Refinements of the GARCH
approach have, in fact, also covered the scaling in the autocovariances via im-
position of an infinite number of lags with hyperbolically decaying weights in
the difference equation governing the volatility dynamics (cf. the fractionally
integrated GARCH model of Baillie et al., 1997).

Although these statistical models and the myriads of variations on this
topic which have come out in the literature are important tools in financial
engineering, they do not provide an avenue towards an explanation of the
empirical regularities. In fact, until very recently, standard models in the the-
oretical literature were unable to explain even the phenomenological aspects
covered by the GARCH models, let alone the asymptotic laws in egs. (2) and
(3) with their perplexingly precise numerical manifestation in the data. To be
honest, these regularities were neither well-known among financial theorists
nor did their standard models provide an easy avenue towards explanations
of such power laws.

There is one important exception though in that one ingredient of the
received body of models, in fact, produces power law statistics as an immedi-
ate consequence of its underlying model structure, which, however, has also
been realized only very recently. This class of models is known as models
of speculative bubbles with rational expectations (RE bubbles). This theory
attempts to explain the rather obvious frequent deviation of market prices
from its underlying fundamental value (also known as the ‘intrinsic’ value of
an asset which is determined by current expectations about future earning
prospects) without sacrificing the ‘rationality’ assumption of traditional asset
pricing models.

Before proceeding to RE bubbles, let us introduce the standard asset pric-
ing model of the textbook Efficient Market Paradigm. The starting point of
this approach is the formula for fair or arbitrage-free valuation of an asset:

(7) Pt = 0E[piy1 + dyga| 1]

with p; the price at time ¢, § < 1 the discount factor reflecting the time
preference of agents, and d; denoting dividends at time ¢t. Eq. (6) says that
a fair and arbitrage-free price should be identical to the discounted expected
value (conditional on the current information set I;) of next period’s price plus
the dividend paid out in that period. With identical expectations of all agents,
the equilibrium price should converge to this benchmark. Otherwise, agents
would sell/buy as long as an inequality prevails between the right-hand side
and left-hand side of eq. (7). Imposing a so-called ‘transversality condition’,
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lim;_000°Elpy1i|I] = 0 one can replace p;y1 by the pertinent arbitrage-free
pricing equation at period ¢t + 1 (of course, eq. (7) has to hold in all periods).
Continuing along these lines by further substitution of the pertinent equations
att+2,t+ 3, ---, one obtains:

o0
(8) Pt =Dt = Z(sZE[dt—H'ut]
i=1

Eq. (8) postulates that the price should always equal the discounted ex-
pected future stream of dividends which is what is also often called the fun-
damental value of the asset, py ;. This pricing formula can be seen as a man-
ifestation of the Efficient Market Paradigm postulating the prices reflect all
available information about the fundamental factors of the underlying asset in
an unbiased manner and immediately react to forthcoming new information
about these fundamentals. It is worthwhile to note in passing that the tradi-
tional view of the Efficient Market Hypothesis is not necessarily inconsistent
with observations of power laws in financial data since it remains agnostic
about the structure of the ‘news process’ driving returns. However, it would
have to attribute their origin entirely to exogenous factors: all power laws
would have to be explained by fundamental valuation factors, E[ds1,|I¢], ex-
hibiting these same characteristics which are then reproduced by price changes
reflecting changes in fundamentals. Unfortunately, ‘fundamentals’ are essen-
tially unobservable and cover a bundle of diverse factors such as firm-specific
events, political influences etc.

As pointed out by Blanchard and Watson (1982) it requires only a mi-
nor modification of the above assumption, to allow for deviations of prices
from fundamental values. Namely, though mathematically convenient, the
‘transversality condition’ needed to proceed from (7) to (8) is by no means
necessary from a theoretical perspective. Dropping it, however, opens a Pan-
dora’s box of possible asset price paths deviating from fundamental valuation.
Blanchard and Watson (1982) first remarked that without the transversality
condition, eq. (7) does not necessarily exclude per se such weird phenomena
like speculative overvaluation and subsequent crashes. Quite the opposite, it
allows the price to contain a bubble component B; by which it deviates from
the fundamental value p¢ ;:

9) p: = prs + By

Earlier literature had avoided this possibility by assuming B; = 0. Nev-
ertheless, this framework is still far away from an agnostic view of “anything
goes” in financial markets. Rather, the rational expectations assumption in eq.
(7) still poses heavy restrictions on admissible bubble dynamics. In particular,
only those bubbles are allowed which satisfy:

(10) Bt = 6E[Bt+1|1—t]
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A fairly general class of processes obeying (10) can be written as:

(11) By = a;By_1 + &y,

with a; € A = { a1, ag, - -+, a,, } occurring with probabilities 7y, 72, ..., Ty
and e, IID with mean zero. The only additional restriction which the a; have
to meet is Ela;] = ! ; mja; = § in order to be in harmony with (10). With
both a; and e; stochastic variables, the bubble process (11) is a so-called
multiplicative stochastic process. This kind of random difference equation had
already been studied comprehensively in Kesten (1975) who showed that mul-
tiplicative processes are generic power-law generators. > He also showed that
the power-law exponent for the unconditional distribution of the underlying
dynamic variable can be precisely determined from the distribution of the
multiplicative component. In our notation, the power-law applies to devia-
tions from the fundamental value (By) : Prob(|B;| > z) ~ ™ with u given
by:

(12) Ellai] =1

Figs. 2a and b give an illustration of the resulting time series and the
distribution of B; which, of course, agrees with the theoretical result. Lux
and Sornette (2002) show that the power-law in the bubble component carries
over directly to price changes and also dominates the distribution of returns.

What generates the power-law tails of the bubble model? Since the mean
value of a; is 1/§ > 1, the set A has to include at least one element larger than
unity (typically, the smallest a; would be set to zero to allow for the possibility
of a total crash of the bubble). Hence, the realisations of a; will switch between
values smaller and larger than one. In a deterministic setting, the former
would guarantee convergence towards B,, = 0 while the later would yield an
explosive dynamics (which would ensue also if we only allow for one single
a; = 1/§ > 1). The time-variation of a;, then, generates an intermittent
amplification of fluctuations which, however, only continues as long as it is
not interrupted by realizations of a; < 1 (cf. Fig. 2 for an example). It is
remarkable that, in general, the additive noise component, ¢, has no influence
at all on the emerging power-law exponent p which is fully determined by the
distribution of a;. This means that the resulting exponent u, in fact, only
reflects the intrinsic dynamics of speculative bubbles (the way B; depends
on B;_1) while in a sense external factors affecting ¢; in B; as well as the
fundamental factors affecting the component py . in the asset price given by
eq. (9) have only a very subordinate role.

3This is true under very mild conditions on the structure of the random difference
equation. A glance at the additional conditions stated in Kesten’s theorem, in fact,
shows that they will only be violated by very particular processes, cf. also Lux and
Sornette (2002).
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Fig. 2. Example of a RE bubble process with A = {0, 0.9, 1.3} occurring with proba-
bilities 7(0) = 0.1, 7(0.9) = 0.4 and 7(1.3) = 0.5, and additive stochastic component
¢ following a Normal distribution with mean zero and standard deviation 0.1. The
simulation illustrates how this framework generates repeated outbreaks of bubbles
(periods of deviations form the fundamental values) which all end in crashes leading
to a reversal of the price to its fundamental value. The inlet shows a loglog plot of
the inverse of the cumulative distribution function of price changes from the same
RE bubble process shown in Fig. 1. The theoretical (exact!) power-law index can
be calculated from eq. (12). With a simulation over 10% time steps, the resulting
w = 0.92 (for a discount rate 6 = 0.99) can be nicely observed over at least four
orders of magnitude. The slight deviation for very large values is due to the scarcity
of observations in the very far tails.

Eq. (11) with arbitrary distributions of its multiplicative and additive
components, a; and &, is a multiplicative stochastic difference equation in
its most general form. The only restriction on multiplicative processes that
could be used as rational bubble processes in a finance setting is, therefore,
the restriction stemming for the assumption of rationality or consistency of
expectations (i.e., all agents have correct expectations about both the future
development of the bubble as well as the fundemental conponent of the asset
price): Ela;] = 1/6 > 1. Unfortunately, as pointed out by Lux and Sornette
(2002), it is exactly this requirement which restricts the admissible range of
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outcomes to p < 1 - far off from the empirical findings of an exponent around
three. The important consequence is that this simple and appealing theory
of rational bubbles rather than being in harmony with empirical power-laws
produces results that are at odds with empirical observations. Since this re-
sult applies to the entire class of RE bubble models, it seems that economists
have to accept deviations from the ideal case of perfect rationality in order
to explain fat tails and clustered volatility. Furthermore, the assumption of
‘rational expectations’ in economic models has provoked mounting criticism
as it requires a capacity of computation and information processing of agents
far beyond imagination and immense efforts have been devoted recently to in-
troduce boundedly rational behavior into economic models (cf Brenner, 1999).

IV. Multi-Agent Models in Behavioral Finance

IV.1 Overview

Although the rational bubble theory can be viewed as a generic power-law
generator, it might appear uncomforting in more than one way. First, as we
have seen, it produces power-laws which are definitely at odds with the em-
pirical ones - and hence the perspective of analyzing scaling behavior, in fact,
shows the limitations of this approach. Second, it shares the conceptual prob-
lems of economic models with ‘fully’ rational agents. As Mark Buchanan puts
it: “To anyone who is not an economist, the orthodox perspective that sees
people as rational agents who always work out their rational self-interests and
act on them, seems more than a little peculiar” (Buchanan, 2000). Clearly,
the ‘full rationality’ assumption appears much too strong a statement in the
eyes of the layman and seems to be in so striking contrast to observed real-
life behavior to let it appear almost ridiculous for those who have not been
brought up in this tradition. Although there might be good reasons to use
the rationality postulate when tackling certain questions* and although the
question of rational vs. non-rational expectations might be of minor concern
for various economic problems, modeling economic phenomena governed by
not-fully-rational behavior requires a different approach. This is surely the
case with financial markets for which it has been observed that their immense
trading volume already raises doubts about common rationality and knowl-
edge of such rationality on the part of other agents (Leroy, 1989). Survey
studies confirm that market participants themselves contribute a large por-
tion of price fluctuations to bandwagon effects, overreaction and speculative
dynamics (cf. Cheung and Wong, 2000). The recently mounting literature on
experimental asset markets adds creditability to this view by showing that

4Think of analyses of future effects of fiscal or monetary policy measures: a
rational expectations framework allows to single out their purely intrinsic effects
without mingling them with problems of misperceptions of agents of the economic
environment.
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human subjects typically produce price bubbles and crashes even in simple
laboratory markets (cf. Noussair et al., 2001).

From the power-law perspective, the universal cubic law of price returns
and the long-range correlations of volatility suggest to view financial data as
results of a social process of interacting agents. Models founded on rational
expectations including the RE bubbles theory contain nothing of that sort:
agents themselves are typically invisible and enter via some equilibrium condi-
tion like eg. (7). Of course, one could add a description of the typical behavior
of a rational agent in this framework (the so-called representative agent) but
this approach excludes any interaction of traders and by its focus on steady
state solutions does not provide an avenue towards replicating distributional
properties of financial data. More recently, therefore, a rapidly growing re-
search area has purposely allowed for deviations from ‘rational’ behavior for-
malizing financial markets as evolving ecologies of multi-agent populations of
traders with diverse strategies and expectations.

Due to the obvious diversity of trading motives and strategies in real mar-
kets, such an approach had always been virtually existant: Keynes’ famous
beauty contest parabola of the stock market (Keynes, 1936) undoubtedly pre-
supposes heterogeneous (and hence, non-rational) expectations. Early formal
models of interacting groups of traders can be found in Baumol (1957) and
Zeeman (1974). As has become standard in most of the subsequent literature,
these authors distinguish between two types of traders: the first, so-called
fundamentalists, views asset prices as being determined by fundamental fac-
tors alone. These traders would buy/sell if they consider the current market
price to be below/above the rationally computed fundamental value (i.e. eq.
8). The second group, mostly called chartists or noise traders, would rather
be convinced that asset markets are driven by systematic trends and that
patterns exist that could be extracted by means of regressions, moving av-
erages or more complex procedures. Typically a short-cut representative rule
(like trend-following behaviour) is used to introduce this second component
into the model. The market price, then, results from the interplay of the two
groups and their respective demand and supply.

Hibernating over the highdays of the rational expectations paradigm, the
recent literature has seen an enormous surge of work along the lines of these
early pioneers.® Another limitation had, however, to be overcome to tackle the
stylized facts of sec. 2. Namely, the interest in economic models has typically
been to trace out the effect of changes of one (exogenous) economic variable
on other, endogenous variables characterizing some sort of market equilib-
rium. Even with a diverse ensemble of traders, such a comparative static

5In fact, the boundaries between rational and non-rational behavioural ap-
proaches have become extremely fuzzy. For example, an interesting recent strain
of literature analyses the implications of overconfidence of some traders and finds
that this kind of misperception might even provide an evolutionary advantage, cf.
Hirshleifer and Guo, (2001).
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approach is ill suited for explaining distributional characteristics of the data.
One, therefore, has to go beyond static models and beyond linear dynamics to
account for power-law phenomena as important overall features characterizing
financial time series. First attempts at analyses of complex data generating
processes with behavioral foundations appeared in the early nineties: leading
examples are Kirman (1991, 1993) and De Grauwe et al. (1993) who propose
complex models of interacting speculators and study their overall statistical
characteristics. While they did not focus on power-laws proper (then still not
broadly acknowledged), they both showed that their models could mimic the
random walk nature of financial prices although their data generating pro-
cesses were both clearly different from a random walk. Notably, both papers
study what we might describe as secondary stylized facts, typical results of
certain - unsuccessful - tests of hypothesis of exchange rate formation, and
find results similar to those obtained with empirical records.

Evidence for volatility clustering as an emergent property of a multi-agent
model appeared first in Grannan and Swindle (1994). Ramsey (1996) offers a
rather general perspective of how a statistical description of agents’ behaviour
could give rise to time-varying moments as emergent macroscopic characteris-
tics of a market. Simultaneously, first attempts appeared at designing market
models with heterogeneous autonomous agents who use artificial intelligence
techniques (genetic algorithms, classifier systems, neural networks) as expec-
tation formation mechanisms. Much of the early literature in this vein is preoc-
cupied with analysis of convergence or not of the learning process of agents to
homogeneous rational expectations equilibria (Arthur et al., 1997; Chen and
Yeh, 1997; Arifovic, 1996). Only recently has explanation of empirical charac-
teristics become a topic in this strand of literature (LeBaron et al., 1999; Chen
and Yeh, 2002; Lux and Schornstein, 2004). Typically, some tendency towards
fat tails and volatility clustering is observed, although numerical results are
often far from empirical power laws.’

Another current emerging in the early nineties is microscopic models of
financial markets constructed along the lines of multi-particle systems in sta-
tistical physics. The first example here is Takayasu et al. (1992). Broadly
similar approaches are Levy, Levy and Solomon (1994, 1995), Bak, Paczuski
and Shubik (1997) and Cont and Bouchaud (2000). Most of these contribu-
tions do either not focus on power-laws or generate scaling laws different from
the empirical ones. Similarly, Sato and Takayasu (1998) derive a multiplica-
tive stochastic difference equation as an approximation to the dynamics of a
microscopic stock market model proposed by Takayasu et al. (1992). Their
model consists of a fixed number of dealers who set limit prices at which they

SFor example, in a comprehensive analysis of the seminal Santa Fe model of
Arthur et. al., Wilpert (2003) observes that the decay of the auto-correlation of
both volatility and volume is exponential rather than hyperbolic. Interestingly, re-
sults become ‘better’ if one includes typical elements of chartist/fundamentalist
interaction.
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are prepared to buy or sell stocks. These thresholds are then modified dy-
namically in reaction to past price trends. Trades occur when the difference
between the maximum buy price and the minimum sell price is positive. The
market price is recorded as the average between the marginal bid and ask.
Since traders are assumed to follow the tendency of the market with their
reservation prices, a self-amplifying mechanism comes into play. Its approxi-
mation via a stochastic difference equation leads to a structure similar to eq.
(11). Without any further restriction, realistic exponents can be generated
if the parameters of the model are appropriately chosen. Similar feedback in
similar models brought about the same result in the framework of Bak et
al. (1997). In the following, I review in more detail three dominant types of
behavioral models which cover a large part of the hitherto available literature.

IV.2 Models Inspired By Statistical Physics

Cont and Bouchaud’s (2000) model adopts a lattice-based percolation frame-
work in which clusters of agents with synchronized behavior are formed. Al-
lowing the clusters to enter on the demand or supply side of the market (with
identical probability a) or to stay inactive (with probability 1-2a) and adding
a typical price adjustment equation for the reaction on imbalances between de-
mand and supply one gets the following dependence of returns on the current
configuration of clusters:

Pt — Pt—1
13 ret—iwg n~s—§ Ng - S,
(13) ! Pt—1 ° °

buy sell

with s the cluster sizes and ng the average number of clusters containing
n sites on both the demand and supply side of the market. With this type
of framework, it follows for small a that returns will inherit the well-known
scaling law of the cluster size distribution which has been studied extensively
in statistical physics. As Sornette, Stauffer and Takayasu (2002) put it in their
sympathetic review of this approach: “This percolation model thus applies
physics knowledge collected over decades, instead of inventing new models for
financial fluctuations.”

Despite being a known candidate for generating power-laws, the perco-
lation model has its shortcomings: first, in the basic variant described here
it is without memory and, hence, unable to produce volatility correlations.
Second, quite the opposite of multiplicative random processes, the percola-
tion model is not a generic power-law mechanism, it rather needs fine-tuning
so that the probability for connection of lattice sites, say ¢, is close to the
so-called percolation threshold, a critical value above which an infinite cluster
(i.e. a cluster spanning the entire lattice) appears. What is more, the power-
law emerging in Cont and Bouchaud’s case of infinite connections between
sites is unrealistic: it leads to a power-law index 1.5, some way apart from the
“universal cubic law”. Finite-size effects and variations of parameters could
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generate alternative power-laws anywhere between the Levy and the Gaussian
regime, but finding a cubic law would necessitate a particular choice of model
design (e.g. ¢ slightly above g, cf. Stauffer and Penna, 1998).

The well-known structure of percolation models in physics and wide-spread
availability of pertinent simulation software has motivated a large number of
variations on the Cont-Bouchaud topic. It has been shown that autocorrela-
tion of volatility (and possibly of volume, too) can be obtained by sluggish
evolution of cluster configurations over time (Stauffer et al., 1999). Similarly,
if clusters dissolve or amalgamate after transactions, more realistic return dis-
tributions can be obtained (Eguiluz and Zimmermann, 2000). Additionally,
fundamental values and feedback from market prices have been introduced
to make the model more realistic (Chang and Stauffer, 1999). Focardi et al.
(2002) consider latent connections which only become active in certain times,
while Tori (2002) investigates an Ising-type lattice model with interaction be-
tween nearest neighbors, but without the group dynamics of the percolation
approach. Still, one of the major drawbacks of this whole class of models
is the extreme dependence of the resulting power laws on carefully adjusted
parameters near criticality. Whether and how the market might self-organize
towards these critical points remains unclear. Though sweeping a system back
and forth through these critical states might yield an interesting perspective
(Stauffer and Sornette, 1999), a behavioral underpinning of such a mechanism
is missing.

Another recent model rooted in the statistical physics literature offers a
very different avenue towards an explanation of financial power laws: Gabaix
et al. (2003) provide a theoretical framework in which egs. (1), (2), (4) and
(5) are combined with the additional empirical observation of a Zipf law for
the size distribution of mutual funds and a square root relationship between
transaction volume and price changes (Ap ~ V°?). In this theory, scaling of
price changes according to the cubic law (1) results from scaling of trans-
actions which in turn is a consequence of the Zipfian size distribution of
big investors. This explanation via multiple transmissions of power laws be-
tween various economic quantities is actually quite different form all other be-
havioural models. Since the ultimate source of financial power laws in Gabaix
et al. is, therefore, the (exogeneous) Zipf distribution of large investors, this
view is somewhat similar to the efficient market hypothesis (which attributes
the power laws to the exogenous news arrival process), while all other models
rather view these laws as an emergent manifestation of the intrinsic dynamics
of speculative markets.

IV.3 Interaction Models of Financial Markets

One of the sources from which interacting agent models have developed is
incorporation of herding and contagion phenomena into economic models. A
first approach in this direction is Kirman (1991, 1993) who adapts a simple
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stochastic model for information transmission in ant colonies. While the origi-
nal set-up has ants exchanging information about the direction of food sources,
the adaptation to a financial setting replaces them by foreign exchange dealers
exchanging information about the accurateness of chartist and fundamental-
ist predictions of exchange rates. Agents who meet other traders adopt their
strategy with a certain probability, but may also undergo autonomous changes
of opinion without interaction. Similar models with interpersonal influences
have been proposed by Lux (1995, 1997, 1998), Lux and Marchesi (1999, 2000),
Chen et al. (2003), Aoki (2002) and Wagner (2003).

Alfarano and Lux (2004) have a stripped down version of an extremely
parsimonious herding model which still appears to do the job of generating
appropriate power laws for returns and volatility. They again assume that
two different groups interact in the market: the well-known fundamentalists
and a second group denoted by noise traders who are assumed to follow the
current mood of the market. While the first group simply trades on the base
of observed mispricing (i.e. differences between price p and fundamental value
py), noise traders are assumed to be influenced by contagion dynamics. They
are optimists (buyers) or pessimists (sellers) and switch between both sides of
the market with simple probabilities reflecting the influence of the majority
opinion:

(14) prob(O — P) = 1/&, prob(P — O) = V&
N N

with Np(Np) the number of pessimistic (optimistic) agents, v a time-
scaling parameter and N = Np + Np.

Adding up excess demand by both fundamentalists and noise traders, the
overall difference between demand and supply can be written as:”

No — N,
(15) ED = Tx(ps — p) + Tex, T = %

with T, Tc constants determining the trading volume of fundamental-

ists and noise traders (aka chartists). Assuming that market equilibrium is
attained instantaneously, one can solve for the equilibrium price:

T
(16) p=ps+ T
As can be seen from (16), price changes are generated by both (i) exoge-
nous inflow of new information about fundamentals (py) and (ii) endogenous
changes in demand and supply brought about via the herding mechanism (i.e.
via changes of x). While traditional finance models only allow for the first
component (for x = 0, we would end up with eq. (8)) and, therefore, have to

"Since optimistic (pessimistic) noise trader would buy (sell), their net contribu-
tions to excess demand simply depends on the difference No — NN,,.
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trace back all features of returns to similar features of fundamentals, behav-
ioral finance models give a role to the intrinsic dynamics of financial markets.
While this structure is similar to the RE bubble model (eq. 9), in contrast to
rational bubbles the second component in eq. (16) does not have to obey a
restriction for the rationality or consistency of expectations.

As illustrated in a typical simulation in Fig. 3, these few ingredients de-
tailed above are sufficient to produce relatively realistic time series for returns
whose distributional and temporal characteristics are quite close to empirical
findings. What is the reason for this outcome? The herding mechanism of eq.
(14) produces a bi-modal limiting distribution for the fraction of noise traders
in the two groups of optimistic and pessimistic traders. Most of the time, one,
therefore encounters a majority of the noise traders on either the supply or
demand side of the market (which goes along with undervaluation or over-
valuation of the asset price). However, the stochastic nature of the process
also leads to recurrent switches from one majority to another. During these
periods, large swings in average opinion lead to an increase of volatility which
will last for some time until a lock-in occurs again to a stable optimistic or
pessimistic majority.
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Returns from Alfarano/Lux model
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Fig. 3. Typical simulation of the model by Alfarano and Lux (2004). The driving
force of this model are stochastic transitions of agents between trading strategies
which lead to switches between high and low volatility episodes. The models can
reproduce the phenomenological appearance of empirical series (see Fig. 1) to some
extend and could also give the impression of power laws under standard statistical
tests. However, it does not generate ‘true’ power laws in returns and volatility, but
only apparent scaling behavior.

However, as outlined in Alfarano and Lux (2003), at least the temporal
scaling of volatility in this model does not follow a true power-law. Because
of the Markovian structure of the model, no ‘true’ long-term dependence can
exist, although standard tests are typically unable to distinguish between the
apparent power-law behavior of this model and true power-law behavior. Sim-
ilar pre-asymptotic, spurious scaling might occur in the very similar models of
Kirman (1991) and Kirman and Teyssiere (2002). Wagner (2002) shows that a
more detailed statistical analysis reveals differences between volatility scaling
in real-life markets and the behavior of these simple models. For instance,
the volatility clusters within a time window are all of the same size in these
toy models and small size clustering while observed in empirical time series is
absent in the simulated data.

Certain refinements of this approach provide simulated time series which
come closer to empirical observations. Aoki (2002) considers a stochastic pro-
cess of interaction of chartists and fundamentalists with entry and exit of
traders and also achieves to derive a stochastic difference equation for the
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ensuing returns dynamics with a tail index g > 1. Finally, Carvalho (2003)
demonstrates that one can even do without chartist traders or similar self-
reinforcing feedback in price formation. Even when only fundamentalists are
present in the market, a multiplicative noise structure can result. Letting fun-
damentalists react on the difference between market returns and changes of
fundamentals, and attributing to them identical market power but allowing
for activation of each trader with a certain probability only, suffices to gener-
ate a multiplicative stochastic process via the probability distribution of the
number of active traders and, hence, produces power law behavior of returns.

Another extension of the simple herding dynamics presented above is the
earlier model of Lux and Marchesi (1999, 2000), who add transitions be-
tween noise traders and fundamentalists depending on the profitability of both
strategies. Lux and Marchesi show that this relatively complex set-up could
reproduce empirically realistic scaling laws for both returns and volatility
in rather good numerical agreement with empirical data. Various sensitivity
analyses also indicate that the numerical results are not very sensitive with
respect to parameter variations. Furthermore, an analytical approximation
via the Master equation framework adopted from statistical physics suggests
a general robustness of the qualitative appearance of the dynamics. The char-
acteristic switches between tranquil and volatile phases are triggered by re-
curring temporal deviations from an otherwise stable equilibrium in which the
price is close to its fundamental value. The mechanism is this: in the neigh-
borhood of the equilibrium, neither mispricing nor any detectable patterns in
the price trajectories exist so that neither the chartist nor the fundamentalist
strategy has an advantage. Agents, then, switch between these alternatives in
a rather unsystematic manner which makes the population composition (in
terms of strategies) follow a random walk. However, stability of the fundamen-
tal equilibrium depends crucially on the ratio of chartists and fundamentalists.
This is an insight from practically all models with chartist-fundamentalist in-
teraction and it also features prominently in the Lux/Marchesi framework®.
The random walk in strategy space now makes the population sweep over this
threshold every once in a while creating an onset of volatility.”?

In fact, the deterministic approximation of the dynamic system shows that
one can interpret the number of chartists and fundamentalists as a critical
parameter of a simpler system in which changes of this variable lead to move-
ments back and forth through a Hopf bifurcation scenario. What happens fits
the definition of so-called on-off intermittency in physics which describes a dy-
namic system undergoing phases of temporal (intermittent) bursts of activity
when the variation of one dynamical variable moves it through the bifurcation
point of another dynamic variable. Typical examples are chaotic attractors
coupled to stochastic motion or coupled oscillators (cf. Ott and Sommerer,

8For each combination of parameters, a threshold value can be computed for the
fraction of chartists beyond which a loss of stability occurs.
9An illustration of the resulting dynamics is provided in Fig. 4.
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1996, Venkatamarani et al., 1990). Time series produced in this literature are
often perplexingly similar to the phenomenological appearance of volatility
clustering in financial data and several fractal properties of the time series
have been analyzed in the above papers (albeit the ones of particular interest
in finance are not discussed in this literature). Although no theoretical results
are available so far for the model of Lux and Marchesi (1999), recent results on
some simpler versions (Alfarano, Lux and Wagner, 2004) suggest that under
some circumstances, interacting agent models of this type can generate true
power laws for returns and volatility.

Returns from Lux/Marchesi Model
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Fig. 4. Typical simulation of the model by Lux and Marchesi (1999). Here switching
between the groups of chartists and fundamentalists is allowed in addition to the
herding within the later group featuring in Alfarano and Lux (2004). As is clearly
visible, large fluctuations occur if the majority of traders adopts the chartist strategy.
Again, the phenomenology of the model comes close the empirical power-laws of sec.
2. Lux and Marchesi (1999) report estimates of power-law stochastic in agreement
with the empirical stylised faxts (eq. (1) and (2)). However, it is currently still
unclear whether it produces ‘true’ or only apparent power laws.

Lux and Marchesi (1999, 2000) argue that irrespective of the concrete de-
tails of the model, the indeterminateness of the population composition in
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a market equilibrium might be a relatively general phenomenon (because of
the absence of profitability of any trading strategy in such a steady state
situation) and together with dependence of stability on the population com-
position, potential on-off intermittency should exist in a broad class of behav-
ioral finance models. Some support for this argument is provided by Lux and
Schornstein (2004) who consider a quite different multi-agent design of a for-
eign exchange market with agents endowed with artificial intelligence (genetic
algorithm learning). They point out that a similar scenario like in Lux and
Marchesi prevails in this framework which also generates behavior close to
realistic power-laws in simulated data. Similarly, Giardina et al. (2002) allow
more general strategies than Lux/Marchesi, but also find a random walk in
strategy space to account for the emergence of realistic dynamics.

There is one important shortcoming of this whole class of models: their
outcome usually depends in a sensitive way on the system size (i.e., the num-
ber of agents operating in the market). With the increase of the size of the
population, the nice dynamic features and power-law statistics get lost (cf.
Egenter et al., 1999). The reason is that with an increasing number of au-
tonomous agents, a law of large numbers comes into play and the stochastic
dynamics effectively becomes equivalent to draws from a Normal distribution.

IV.4 Another Mechanism: Switching between Predictors and
Attractors

A closely related approach has emerged from an adaptation of the seminal
random utility framework for empirical analysis of discrete choice problems'®
(Manski and McFadden, 1981) for formalizing - again - the interplay of the
notorious chartists and fundamentalists in speculative markets. This approach
dates back to Brock and Hommes (1997) but its potential to generate realistic
time series has only recently been revealed. Models of this type are very close
in terms of economic intuition to those reviewed in the previous section, but
have a somewhat different flavor from a dynamic systems perspective.

Let us illustrate the basic ingredients of these models via an example
along the lines of Gaunersdorfer and Hommes (2003). Our starting point is
the distinction between different groups of traders (mostly two) whose excess
demand for a risky asset depends on their group-specific expectation of future
price investments and dividends:

Eit[pr1 +dip1 — (1 +7)pe]
po?

(17) ED;; =

with ED;;: demand of group i at time ¢, p;: the price, d;: the dividend,
r: the risk-free rate available for a riskless asset (i.e. government bonds), pu:
a parameter of risk aversion, and ¢? the variance of the expectation term
in the numerator. Eq. (17), therefore, formalizes demand depending on the

OFor example, choosing the preferred one from two or more brands of whiskey.
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risk-adjusted excess returns (the sum of dividends and capital gains) of a
risky over a riskless investment. Economists know that this kind of demand
function can be derived from simple mean-variance utility functions as well as
from negative exponential utility functions under a few additional conditions.
With some effort, the more phenomenological excess demand function of the
previous chapter could also be cast into such a framework.

If there is no additional inflow of assets (no new issues for the time being),
market equilibrium simply requires that:

(18) ZnuEDi,t = 0,

with n;; the fraction of market participants subscribing to strategy i at
time t. Allowing only for agents who compare the expectation of future price
and distributions according to eq.(7), we would once more fall back on the
fundamental price of eq. (8). However, introducing ‘non-rational’ speculative
strategies deviations from this fundamental valuation become possible. As
an example, Gaunersdorfer and Hommes (2003) analyze a model with two
groups, ¢ = 1,2, using different expectation formation rules:

E1 i [pir1] = vy +v(pe—1 — py)s
(19) Esi[pes1] = pe—1 +Y(pe—1 — pe—2),

together with stationary expectations of dividends E1 ¢[diy1] = Ea¢[di+1]
= d. Clearly, group 1 can be identified as a fundamentalist crowd while group
2 has a chartist prediction technique. The discrete choice framework comes
into play when modeling the choice of one of these two predictors by the
agents in the market. Like in Lux/Marchesi, choice of strategies is governed
by objective economic factors. Gaunersdorfer and Hommes use accumulated
profits:

(20) T =Ry - ED; 1 + pmi—1

where R; is the actual return achieved with investment in the period before
and p is a parameter for the memory of past profitability. Other papers use
risk-adjusted profits or utility measures instead of monetary profits as fitness
criteria. However, it does not appear from the available literature that these
choices would lead to grossly different outcomes. The last step is predictor
choice based on the fitness criterion:

exp(Bmiye)
21 Nipgl] = el
@1) LS S op(Bra)
1

i.e. through the standard discrete choice formalization. 3 is called the
intensity of choice with the extreme cases § = 0 (8 — o0) leading to constant
fractions equal to 0.5 or total polarization (one n;, = 1, all others equal to
zero if the slightest differences in fitness exist). Often, as in Gaunersdorfer
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and Hommes (2003), additional factors enter the determination of fractions
Nt

Formally, the combined dynamics of predictor choice and price develop-
ment make up a discrete deterministic system (in the above example it is
a difference equation system of order three). Typically one would be able
to derive analytical results concerning the number of possible equilibria, lo-
cal stability conditions and bifurcations of the system dynamics. Because of
the highly non-linear nature of these systems, many kinds of complex dy-
namics can arise: limit cycles, chaotic dynamics, homoclinic orbits as well as
co-existence of different types of attractors may all happen for different sets of
parameters. The later scenario is of particular interest and can be character-
ized as another type of ‘intermittend dynamic behaviour’: when two or more
attractors exist for the deterministic system, adding noise (random shocks)
superimposed on the deterministic dynamics may trigger switches between
different basins of attraction of different limiting sets. For example, with co-
existence of a fixed point-attractor and a limit cycle, the stochastic movements
between both types of dynamics also goes along with switches between tur-
bulent and tranquil market phases. An illustration is provided in Fig. 5 which
exhibits a simulation of the example given by Gaunersdorfer and Hommes
(2003). Quite intuitively plausible, the market exhibits small fluctuations as
long as it hovers within the basin of attraction of the locally stable fixed
point (where the price is equal to the fundamental value on average) and the
majority of traders chooses a fundamentalist strategy, but onset of more vio-
lent fluctuations occurs once it traverses to the basin of the limit cycle (with
its cyclic dynamics being governed by a prevailing chartist attitude). As can
be seen from the resulting dynamics of returns, at least for certain choices
of parameter values, the deterministic origin of the process is almost entirely
concealed by its stochastic components. As Gaunersdorfer and Hommes show,
a number of statistics give quite satisfactory agreement between their simu-
lated data and empirical records. Although they do not estimate power law
indices, it seems natural from the simulated time series that their process
should be able to mimic the hyperbolic decay of the returns distribution and
the long-term dependence of volatility.

Further examples are given by Gaunersdorfer (2001) who has a slightly
different model set-up which could even lead to coexisting fixed points and
chaotic attractors. Other recent contributions along very similar lines are
Chiarella and He (2002, 2003), Fernandez-Rodriguez et al. (2002), Westerhoff
(2003), and De Grauwe and Grimaldi (2003). The latter paper has an interest-
ing variation of the attractors-switching avenue to intermittent fluctuations:
introducing transaction costs for the acquisition of fundamental information
they obtain a band of inactivity of fundamentalists around the fundamental
equilibrium. The price process, then, follows different patterns inside and out-
side of this transaction cost band which apparently also generates intermittent
volatility clustering. Both De Grauwe and Grimaldi and Westerhoff estimate
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Returns fram Gaunersdorfer/Hommes model
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Fig. 5. Typical simulation from the model of Gaunersdorfer and Hommes. Similarly
to the Lux/Marchesi model, large fluctuation are triggered by a chartist majority.
However, here transitions between periods with fundamentalist and chartist dom-
inance are sharper corresponding to the rather sudden change between attractors
pointed out in the text. The model also reproduces the clustered volatility of em-
pirical records but due its origin from a deterministic dynamics with additive noise
will probably not generate ‘true’ power laws.

the tail indices for large returns and obtain numbers in agreement with the
stylized facts, i.e. numbers in the vicinity of the cubic power law.

One of the distinguishing features of the above contributions is the as-
sumption of an infinite population of speculators which allows to study the
resulting dynamics via systems of deterministic difference equations derived
for the infinite population limit. While this is an approach very much in line
with traditional economic theorizing, it gives these models a somewhat dif-
ferent flavor compared to the finite-size multi-agent models reviewed before.
In particular, the interplay of noise and deterministic factors is quite differ-
ent in both approaches: while noise appears on the level of each individual
agent in, for instance, percolation models or the Lux/Marchesi model throught
the transition probabilities (eg. 14), the inherent fluctuations of the discrete
choice approach are averaged out by the assumption of an infinite population
in Gaunersdorfer and Hommes (2003). Thence, despite the randomness at the
level of the agents and the use of random choice probabilities, eq. (21), for in-
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stance, becomes a deterministic equation under the assumption of an infinite
population. The noise component responsible for the switches between attrac-
tors has, therefore, to be superimposed on the market dynamics and enters on
the level of the macroscopic system by, for example adding a stochastic term
in the excess demand equation (18). However, this implies that the noise level
has to be relatively large to obtain the results exhibited in Fig. 5. In fact,
inspection of the simulations of this example shows that the added stochastic
component in market excess demand is of almost the same size like fundamen-
talists’ average excess demand (with chartists’ average excess demand being
equal to the sum of the two other components). In simulations with realistic
time series properties, the ‘signal-to-noise ratio’ in this model is, therefore,
practically equal to one. With hindsight, this may be a necessary requirement
for obtaining ‘realistic’ time series as a high noise factor will be required to
mask the inherent deterministic forces prevailing around both the fix point
equilibrium and the limit cycle regime. Since, on the other hand, the noise
level should not be too high so to not totally dominate the deterministic roots
of the dynamics, the variance of the added stochastic term is probably a cen-
tral ingredient of the model.

V. Conclusions

In contrast to one recently articulated opinion (Durlauf, 2003) power laws in
finance have never been regarded as curiosities. On the contrary, both the
scaling of the tails of the distribution of returns and the long-range depen-
dence of volatility are all-important to practitioners and have motivated a
vast statistical and econometric literature. Much of the development of the
toolbox in empirical finance is due to these apparently universal properties of
financial markets (with Engle’s family of ARCH models the most prominent
example). It is, however, also true that economic theory has been altogether
silent on behavioral roots of these regularities until very recently. Besides hav-
ing been regarded as merely statistical findings outside the realm of economic
theory, typically they have mostly been described in a more phenomenolog-
ical way via the shape of histograms or the apparent clustering of tranquil
and turbulent episodes. While a power-law perspective has already appeared
in Mandelbrot’s seminal contribution (1963), whether it is really a power law
has remained unclear until the nineties. By now, availability of high-frequency
data and new analytical tools have led to a consensus of a relatively uniform
exponent around three which seems to hold across markets, countries and
time periods. Similarly homogeneous evidence is emerging for the long-range
dependence of both volatility and volume.

Theoretical work trying to explain these features has followed diverse ways.
As depicted in Table 1 we can, in principle, distinguish between exogenous and
endogenous approaches for explaining financial power-laws. The first class has
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only been dealt with in passing in the main text: its major member is the whole
body of traditional efficient market models in finance which would have to
attribute all time series properties of financial returns to the structure of news
about fundamental factors. In this view, scaling in returns and volatility would
only mirror scaling in increments and fluctuations of fundamental information.
Needless to say, many proponents of behavioral models take the unsatisfactory
nature of this explanation as their starting point. An interesting alternative
exogenous explanation can be found in the recent paper by Gabaix et al.
(2003) who derive the cubic law for returns from Zipf’s law for the capital
of large investors plus some other ingredients. However, the empirical basis
of this theory has already been questioned by careful analysis of some of its
ingredients. Even if it would go through it would leave one with an unexplained
Zipf’s law for the wealth of investors from which the other power laws are
derived.

Most papers on the topic have, however, pursued a different approach
focusing on the intrinsic dynamics of speculative interaction in financial mar-
kets. The first example in this second class is the RE bubble theory which,
in fact, emerges from relaxation of a minor technical condition of traditional
present value models. Although it has the fascinating property of defining a
whole class of data-generating processes with generic power laws, numerically
these laws are disappointingly far off from the empirical ones. The conclusion
to be drawn from this result is that we can exclude this whole class of fully
rational models of speculative activity. This leaves one essentially with either
the choice of subscribing to the Efficient Market Hypothesis of price forma-
tion being exclusively governed by fundamentals, or resorting to one or the
other brand of models of speculative activity with bounded rationality. Within
the recent econophysics literature, percolation models adopted from statisti-
cal physics have attracted the interest of a sizable number of researchers.
Their disadvantage is the lack of robustness: the model parameters have to be
fine-tuned to arrive at the required power-laws. As another drawback, most
parameters in these models are not easy to interpret, so that an economic
assessment of the explanatory power of the resulting dynamics at the critical
percolation threshold is difficult.

In the behavioral finance literature, several types of models with inter-
action of different trader groups have been proposed. Typically, interesting
time series are obtained from some kind of ‘intermittent’ dynamics. A general
conclusion from this body of literature is that some kind of self-amplification
of fluctuations via herd behavior or technical trading is necessary (and often
sufficient) to generate time series which are phenomenologically close to em-
pirical records. One of the more important problems of these models is the
relationship between system size, deterministic forces and stochastic elements.
On the one hand, typical simulation models suffer from a critical dependence
of their ‘nice’ results on the number of agents operating in the market. Mod-
els starting with an infinite population, on the other hand, have to adjust the
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noise level in a way to counterbalance the deterministic core of their market

dynamics.
Class of Models Source of Power Law [Problems
Traditional finance fundamentals fundamentals are un-
Exogenous observable
explanations |Gabaix et. al (2003) |Zipf’s law for invest-|neglect of behavioral
ment capital roots? empirical valid-
ity
RE bubbles multiplicative dynam-|unrealistic exponents
ics
Percolation  models,|cluster formation power laws not robust
e.g. Cont/Bouchaud
Endogenous (2000)
explanations |Multi-agent  models,|intermittent dynamics |sensivity with respect
e.g. Lux/Marchesi to number of agents
(1999)

Discrete choice mod-
els, e.g. Gaunersdor-
fer/Hommes (2003)

switching between at-
tractors

sensivity with respect
to noise amplitude

Table 1. Sources of Power Laws in Finance
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The recent introduction of concepts and models from statistical physics
has also evoked interesting methodological discussions: while physicists force-
fully argue in favor of building simple models of interacting economic agents
and neglecting as far as possible details which are not in the center of interest
(cf. Stauffer, 2003), some economists have criticized this approach for produc-
ing models that are not economically insightful (Durlauf, 2003). Of course,
parsimony is also a concern in economic modeling. However, physicists and
economists would often differ in their assessment of the essential model in-
gredients a truly parsimonious model should contain: while physicists would
favor interactions, economists would traditionally prefer to emphasize the mi-
croeconomic foundations of agents’ behavior. However, having to begin with a
full-fletched microeconomic optimization approach makes modeling of interac-
tions superimposed on the traditional microstructure an even more demand-
ing task. It could also restrict the outcome by adhering to particular forms
of utility functions, ways of information acquisition and information process-
ing, trading strategies etc. The relative success of several simple models in
explaining a good degree of the hitherto unexplained empirical characteristics
of financial data casts doubts on the paradigm of micro-foundations in the
sense of ‘representative’ individual optimization of agents in economic models
(which is a classical example of a reductionist approach). Although analysis
of individual optimization is in no way unimportant, exclusively focusing on
this aspect of economic life comes with the danger of neglecting the equally
important consequences of both market - mediated and social interactions of
market participants.
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