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Abstract

We study single period asset allocation problems of the investor who maxi-

mizes the expected utility with respect to non-additive beliefs. The non-additive

beliefs of the investor model the presence of an uncertainty and they are assumed

to be consistent with the Maxmin expected utility theory of Gilboa and Schmei-

dler (1989). The proportional transaction costs are incorporated into the model.

We provide the explicit form solutions for the bounds of no-transaction regions

which completely determine the optimal policy of the investor.
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Introduction

The interest in an investigation of investors’ behavior dominates in finance during the

last decades and the main topic of this research is the asset allocation problem. The

dominant theory in this field is subjective expected utility theory (SEU), which was

developed by Savage (1954). Since Knight (1921) has made a distinction between risk

and uncertainty these notions form the basis of modern theories of decision making.

According to Knight, the notion of risk relates to the situations where a probability

measure can represent the likelihoods of events while uncertainty refers to cases when

an investor has an incomplete information to assign probabilities to events. SEU was

the first theory which tried to model such a distinction. Elsberg’s paradox (Ellsberg

(1961)) demonstrates, however, that it has many disadvantages and does not take into

account the fact that the beliefs of the investor might not be additive. This argument

shows that SEU is not an appropriate model of decision making under uncertainty.

Alternative models and possible extensions of SEU in the direction of modelling un-

certainty have been proposed by Schmeidler (1989) and Gilboa and Schmeidler (1989),

who model investor’s beliefs as non-additive subjective probabilities (capacities) and

sets of additive probabilities, respectively. In his Choquet expected utility (CEU)

Schmeidler provides an axiomatic foundation and a mathematical representations of

investor’s preferences, using a notions of expectation due to Choquet (1953). Gilboa

and Schmeidler (1989) develop the Maxmin expected utility theory (MMEU) char-

acterizing preference relation over acts which have a numerical representation by the

functional of the form V (X) = min
Q∈P

EQ(U(X)), where X is an act, U : R+ → R+ is a

von Neumann-Morgenstern utility (von Neumann and Morgenstern (1944)) and P is

a set of probability measures. In fact, MMEU theory of Gilboa and Schmeidler is a

partial case of more general Choquet expected utility framework. On the other hand

it can be regarded as robust to the model misspecification. The investor consider, in

some sense, the neighborhood of possible distributions, defined by the set of priors, and

makes a decision based on the worst case of possible distributions of the risky asset.

However, there are no so many application of the Choquet utility theory for the

portfolio selection models in the literature. Dow and Werlang (1992) were the first who

applied the Choquet expected utility model of Schmeidler (1989) for the asset allocation
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problem and found out an important implications of Schmeidler’s model. They showed

that, in the model with one risky and one riskless asset, there is a non-degenerate

price interval at which the investor will strictly prefer to take zero position in the risky

asset. In contrast to this, in the traditional expected utility theory the non-degenerate

price interval is reduced to the point. Carlier and Dana (2003) investigate behavior

of the investor within CEU framework. An example of capacity which they use in

the investigation is a distorted probability — a composition of a continuous increasing

function h : [0, 1] → [0, 1] and a probability measure P0, i.e. ν(A) = h(P0(A)) for every

event A. They obtain the result that under some conditions on the stock price the

optimal policy for the investor is to set a weight of stocks in his/her portfolio equal

to zero. Similar non-degenerate price region has been derived by Dow and Werlang

(1992).

In this paper we solve the decision making problem within the MMEU approach

in the economy with one riskless asset and one risky asset, which pays no dividends.

Returns of the risky asset are assumed to be normally distributed. Although the nor-

mal distribution can not describe the behavior of high-frequency data, monthly stock

returns could be modeled by normally distributed random variables. An appropriate

model for the high-frequency data is GARCH process therefore these results are also

useful for models conditionally normal distributions for the returns of risky asset.

It is shown that analogical to Dow and Werlang (1992) and Carlier and Dana (2003)

results also have place and the explicit form of price no-trade condition is given.

In order to provide a model which is more relevant to real markets we incorpo-

rate proportional transaction costs under consideration. As it turned out that the

no-transaction region for the investor who is MMEU maximizer has different forms de-

pending on distributions of assets prices. The main contribution of the paper is that we

derive explicit formulae of optimal policies and the bounds no-transaction region and

the dynamic of their changes with respect to parameters of assets prices distributions.

The investor’s attitude to the risk is represented by the exponential utility function

of the form U(x) = 1− e−γx, 0 < γ < 1. A special structure of the exponential utility

function allows us to derive explicit solutions of the investor’s problem. The ambiguity

is incorporated into the model by the set of priors. We consider all probability measures

in this set to absolutely continuous with respect to a predefined measure P0 and their
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Radon-Nikodym derivatives are assumed to be log-normally distributed under P0. It

is shown how incorporating the uncertainty into the model impacts optimal policies of

the investor.

The paper is organized as follows. Section 1 gives necessary definitions and prelim-

inary results which we use in the sequel. In particular, we provide a short description

of MMEU model. In the Section 2 we consider the single period asset allocation model

and derive its solution for the investor whose preferences are consistent with MMEU

framework. The proportional transaction costs are incorporated into the model in Sec-

tion 3. The main result, presented in this Section, is a derivation of different forms of

the no-transaction region depending on the parameters of the model. Section 5 briefly

summarizes the contributions of the paper.

1 Definitions and setup

Let us consider a state space (Ω,F), where F is an algebra on Ω. Denote by X the

set of acts, i.e. the set of all measurable function on (Ω,F). The object of study is

choice behavior relative to X . We postulate that there exists a preference relation º
on X consistent with the axioms of MMEU (see Gilboa and Schmeidler (1989)), that

is, there exist utility function U : R+ → R+ and a set of probability measures P on

(Ω,F) such that for every X,Y ∈ X

X º Y ⇒ V (X) ≥ V (Y ),

where the preference functional V can be represented as

V (X) = min
Q∈P

EQ(U(X)) (1.1)

for each X ∈ X . Here EQ denotes the expectation with respect to probability measure

Q.

Let us fix a measure P0 on (Ω,F). In order to simplify the research we assume that

all measures in P are absolutely continuous with respect to the measure P0. By the

Radon-Nikodym theorem for every measure Q ∈ P there exists a non-negative random

variable ηQ with EP0(ηQ) = 1, such that dQ = ηQdP0. Therefore, we can identify the

set P with the set of their Radon-Nikodym derivatives with respect to the probability
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measure P0. Let us assume that these derivatives are log-normally distributed. In the

sequel we need the following lemma.

Lemma 1.1. Every normally distributed under measure P0 random variable Z ∼
N(µ, σ2) is normally distributed under measure Q ∈ P.

Proof. We can express the Radon-Nikodym derivative of measure Q in the form

ηQ = eα+βZ+u, where u is zero-mean normally distributed random variable which is

independent from Z.

Let us consider the moment generating function MQ(s) = EQ(esZ) = EP0(e
sZ+ln(ηQ)).

Since random variables u and Z are independent we have that

MQ(s) = eαEP0(e
u)EP0(e

(s+β)Z) = eα+EP0
(u2)+βµ+β2σ2

2
+(µ+βσ2)s+ s2σ2

2 .

Let s = 0 and use the fact that EQ(1) = 1 to yield

MQ(s) = e(µ+βσ2)s+ s2σ2

2 .

This implies that Z ∼ N(µ + βσ2, σ2) under measure Q which completes the proof.

2 Portfolio optimization

Let us consider a model, where the investor makes his/her investment decisions in

the economy with one riskless asset (bond) and one risky asset (stock), which pays no

dividends. This model we use further in all sections. The rate of return of the riskless

asset here is denoted by r, the return of risky one is Z = µ + σε, and the random

variables ε are independent and normally distributed under the measure P0 with zero

mean and unit variance.

We restrict ourselves on the case of normally distributed stock return, first of all,

because this simplifies the research. Although, an empirical study gives us evidence

that stock returns are not normally distributed, one of possible explanations why we

use normal distribution in our model, is that there are a lot of results postulating that

the stock returns could be modelled by the GARCH process which has the conditional

normal distribution.

According to the Maxmin Expected Utility model the aim of the investor is to

maximize the preference functional (1.1) of his/her wealth at the end of the period.
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The set of priors P consists of the absolute continuous with respect to P0 probability

measures, whose Radon-Nikodym derivatives are P0-log-normally distributed.

In the sequel we assume that the investor’s attitude to the risk is represented by

the exponential utility function

U(x) = 1− e−γx, 0 < γ < 1.

Let us denote µ(β) = µ + βσ2. Due to Lemma 1.1 the preference functional (1.1)

in the context of our assumptions can be rewritten in the form

V (W ) = min
β∈[βmin,βmax]

EP0(U(W )),

where

W = W0((1 + r)(1− w) + w(µ(β) + σε)).

Here w denotes the proportion of the wealth invested in the risky asset. Since the

function µ(β) is linear we can change the argument of the minimization problem and

provide it with respect to the parameter µ, which belongs to the interval [µmin, µmax],

where µmin = µ(βmin) and µmax = µ(βmax).

Under such assumptions and notations we claim that the optimization problem for

the investor is

min
µ∈[µmin,µmax]

EP0(U(W (w))) →
w

max (2.1)

subject to the budget constraint

W = W0((1 + r)(1− w) + w(µ + σε)).

The following theorem gives an optimal strategy of (2.1).

Let Cmin = µmin − (1 + r) and Cmax = µmax − (1 + r).

Theorem 2.1. The optimal strategy of the investor is

wopt =





Cmin

γW0σ2 , if Cmin > 0,

Cmax

γW0σ2 , if Cmax < 0,

0, if Cmin ≤ 0 ≤ Cmax.
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Proof. Given w let us find a form of the preference functional V .

V (W (w)) = min
µ∈[µmin,µmax]

EP0(U(W (w)))

= 1 + min
µ∈[µmin,µmax]

EP0(−e−γW0((1+r)(1−w)+w(µ+σε)))

= 1 + e−γW0(1+r)e
γ2W2

0 σ2w2

2 min
µ∈[µmin,µmax]

(−e−γW0w(µ−(1+r))).

In order to find the min-value of the above equation we notice that the expression

∂(−e−γW0w(µ−(1+r)))

∂µ
= γW0we−γW0w(µ−(1+r))

is greater than or equal to 0 if w ≥ 0 and less than 0 if w < 0. Since possible values of

µ are bounded by µmin and µmax we conclude that the function

µ∗(w) =





µmin, w ≥ 0

µmax, w < 0
= argmin

µ∈[µmin,µmax]

(−e−γW0w(µ−(1+r))).

In fact, the explicit form of the preference functional is

V (W (w)) = 1− e−γW0(1+r)e−γW0(µ∗(w)−(1+r))w+
γ2W2

0 σ2w2

2 . (2.2)

Our aim, according to (2.1), is to maximize (2.2) with respect to w. It is worth to

notice that

lim
w→+0

V (W (w)) = lim
w→−0

V (W (w)) = 1− e−γW0(1+r), (2.3)

therefore V (W (w)) is a continuous function.

The function V (W (w)) is differentiable on w ∈ (−∞, 0)∪ (0, +∞) and its possible

extremal points are w′ = Cmin

γW0σ2 on (0, +∞), w′′ = Cmax

γW0σ2 on (−∞, 0) and w = 0.

Let us consider three cases. If Cmin > 0 then w′ ∈ (0, +∞) but w′′ /∈ (−∞, 0). This

fact and (2.3) imply that the global maximum of the preference functional occurs at

point w′ which is the optimal portfolio weight for the investor.

If Cmax < 0 then w′ /∈ (0, +∞) and w′′ ∈ (−∞, 0). Therefore the optimal strategy

in this case is wopt = w′′.

In the case if Cmax > 0 and Cmin < 0 there is the only maximum point w = 0 and

this means that is is optimal for the investor no invest all available wealth into the

bond. The theorem is proved.
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3 Model with Transaction costs

In this section transaction costs are incorporated in the model. As above, the portfolio

of the investor consists of a risky asset and a riskless asset. Before the investment

decision the investor owns x∗0 dollars in the risky asset and y∗0 dollars in the bond.

After making an additional investment of ∆ dollars in the stock, the agent incurs

proportional transaction costs θ|∆| for 0 ≤ θ < 1. The costs of transactions are

assumed to be charged to the riskless asset. Let us define

τ =





1, the investor buys stocks,

−1, the investor sells stocks,

0, the investor makes no transactions.

After the transaction the stock and bond holdings, which form the portfolio at the end

of period, become

x = x∗0 + τ∆,

y = y∗0 − τ∆− θ∆,

where ∆ ≥ 0 is the traded dollar amount of the risky asset.

The final portfolio holdings are then given by

x∗ = xZ = (x∗0 + τ∆)Z, (3.1)

y∗ = y(1 + r) = (y∗0 − τ∆(1 + τθ))(1 + r). (3.2)

Given the initial portfolio (x∗0, y
∗
0) the variables ∆ and τ represent a trading strategy

of the investor, whose objective is to maximize the preference functional

V (x∗(∆, τ) + y∗(∆, τ)) = min
µ∈[µmin,µmax]

EP0(x
∗(∆, τ) + y∗(∆, τ)) →

∆≥0,τ
max, (3.3)

subject to the bond and stock wealth dynamic (3.1) and (3.2). Here we want to

emphasize functional dependence of x∗ and y∗ on ∆ and τ .

Let us make the following notations:

Amin = µmin − (1 + θ)(1 + r), Amax = µmin − (1 + θ)(1 + r),

Bmin = µmin − (1− θ)(1 + r), Bmax = µmax − (1− θ)(1 + r).

The following theorems show how optimal policies for the investor depend on the

relations between these parameters.
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Theorem 3.1. Let Amin ≥ 0. Then the optimal strategy of the investor for the invest-

ment problem (3.3), (3.1) and (3.2) is given by

∆opt = Amin

γσ2 − x∗0 and τ opt = 1 if x∗0 < Amin

γσ2 ,

∆opt = −Bmin

γσ2 + x∗0 and τ opt = −1 if x∗0 > Bmin

γσ2 ,

∆opt = 0 and τ opt = 0 if Amin

γσ2 ≤ x∗0 ≤ Bmin

γσ2 .

Proof. Given µ one can rewrite the expected utility of the terminal wealth as

I(µ) = EP0(U(x∗ + y∗)) = 1− e−γ(x∗0µ+y∗0(1+r)) · EP0(e
−γτ∆D−γσ(x∗0+τ∆)ε)

= 1− e−γ(x∗0µ+y∗0(1+r)) · e−γτ∆D · eγ2σ2(x∗0+τ∆)2 ,

where D = µ− (1 + τθ)(1 + r).

In order to find the form of the preference functional V (x∗ + y∗) we should solve

the minimization problem

I(µ) →
µ∈[µmin,µmax]

min

with respect to µ. The derivative

∂I(µ)

∂µ
= γ(x∗0 + τ∆) · e−γ(x∗0µ+y∗0(1+r)) · e−γτ∆D+

γ2σ2(x∗0+τ∆)2

2 .

Thus, ∂I(µ)
∂µ

≥ 0 if x∗0 + τ∆ ≥ 0 and ∂I(µ)
∂µ

< 0 if x∗0 + τ∆ < 0. Denote

µ(∆, τ) =





µmin if x∗0 + τ∆ ≥ 0,

µmax if x∗0 + τ∆ < 0
= argmin

µ∈[µmin,µmax]

I(µ). (3.4)

Hence, we conclude that

V (∆, τ) = 1− e−γ(x∗0µ(∆,τ)+y∗0(1+r)) · e−γτ∆(µ(∆,τ)−(1+τθ)(1+r))+
γ2σ2(x∗0+τ∆)2

2 . (3.5)

Let us note that the case ∆ = 0 is equivalent to τ = 0. Therefore for the case τ 6= 0 we

take under consideration only positive values of ∆. Given x∗0 the boundary conditions

V (0, 1) = V (0,−1) = V (∆, 0) (3.6)

are satisfied. At points with x∗0 + τ∆ = 0 the preference functional

V (∆, τ) = 1− e−γ(1+r)(y∗0−(1+τθ))

does not depends on µ(∆, τ) and, hence, is continuous function on [0, +∞)×{−1, 0, 1}.
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The derivatives of the preference functional are given by the expression

∂V

∂∆
=





τγLe−γ(x∗0µmin+y∗0(1+r))e−γτ∆Dmin(Dmin − γσ2(x∗0 + τ∆))), x∗0 + τ∆ > 0,

τγLe−γ(x∗0µmax+y∗0(1+r))e−γτ∆Dmax(Dmax − γσ2(x∗0 + τ∆))), x∗0 + τ∆ < 0,

(3.7)

where L = e
γ2σ2x2

2 , Dmin = µmin − (1 + r)(1 + τθ) and Dmax = µmax − (1 + r)(1 + τθ).

Let us consider the following four cases.

1). x∗0 ∈ (Bmin

γσ2 , +∞).

If τ = 1 we have that x∗0 > −∆. In this case the

∂V (∆, 1)

∂∆
= γe

γ2σ2x2

2 · e−γ(x∗0µmax+y∗0(1+r))e−γ∆Amin · (Amin − γσ2(x∗0 + ∆))) < 0

because of the fact that

−γσ2(x∗0 + ∆) ≤ −γσ2x∗0 ≤ −Bmin < −Amin.

If τ = −1 the derivative on the interval 0 < ∆ < x∗0 is

∂V (∆,−1)

∂∆
= −γe

γ2σ2x2

2 · e−γ(x∗0µmin+y∗0(1+r))e−γ∆Bmin · (Bmin − γσ2(x∗0 −∆))).

On this interval there exists the maximum which is the solution of the equation

∂V (∆,−1)
∂∆

= 0 and this point is

∆ = −Bmin

γσ2
+ x∗0.

On the semi-interval (x∗0, +∞) the function V (∆,−1) is decreasing. Indeed, x∗0 −∆ <

0 < Bmax

γσ2 implies that ∂V (∆,−1)
∂∆

< 0.

Continuity of the preference functional leads to the fact that the global maximum

is unique and the optimal strategy under the condition 1) is to sell ∆opt = −Bmin

γσ2 + x∗0

dollars of stocks.

2). x∗0 ∈ [Amin

γσ2 , Bmin

γσ2 ].

If τ = 1 we have that ∆+x∗0 > 0 therefore µ(∆, 1) = µmin. It is easy to see that the

inequality x∗0 ≥ Amin

γσ2 leads to the inequality ∂V (∆,1)
∂∆

< 0. Thus, the function V (∆, 1) is

decreasing.

If τ = −1 the inequality x∗0 ≤ Bmin

γσ2 also implies ∂V (∆,−1)
∂∆

< 0 and the function

V (∆,−1) decreases. Therefore, the only point of the maximum exists at ∆ = 0 which

determines the optimal policy of the investor, i.e. ∆opt = 0.
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3). x∗0 ∈ [0, Amin

γσ2 ).

We have that under this condition µ(∆, 1) = µmin and the equation ∂V (∆,1)
∂∆

= 0 has

a unique solution at point ∆ = Amin

γσ2 − x∗0.

If τ = −1 the inequality x∗0 ≤ Bmin

γσ2 < Bmax

γσ2 implies ∂V (∆,−1)
∂∆

< 0. Therefore, the

optimal policy of the investor is to buy ∆opt = Amin

γσ2 − x∗0 dollars of stocks.

4). x∗0 ∈ (−∞, 0).

In this case µ(∆,−1) = µmax for all ∆ ≥ 0 and as in the previous case x∗0 < Bmin

γσ2 <

Bmax

γσ2 implies ∂V (∆,−1)
∂∆

< 0.

In the another case µ(∆, 1) = µmax if ∆ < −x∗0 and µ(∆, 1) = µmin if ∆ ≥ x∗0. Since

Amax

γσ2 > 0 > x∗0 + ∆ we have that ∂V (∆,1)
∂∆

> 0 and the function V (∆, 1) is increasing on

the interval (0, |x∗0|). On the interval (|x∗0|, +∞) this function has the unique maximum

at the point ∆opt = Amin

γσ2 − x∗0.

The interval [Amin

γσ2 , Bmin

γσ2 ], where ∆opt = 0 is called no-transaction region. The op-

timal policy of the investor is completely determined by this interval. As long as the

amount of wealth invested in the stock is within the no-transaction region, the portfolio

is not adjusted. If this amount of wealth strays outside the bounds the transaction is

made to restore the amounts of stocks to the closest boundary of the no-transaction

region.

Theorem 3.2. Let Amin < 0, Amax ≥ 0 and Bmin ≥ 0. Then the optimal strategy of

the investor for the investment problem (3.3), (3.1) and (3.2) is given by

∆opt = |x∗0| and τ opt = 1 if x∗0 < 0,

∆opt = −Bmin

γσ2 + x∗0 and τ opt = −1 if x∗0 > Bmin

γσ2 ,

∆opt = 0 and τ opt = 0 if 0 ≤ x∗0 ≤ Bmin

γσ2 .

Proof. We prove this theorem similarly to the proof of Theorem 3.1. As a matter

of fact, some of cases are proved in the same manner.

1). x∗0 ∈ (Bmin

γσ2 , +∞).

If τ = 1 the derivative of the preference functional (3.7) is ∂V (∆,1)
∂∆

< 0 because

−γσ2(x∗0 + ∆) ≤ −γσ2x∗0 ≤ −Bmin < −Amin.

If τ = −1 the preference functional has a local maximum on the interval 0 < ∆ < x∗0
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at point

∆ = −Bmin

γσ2
+ x∗0.

which is the solution of the equation ∂V (∆,−1)
∂∆

= 0.

On the interval (x∗0, +∞) the function V (∆,−1) is decreasing due to the fact that

x∗0 −∆ < 0 < Bmax

γσ2 .

It turns out that the point ∆opt = −Bmin

γσ2 + x∗0, τ = −1 is the point of global

maximum of the preference functional and defines the optimal policy of the investor.

2). x∗0 ∈ [0, Bmin

γσ2 ].

Similar to case 2) in Theorem 3.1 the inequalities x∗0 ≥ Amin

γσ2 and x∗0 ≤ Bmin

γσ2 im-

ply that both of the functions V (∆, 1) and V (∆,−1) are decreasing and, hence, the

maximum of the preference functional occurs at the point ∆opt = 0.

3). x∗0 ∈ (−∞, 0).

If τ = −1 we have that x∗0 < Bmin

γσ2 < Bmax

γσ2 and this implies that ∂V (∆,−1)
∂∆

< 0.

If τ = 1 we get that µ(∆, 1) = µmax for ∆ < |x∗0| and µ(∆, 1) = µmin for ∆ > |x∗0|.
On the interval (0, |x∗0|) the inequality Amax

γσ2 > 0 > x∗0 + ∆ leads to the fact ∂V (∆,1)
∂∆

> 0.

On the semi-interval (|x∗0|, +∞) the inequality Amin

γσ2 < 0 < x∗0 + ∆ implies ∂V (∆,1)
∂∆

< 0.

Therefore the only maximum occurs at the point ∆opt = |x∗0|.
Under the assumptions of Theorem 3.2 the no-transaction region is [0, Bmin

γσ2 ]. Its

asymmetry can be explain by the non-additivity of the preferences of the investor.

Similar to the case without the transaction costs, where the no-trade condition is

Cmin < 0 < Cmax, the non-additivity in preferences makes an impact if Amin < 0 <

Amax.

Theorem 3.3. Let Amax < 0 and Bmin ≥ 0. Then the optimal strategy of the investor

for the investment problem (3.3), (3.1) and (3.2) is given by

∆opt = Amax

γσ2 − x∗0 and τ opt = 1 if x∗0 < Amax

γσ2 ,

∆opt = −Bmin

γσ2 + x∗0 and τ opt = −1 if x∗0 > Bmin

γσ2 ,

∆opt = 0 and τ opt = 0 if Amax

γσ2 ≤ x∗0 ≤ Bmin

γσ2 .

Proof. Similar to the previous theorems we consider three cases.

1). x∗0 ∈ (Bmin

γσ
, +∞).

It can be proved analogically to case 1) in Theorem 3.1 that the optimal for the

investor is to sell ∆opt = −Bmin

γσ2 + x∗0 amount of stocks.
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2). x∗0 ∈ [Amax

γσ2 , Bmin

γσ2 ].

The inequalities x∗0 ≤ Bmin

γσ2 < Bmax

γσ2 in the case τ = −1 and x∗0 ≥ Amax

γσ2 > Amin

γσ2 in

the case τ = 1 imply the functions V (∆, 1) and V (∆,−1) are decreasing and therefore

the interval [Amax

γσ2 , Bmin

γσ2 ] is a subset of the no-transaction region. This means that the

optimal strategy is ∆opt = 0.

3). x∗0 ∈ (−∞, Amax

γσ2 ).

In the case of τ = −1 the inequality x∗0 ≤ Bmin

γσ2 < Bmax

γσ2 leads to ∂V (∆,−1)
∂∆

< 0.

If τ = 1 the derivative on the interval 0 < ∆ < |x∗0| is

∂V (∆, 1)

∂∆
= γe

γ2σ2x2

2 · e−γ(x∗0µmax+y∗0(1+r))e−γ∆Amax · (Amax − γσ2(x∗0 + ∆))).

On this interval there exists the maximum which is the solution of the equation

∂V (∆,1)
∂∆

= 0 and this point is

∆ =
Amax

γσ2
− x∗0 > 0.

On the interval (−∞, |x∗0|) the function V (∆, 1) is increasing. Indeed, Amax

γσ2 < 0 <

x∗0 + ∆ which implies ∂V (∆,1)
∂∆

< 0. The optimal strategy in this case is to invest

additional ∆opt = Amax

γσ2 − x∗0 dollars in the stock. The theorem is proved.

As we can observe, the no-transaction region [Amax

γσ2 , Bmin

γσ2 ] in this case is much more

narrower that in previous cases.

Theorem 3.4. Let Amax < 0, Bmin < 0 and Bmax ≥ 0. Then the optimal strategy of

the investor for the investment problem (3.3), (3.1) and (3.2) is given by

∆opt = Amax

γσ2 − x∗0 and τ opt = 1 if x∗0 < Amax

γσ2 ,

∆opt = |x∗0| and τ opt = −1 if x∗0 > 0,

∆opt = 0 and τ opt = 0 if Amax

γσ2 ≤ x∗0 ≤ 0.

Proof. The idea of the proof remains the same as in the previous theorem. In fact,

the results of this theorem is symmetric to those of Theorem 3.2. Let us consider the

following possibilities.

1). x∗0 ∈ (0, +∞).

If τ = 1 we have the relationship x∗0 > Amax

γσ2 > Amin

γσ2 which implies that, according

to (3.7) and inequality x∗0 + ∆ > 0, ∂V (∆,1)
∂∆

< 0.

If τ = −1 we get that µ(∆,−1) = µmin for ∆ < x∗0 and µ(∆,−1) = µmax for

∆ > x∗0. On the interval (0, x∗0) the inequality Bmin

γσ2 < 0 < x∗0−∆ leads to the condition
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∂V (∆,−1)
∂∆

> 0. On the semi-interval (x∗0, +∞) the inequality Bmax

γσ2 > 0 > x∗0 + ∆

implies ∂V (∆,−1)
∂∆

< 0. Therefore, according to the continuity of the preference functional

V (∆, τ), the only maximum occurs at the point ∆opt = x∗0. For all this τ opt = −1.

2). x∗0 ∈ [Amax

γσ2 , 0].

The inequalities x∗0 ≥ Amax

γσ2 > Amin

γσ2 in the case τ = 1 and x∗0 ≤ Bmax

γσ2 in the case

τ = −1 imply that both of the functions V (∆, 1) and V (∆,−1) are decreasing on

(0, +∞) and, hence, the maximum of the preference functional occurs at the point

∆opt = 0.

3). x∗0 ∈ (−∞, Amax

γσ2 ).

If τ = −1 the derivative of the preference functional (3.7) is ∂V (∆,−1)
∂∆

< 0 because

γσ2(x∗0 −∆) ≤ γσ2x∗0 ≤ Amax < Bmax.

If τ = 1 the preference functional has a local maximum on the interval ∆ ∈ (0,−x∗0)

at the point

∆ =
Amax

γσ2
− x∗0.

which is the solution of the equation ∂V (∆,1)
∂∆

= 0.

On the interval (−x∗0, +∞) the function V (∆, 1) decreases because x∗0 + ∆ > 0 >

Amin

γσ2 .

It turns out that the point ∆opt = Amax

γσ2 − x∗0, τ = 1 is the point of global maximum

of the preference functional and defines the optimal policy of the investor. The theorem

is proved.

Theorem 3.5. Let Amin < Bmin < 0 < Amax. Then the optimal strategy of the investor

the investment problem (3.3), (3.1) and (3.2) is given by

∆opt = −x∗0 and τ opt = 1 if x∗0 ≤ 0,

∆opt = x∗0 and τ opt = −1 if x∗0 > 0.

Proof. The form of the preference functional and its derivatives is given in by (3.5)

and (3.7). As in the previous cases the optimal strategy depends on the value of initial

stock holdings of the investor.

1). x∗0 ∈ (0, +∞).
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If τ = 1 the derivative of the preference functional (3.7) is ∂V (∆,1)
∂∆

< 0 because

x∗0 + ∆ > 0 > Amin

γσ2 .

If τ = −1 the preference functional is increasing on the interval 0 < ∆ < x∗0 because

the inequality x∗0 −∆ > 0 > Bmin

γσ2 leads to the condition ∂V (∆,−1)
∂∆

> 0.

On the interval (x∗0, +∞) the function V (∆,−1) is decreasing due to the fact that

x∗0 −∆ < 0 < Bmax

γσ2 .

This means that the global maximum of the preference functional occurs at the

point ∆opt = x∗0 with τ = −1 which defines the optimal policy of the investor.

2). x∗0 ∈ (−∞, 0].

If τ = −1 the inequality x∗0−∆ < 0 < Bmax

γσ2 and equation (3.7) imply the inequality

∂V (∆,−1)
∂

< 0.

In the case τ = 1 the function V (∆, 1) increases on the interval (0,−x∗0) because of

the condition Amax

γσ2 > 0 > x∗0+∆. On the interval (−x∗0, +∞) this function is decreasing

due to the inequalities Amin

γσ2 < 0 < x∗0 + ∆. Therefore the only point of maximum of

the preference functional is ∆opt = −x∗0 with τ = 1.

Under the condition of the last theorem the no-transaction region is reduced to the

point 0. This means than the investor sells all stocks available in the initial portfolio.

This is optimal for him/her even paying transaction costs for this operation. The

condition Bmin < 0 ≥ Amax is analogous to the non-degenerate price condition of Dow

and Werlang (1992) and Carlier and Dana (2003).

4 Empirical example

In order to provide an example of described above models we consider a multiperiod

myopic decision-making procedure under proportional transaction costs. It assumes

that the investor has a criterion defined over the one-period rate of returns on the

assets. In other words, he/she follows optimal policies of a series of single-period

problems connected in such way that the final portfolio of every problem is the initial

one of the decision-making problem in the next period of time.

In the capacity of risky asset we consider daily prices of the Dow Jones index in

the period from July 1996 till May 1999. We assume that the daily returns of the Dow

Jones index follow the GARCH(1,1) process. This model is an appropriate one because
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under the myopic strategy at the time t the investor takes into account only the past

information at the period of time t− 1. Hence all results which have been obtained in

this chapter are valid under conditional normality of stock returns.

In order to estimate the GARCH process we use past 100 days as an estimation

window every period of time. Therefore, mean and conditional variance are changing

over time. The monthly riskless rate is considered to be r = 0.002. We adopt the

transaction costs rate to be equal to 0.1%. Since we incorporate in the analysis only

investor’s beliefs about uncertainty we assume that the absolute risk aversion coefficient

is constant and equals 0.05 and the coefficients βmin = −5 and βmax = 10. The investor

starts with the initial stock holding x∗0 = 50$ and the bond holding y∗0 = 50$.

Figure 1 shows the dynamic of changes in investor’s portfolio during the horizon

and the bounds of no-transaction region. As we can make sure from this figure the

no-transaction region, analogically to the Expected Utility model (Gennotte and Jung

(1994), Boyle and Lin (1997), Kozhan and Schmid (2005)), completely determines the

optimal strategy of the investor. During March 1998 the effect of Dow and Werlang

(1992) is observed. In this period the no-transaction region is reduced to the point and

the optimal policy for the decision-maker is to invest all his/her actives into the bond

(i.e. x∗t = 0).

Figure 1: No-transaction bounds and dollar amounts of stock traded by MMEU max-

imizer, βmin = −5 and βmax = 10.

Figure 2 compares no-transaction regions of investors whose beliefs satisfy the ax-
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Figure 2: No-transaction bounds of EU and MMEU maximizers, βmin = −5 and βmax =

10.

ioms of two models: standard Expected Utility theory of von Neumann and Mor-

genstern (1944) and the Maxmin Expected Utility model. The first approach can be

obtained as a special case of the second if we set βmin = βmax = 0. If any of EU

bounds are situated above the axis y = 0 than the appropriate the MMEU bound

is shifted down on the value −βmin

γ
and cut from below by the line y = 0. If any of

the EU no-transaction bounds are situated below the axis y = 0 than the appropriate

MMEU no-transaction bound is shifted up on the value βmax

γ
and cut from above by

the axis. This implies that in general the MMEU no-transaction region is narrower as

the EU one which makes the investor to be more active on the market and trade more

frequently if uncertainty is presented in the model.

5 Conclusions

In the paper we have considered different types of asset allocation models within MMEU

framework. Investor’s attitudes to the risk correspond to the exponential utility func-

tion while his/her uncertainty aversion is represented by the set of priors P . The main

contribution is that explicit expressions for the bounds of the no-transaction region are

derived.

In the model without transaction costs we have showed the existence of the non-
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degenerate price conditions, similar to those that were obtained by Dow and Werlang

(1992) and Carlier and Dana (2003) within the CEU theory under the distorted prob-

ability.

Having incorporated proportional transaction costs we have seen that the non-

additivity of the investor’s preferences has an impact on an optimal policy of the

investor. As in the case of standard Expected Utility framework of von Neumann

and Morgernstern (see Boyle and Lin (1997), Gennotte and Jung (1994), Kozhan and

Schmid (2005)) the optimal strategy is determined by the bounds of the no-transaction

region. This bounds also divide real line on tree parts: the sell, the buy and the no-

transaction regions. However, these bounds have different expressions depending on

parameters of the model. It is clear that the model is reduced to the classical utility

theory if we set P = {P0}, i.e. µmin = µmax = µ. This leads to the fact that the

no-transaction region is the interval of the form [ A
γσ2 ,

B
γσ2 ], where A = µ− (1+ θ)(1+ r)

and B = µ − (1 − θ)(1 + r) (see Kozhan and Schmid (2005)). The no-transaction

regions under MMEU theory depends on the relationships between parameters Amin,

Amax, Bmin and Bmax and are narrower as in the case of unique prior. It leads to the

result that the investor is more restrictive in his/her decisions due the uncertainty faced

in the model. From another hand, the investor becomes more active on the market

because the probability that his/her holdings of stock are within the no-transaction

region increases.

Figure 3: No-transaction region as a

function of Amax, Bmin < 0.

Figure 4: No-transaction region as a

function of Bmin, Amax ≥ 0.
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The dynamics how the bounds of the no-transaction region depends on parameters

of the distribution of assets returns are shown on Figures 3 and 4. As it turns out,

the non-degenerate price condition has place also in the model with the proportional

transaction costs. Moreover, it is optimal for the investor under this condition to

take a zero position in the risky asset even paying transaction costs for such portfolio

reallocation.

In general, the paper provides a constructive analytical procedure for determining

the no-transaction region, which completely solves the decision making problem of the

investor with non-additive preferences.
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