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1. Introduction

The purpose of this paper is to investigate various procedures for forecasting implied
volatility. This topic should be of particular interest to the financial community, especially to
option traders, and managers of downside-protected funds. There is a vast bibliography in
finance on this topic and we refer readers to Day and Lewis (1992), Harvey and Whaley (1992),
Engle, Hong, Kane, and Noh (1993), Lamoureux and Lastrapes (1993), Noh, Engle, and Kane
(1994), and Hwang and Satchell (1997) for more details on volatility forecasting. In this study,
we further the work of Hwang and Satchell (1997) (HS) on long memory volatility processes for
forecasting implied volatility.

Fractionally integrated processes, which are a sub-class of long memory processes, have
recently attracted considerable attention in volatility studies. Following the introduction of the
autoregressive conditional heteroskedasticity (ARCH) model (Engle, 1982) and the popular
generalized ARCH (GARCH) model (Bollerslev, 1986), many empirical studies on volatility in
finance have reported the extreme degree of persistence of shocks to the conditional variance
process. The integrated GARCH (IGARCH) of Engle and Bollerslev (1986) was formulated to
capture this effect. However, in the IGARCH model, the unconditional variance does not exist
and a shock remains important for the forecasts of the variance for all future horizons. Ding,
Granger, and Engle (1992), using the S&P 500 stock market daily closing price index, show that
the autocorrelations of the power transformation of the absolute return are quite high for long
lags. The autocorrelations may not be explained properly by either an I(0) or an I(1) process.
Motivated by these and other findings, Baillie, Bollerslev, and Mikkelsen (1996) proposed the
fractionally integrated GARCH (FIGARCH) model by applying the concept of fractional
integration to the GARCH model. In the FIGARCH process, the conditional variance decays at
a slow hyperbolic rate for the lagged squared innovations. The concept of a fractional process is
rather difficult, we shall discuss it later in the text. Its simple property is that whilst the
autocorrelations decrease, they decrease very slowly. Thus, the past influences the future in a
manner reminiscent of chaotic processes.

Recently, HS investigated model specification and forecasting performance of
FIGARCH, log-FIGARCH, autoregressive fractionally integrated moving average (ARFIMA),
log-ARFIMA models for both return volatility and implied volatility. They suggested log-
ARFIMA models for implied volatility processes. Log-ARFIMA models are well specified and
do not need the non-negativity constraints on their parameters. In addition, using out-of-sample
forecast tests, HS showed that for the forecasts of implied volatility, log-ARFIMA models using
implied volatility are preferred to conventional GARCH models using return volatility.

Leading on from this work, we further investigate log-ARFIMA models for the
prediction of implied volatility. For a practical usage of long memory processes in volatility,
two modified versions of long memory processes are also suggested: Scaled truncated log-
ARFIMA and detrended log-ARFIMA models. For comparative purposes, we use the
GARCH(1,1) model and moving average models. In the next section, we describe the data used
here and section 3 explains the models used in this study. In section 4, our results follow, and in
section 5 we present conclusions. The mathematical properties of the FIGARCH, log-
FIGARCH, and scaled truncated log-FIGARCH models seem to be complex, especially for
readers who are not familiar with long memory processes. For these readers, we try to avoid
excessive mathematical expressions in the main text. However, for interested readers, more
detailed explanations are included in the Appendix.
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2.  Data

For our data, we use two daily variance series; implied variance (IV) and historical
return squared (RS). The IV is provided by the London Financial Options and Futures Exchange
(LIFFE) and is calculated from the Black and Scholes (1973) option pricing formula. At-the-
money option IVs are used and to minimize term structure effects in volatility, options with the
shortest maturity but with at least fifteen working days to maturity are used as in Harvey and
Whaley (1991, 1992). In this paper IV is used for the log-ARFIMA (0,d,1) model. Note that xt

in this study represents the implied standard deviation at time t. Therefore, xt
2  represents the IV

at time t.
The return series of the underlying asset is provided by Datastream. The RS is calculated

from the log-return of the underlying asset less the mean log-return. In what follows, we shall
use yt

2  for the RS at time t. More formally, yt
2  is obtained from log-return series, rt, as follows:

             y r
T

r
t t t

t

T
2 2

1

250
1= − ∑

=
[ ] ,

where the number 250 is used to annualize the squared return series. This study uses a
GARCH(1,1) process to model RS.

The following nine UK equities and their call options data are used: Barclays, British
Petroleum, British Steel, British Telecommunication, BTR, General Electric Co, Glaxo
Wellcome, Marks and Spenser, Unilever. In addition, American and European call options on
FTSE100 are also used. However, in this paper, the results of British Steel and Glaxo
Wellcome are the only ones reported1.

3.  Models for Volatility

In this section, we give details of the models used in this study. In addition, estimation
methods and other topics related with forecasting will be explained. Two modified log-
ARFIMA models are suggested for the forecast of volatility.

3.1  GARCH Models

A GARCH(1,1) model introduced by Bollerslev (1986) for the residual process, yt, can
be expressed as

(3-1)      
y h

h h y

t t t

t t t

=

= + +− −

ξ

ω β α
1 1

2

where ξ
t

N~ ( , )0 1 . The interpretation of h
t
 is that h E y

t t t
= −1

2( ) . GARCH(1,1) models relate

today’s volatility, h
t
, to yesterday’s volatility, h

t−1
, and the deviations from value yesterday

( y
t−1

2 ). It can successfully explain volatility clustering and fat tails in returns, for further

discussion see Bollerslev, Chou, and Kroner (1992). It turns out that GARCH models give
qualitatively similar results to volatility forecasts as the exponentially weighted moving average
(EWMA) models used in the J P Morgan’s RiskMetrics. The EWMA model estimates volatility
by considering a geometrically declining weighted sum of lagged squared returns.

The log likelihood function of the GARCH(1,1) model is

                    
1 The results for the other companies can be obtained from authors on request.
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where ht  is given by equation (3-1) and ′Ξ = ( ,ω α β, ).  The likelihood function is maximized
using the Berndt, Hall, Hall, and Hausman (1974) algorithm. Weiss (1986) and Bollerslev and
Wooldridge (1992) show that even if the assumption that ξt  is iid N(0,1) is not valid, the quasi
maximum likelihood (QML) estimates obtained by maximizing (3-2) are both consistent and
asymptotically normally distributed.

The f-step-ahead forecast of implied variance from the GARCH(1,1) model is given by
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Therefore, when α β+ <1, for large f, the conditional expectation of variance can be
represented as
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Note that 1/(1-α-β) is always positive for 0<α β+ <1. For large forecasting horizons, the

forecasts converge to ω/(1-α-β) at an exponential rate. When the unconditional variance is
larger than the first step ahead forecast, the forecasts will show a concave form as the forecast
horizon increases. On the other hand, when the unconditional variance is smaller than the first
step ahead forecast, the forecasts will show a convex form.

3.2  Long Memory (LM) Volatility Models

3.2.1 General Properties of LM Processes
Long memory process was originally developed in the hydrological literature to explain

the Hurst phenomenon (Hurst, 1951): river flows into reservoirs have long memory persistence.
In the 1960s it was modelled as a discrete time fractional Gaussian noise (FGN) process by
Mandelbrot and Van Ness (1968), which itself is a discrete time version of a fractional
Brownian motion. In economics, an alternative approach to modelling long-term persistence
was proposed in the early 1980s by Granger and Joyeux (1980), as an extension of the more
familiar autoregressive integrated moving average (ARIMA) class of processes.2

The discrete time LM process (or, fractionally integrated process) is defined as the
following discrete time stochastic process
(3-5)     (1- )  =            

t
L x

d

t ε
where L is the lag operator and εt is an iid random variable. By the binomial series expansion,

(3-6)     (1 )
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where Γ(.) is the gamma function. The general properties of long memory processes are their

                    
2  The ARFIMA model is generally preferred to the FGN model. The main reason is that the former can de-

scribe economic and financial time series better than the latter. Moreover, by capturing both long and short memory,
the ARFIMA model is a generalization of the more familiar ARIMA model, and it is easier to use than the FGN
model. Furthermore, it need not assume Gaussianity for the innovations.
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slowly decaying autocorrelation. Intuitively, this means that an initial shock influences future
volatility for a long time. The autocorrelation function of LM processes is proportional to s d2 1−

as the autocorrelation lag, s, goes to infinity, whilst for standard autoregressive (AR) models the
autocorrelation function is ρ φ

AR

ss( ) = , where φ is the autoregressive parameter in the AR(1)
process. Figure 1 shows that the autocorrelations of LM processes have hyperbolic decay rate,
while those of AR(1) processes have exponential decay rate. This is a major difference between
conventional short memory processes and LM processes. Appendix 1 shows more mathematical
details of LM processes and their properties.

Figure 1  Autocorrelations of AR(1) and Long Memory Processes
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3.2.2 Log-ARFIMA models
Many empirical applications of GARCH models find an apparent persistence of

volatility shocks in high frequency financial time series. In order to explain the persistence,
Engle and Bollerslev (1986) introduce an integrated GARCH (IGARCH) model. However, it is
difficult to ascertain whether or not the apparent persistence indicates integration (see Diebold
and Lopez, 1994). Baillie, Bollerslev, and Mikkelsen (1996) suggest the FIGARCH model to
capture the long memory present in volatility. 

In this study, we use log-ARFIMA models instead of FIGARCH models to model IV.
As explained in HS, log-ARFIMA models do not need the non-negativity conditions and their
out-of-sample forecasts are not inferior to those of FIGARCH models. The log-ARFIMA (0,d,1)
model is represented as
(3-7)     ( ) ln( ) ( )1 12− = + + ≤ ≤L x Ld

t t
µ θ ψ           0 1d

where ψt is a white noise zero mean process (ψt= ln( ) (ln( ))x E x
t t t

2

1

2− − ). The conditional log-

variance of the log-ARFIMA (0,d,1) model is
(3-8)     H L x

t t

d

t
= + + − −−µ θψ

1

21 1( ( ) )ln( )



5

                = − + + − −−µ θ θH L L x
t

d

t1

21 1( ( ) )ln( )

       = + − −
+ −

∑−
=

∞

−µ θψ
t

j
t j

j d

j d
x

1
1

2

1
Γ

Γ Γ
( )

( ) ( )
ln( )

where H E x
t t t
= −1

2(ln( )) . See Appendix 2 for a more detailed explanation of the definition and a

discussion of some properties of FIGARCH and log-ARFIMA models.
The quasi maximum likelihood function is
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σ
where Ht is given by equation (3-8) and ′Ξ = ( ,d,µ θ σ, ). Note that in log-ARFIMA models,
we may not assume that innovations are iid normally distributed, and thus, QML estimation is
used. This is problematic as there is no reason to believe that our assumption of normality is
valid. The Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm is used for the
maximization of the likelihood function. The f-step-ahead conditional log-variance from the
log-ARFIMA(0,d,1) model at time t is given by

(3-10)    H
j d
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H

j d
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where H E xt f t t f+ += (ln( ))2 .

Notice that in log-ARFIMA models, the f-step-ahead conditional variance can not be
represented as an exponential form of the f-step-ahead conditional log-variance; this is a
consequence of Jensen’s Inequality. The exponential form of the f-step-ahead conditional log-
variance is always less than the appropriate forecast. We need a correction factor for the
downward biased forecasts; the correction factor is discussed in Appendix 3 .

When fractionally integrated models are estimated, we need pre-sample values and a
truncation lag, m, of the infinite lag polynomial in log-conditional variances of (3-8). In this
study, the unconditional sample log-variance is used for all the pre-sample values as in Baillie,
Bollerslev, and Mikkelsen (1996).  On the other hand, the truncation lag is set to one hundred as
in HS, while previous studies such as Baillie, Bollerslev, and Mikkelsen (1996) and Psaradakis
and Sola (1995) set the truncation lag at one thousand for all estimates3.

We address systematic forecast bias in log-ARFIMA models4. An interesting property
of long memory volatility processes such as equation (3-7) is that they do not have an
unconditional distribution with finite mean (see Appendix 2 for a more detail discussion). In
practice, however, we have only finite observations, and a truncation lag, m, should be chosen
for long memory processes. In this case, the long memory volatility process has an
unconditional variance. See Appendix 4 for a more detailed explanation of the existence of an
unconditional variance and the systematic forecast bias in a finite sample.

3.2.3 Scaled Truncated Fractionally Integrated Process and Log-ARFIMA Models
In theory, we define long memory volatility models such as FIGARCH or log-ARFIMA

models under the assumption that the sample size is infinite. However, in practice, we only have
finite samples. As we have seen in the previous subsection, there is a gap between theory and

                    
3 See the explanation of HS. To reduce the calculation time, they used the log-ARFIMA(1,d,1) model and

searched for the best or at least equivalent truncation lag compared with the 1000 truncation lag. Lags of length,
100, 300, 500, 700, and 1000, were investigated, and the truncation lag which has the maximum log-likelihood
value was chosen. The differences in the maximum values between the truncation lags were marginal but the log-
ARFIMA(1,d,1) model achieved maximum values when the truncation lags were set at 100.

4 The following explanation applies to all discrete time long memory processes.
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actual application, and this issue is focused on whether an unconditional variance exists. The
same problem does not arise in conventional ARMA and GARCH models, since the models
have short memory and thus the impact of the initial observation becomes negligible even for a
small sample size.

Facing these problems in LM models, we suggest scaled truncated long memory models,
see Appendix 5. In this model, the sum of the AR coefficients is always forced to one and the
unconditional variance does not exist. In addition, the zero mean process is used instead of a
drift term, since the assumption of a trend in a volatility process can lead to the non-existence of
expected volatility. For forecasting purposes, the standard deviation of the forecasts is expected
to be smaller than that of the random walk model, since the forecasts of the scaled truncated log-
ARFIMA(0,d,1) model are obtained by the weighted average of past variances.

3.2.4 Detrended Log-ARFIMA Models
An alternative and simple method to reduce the systematic forecast bias in log-ARFIMA

models is to detrend the forecasts. The detrended f-step-ahead conditional log-variance of the
log-ARFIMA(0,d,1) model can be represented as

(3-11)   H H
H H

f
f

t f

D

t f

t f t

+ +

+ += −
−( )

*

*

1

where f *  is the longest forecast horizon, that is,  f *=120 in this study.
This method is based on the stationarity of the volatility process. If there is a

downward or upward trend in volatility for a short time period, the detrended method may not
be used. If the forecast biases were a linear function of forecast horizons, then detrended log-
ARFIMA models would work. However, as we have already noticed in the previous sub-
section, the systematic forecast bias changes at a hyperbolic rate over forecasting horizons.
Therefore, even if we use this method, there still exists some bias especially in relatively short
horizons. Despite all these difficulties, this method has the merit that it is straightforward to
use.

3.3 Moving Average Methods

Another frequently used method for the forecast of future implied volatility is the
moving average method. We include this procedure as a benchmark. Any sensible forecasting
procedure should do just as well as a moving average method. This method is used widely in
practice, since traders tend to add a value to the past return volatility to cover their trading costs
and other expenses. In this sense, the difference between the implied volatility and return
volatility may be called “traders premium”.

Using the n most recent observations, we can use the following formulae as the forecasts
of future volatility.

(3-12)   
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Note that since the forecasts are not changed for the forecasting horizons in this moving average
methods, the statistical properties of the forecasts are the same across all horizons.
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4. Out-of-Sample Forecasting Performance Tests

4.1 Forecasting Procedure

Noh, Engle, and Kane (1994) investigate the forecasting performance of the implied and
return volatilities in the simulated options. Here, we directly compare the forecasting
performance of the alternative models using mean absolute forecast error (MAFE) and mean
squared forecast error (MSFE), which are represented as follows.

(4-1)    

( )

MAFE FIV x

MSFE FIV x

f f t t f
t

f f t t f
t

= −∑

= −∑

+
=

+
=

1
240
1

240

1

240

2

1

240

,

,

where MAFEf and MSFEf represent the MAFE and MSFE at horizon f, respectively, xt+f is the
realized implied standard deviation at time t+f , and FIVf,t is the forecasted implied standard
deviation for horizon f at time t. Note that the FIVf,t for the models used in this study is
calculated by equation (3-3) for the GARCH(1,1)-RS model, equation (3-10) for the log-
ARFIMA(0,d,1)-IV model, equation (3-11) for the detrended log-ARFIMA(0,d,1)-IV model,
and equation (3-12) for the moving average methods, respectively5. In addition, we investigate
the forecasting performance of the models over various horizons rather than just one step ahead.

We use a rolling sample of the past volatilities. On day t, the conditional volatility of one
period ahead, t+1, is constructed by using the estimates which are obtained from only the past
observations (i.e., 778 observations in this study). By recursive substitution of the conditional
volatility, forecasts for up to 120 horizons are constructed. On the next day (t+1), using 778
recent observations (i.e., 778 observations from the second observation to the 779 observation),
we estimate the parameters again and get another forecast for up to 120 horizons. The
estimation and forecasting procedures are performed 240 times using rolling windows of 778
observations6. Each forecast is expressed as a standard deviation to be compared with the
realized implied standard deviation, and MAFE and MSFE statistics are calculated as in (4-1)
above.

4.2 Estimates of GARCH(1,1)-RS, log-ARFIMA(0,d,1)-IV, and scaled truncated log-
ARFIMA(0 ,d,1)-IV

Table 1 reports the QML estimates of the GARCH(1,1) model using return squared
(GARCH(1,1)-RS), the log-ARFIMA(0,d,1) model using implied volatility (log-
ARFIMA(0,d,1)-IV), and the scaled truncated log-ARFIMA(0,d,1)-IV for British Steel and
Glaxo Wellcome. As frequently found in empirical finance, α+β in the GARCH(1,1)-RS
model is close to 1 and highly persistent. In this case, long memory processes may be more
appropriate for RS than the GARCH(1,1) model.
                    

5 For the scaled truncated log-ARFIMA(0,d,1)-IV model, see equation (A5-6) in Appendix 5.
6 Our total number of observations are 1148, while the number of observation used is 1138 (778 for estima-

tion and 370 for post sample testing). We first used a 250 out of sample forecast test (in this case, we used all
1148 observations, that is 778 observations for estimation and 380 for post sample testing) for daily estimation.
Then, to compare the forecasting performance of daily estimation with those of monthly and quarterly
estimation, we used a 240 out of sample forecast test. This is because we need multiples of 20 (for monthly
estimation) and 60 (quarterly estimation), see subsection 4.3 and table 3. This paper reports the results of a 240
out of sample forecast test for daily estimation for comparison purpose, since we found no difference between
250 and 240 out of sample forecasting performances.
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The middle part of  each panel reports the estimates of log-ARFIMA(0,d,1)-IV model.
As expected, the drift, µ, is not equivalent to zero and for the truncation lag used in this study,
there exists an unconditional log-variance. The lowest parts of panels A and B show the
estimates of the scaled truncated log-ARFIMA(0,d,1)-IV model. Note that the long memory
parameter of the scaled truncated log-ARFIMA(0,d,1) model, dST, is smaller than that of the
log-ARFIMA(0,d,1) model, d. However, for both models, the estimates of the long memory
parameter are significantly different from 0 and 1.

Table 1  Maximum Likelihood Estimates of GARCH(1,1)-RS, Log-ARFIMA(0,d,1)-IV, and
Scaled Truncated Log-ARFIMA(0,d,1)-IV models

A. British Steel

                        Models ω (µ, δ) α (θ) β (d, dST)
         GARCH(1,1)-RS              Estimates 0.0004 0.0091 0.9559

       Robust Standard Error (0.0002) (0.0079) (0.0091)
     Log-ARFIMA(0,d,1)-IV              Estimates -0.0509 -0.1309 0.6425

        Robust Standard Error (0.0135) (0.0491) (0.0348)
         Scaled Truncated              Estimates -2.2998 -0.0259 0.5104
     Log-ARFIMA(0,d,1)-IV         Robust Standard Error (0.0295) (0.0551) (0.0527)

B. Glaxo Wellcome

                   Models ω (µ, δ) α (θ) β (d, dST)
         GARCH(1,1)-RS              Estimates 0.0019 0.0518 0.9170

        Robust Standard Error (0.0008) (0.0128) (0.0235)
       Log-ARFIMA(0,d,1)-IV              Estimates -0.0221 -0.1792 0.7674

        Robust Standard Error (0.0072) (0.0477) (0.0362)
         Scaled Truncated              Estimates -2.7311 -0.1285 0.7062
     Log-ARFIMA(0,d,1)-IV         Robust Standard Error (0.0295) (0.0546) (0.0493)
Notes: Return and implied volatilities from 23 March 1992 to 7 October 1996 for a total of 1148 obser-
vations are used.

4.3 Forecasting Performance of the Log-ARFIMA(0,d,1)-IV and GARCH(1,1)-RS
Models

We summarize our results in table 2. The first two columns in panels A and B of table 2
report the results of an out-of-sample forecasting performance test for British Steel and Glaxo
based on the MAFE and the MSFE of the forecasts of implied volatility over the horizons from
1 to 120. Columns 3 and 4 are the results of calculations based on the detrended log-
ARFIMA(0,d,1) model of subsection 3.2.4 and the scaled truncated log-ARFIMA(0,d,1) model
of subsection 3.2.3 (see Appendix 5 for a more detailed discussion), respectively. The final two
columns are obtained from table 5. They describe forecasts based on simple moving averages
of RS plus a constant and implied volatility, respectively. The moving average methods were
explained in subsection 3.3 and a more detailed explanation on the empirical results are
reported in subsection 4.4. We also report in the table the “efficient set” of methods based on
smallest MAFE and smallest MSFE. If, for example, MAFEmethod1<MAFEmethod2 and
MSFEmethod1>MSFEmethod2, then both methods 1 and 2 are in the efficient set and are reported in
bold.

This subsection compares the forecasting performance of the log-ARFIMA(0,d,1)-IV
model with that of the GARCH(1,1)-RS model in detail. The first two columns of table 2 show
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that the MAFE and MSFE of the log-ARFIMA(0,d,1)-IV model are smaller than those of the
GARCH(1,1)-RS model. In particular, in short horizons, the forecasting performance of the log-
ARFIMA(0,d,1)-IV model is much better than that of the GARCH(1,1)-RS model. Therefore,
for the prediction of implied volatility, the Log-ARFIMA(0,d,1)-IV model outperforms the
GARCH(1,1)-RS model at least in this context.

Table 2  Forecasting Performance of GARCH(1,1)-RS, Long Memory Volatility Models, and
Moving Average Methods

A. British Steel Plc

Fore-
casting
Hori-

 GARCH(1,1)-RS Log-ARFIMA(0,d,1)
          -IV

       Detrended
Log-ARFIMA(0,d,1)
           -IV

  Scaled  Truncated
Log-ARFIMA(0,d,1)
           -IV

   Return Squared
        (n=60)
Increased by 0.0661

      Implied
     Volatility
        (n=20)

  zons MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE

1 0.0308 0.0016 0.0117 0.0003 0.0117 0.0003 0.0116 0.0003 0.0207 0.0008 0.0142 0.0005

5 0.0288 0.0015 0.0165 0.0006 0.0162 0.0006 0.0156 0.0006 0.0205 0.0008 0.0153 0.0006
10 0.0270 0.0014 0.0186 0.0007 0.0182 0.0007 0.0174 0.0007 0.0208 0.0008 0.0165 0.0006
20 0.0255 0.0013 0.0195 0.0007 0.0191 0.0007 0.0178 0.0006 0.0221 0.0010 0.0181 0.0006

30 0.0259 0.0013 0.0200 0.0008 0.0189 0.0007 0.0175 0.0006 0.0240 0.0010 0.0188 0.0007

40 0.0274 0.0014 0.0219 0.0008 0.0202 0.0007 0.0190 0.0007 0.0249 0.0010 0.0176 0.0006
50 0.0256 0.0012 0.0208 0.0007 0.0186 0.0006 0.0173 0.0006 0.0247 0.0009 0.0182 0.0006

60 0.0250 0.0011 0.0217 0.0007 0.0181 0.0006 0.0168 0.0005 0.0271 0.0011 0.0200 0.0007

80 0.0262 0.0011 0.0257 0.0010 0.0216 0.0008 0.0203 0.0007 0.0301 0.0013 0.0210 0.0008

100 0.0255 0.0011 0.0281 0.0012 0.0230 0.0008 0.0229 0.0008 0.0307 0.0013 0.0227 0.0008
120 0.0260 0.0011 0.0293 0.0012 0.0241 0.0009 0.0226 0.0008 0.0308 0.0014 0.0230 0.0008

B. Glaxo Wellcome Plc
Fore-

casting
Hori-

 GARCH(1,1)-RS Log-ARFIMA(0,d,1)
          -IV

       Detrended
Log-ARFIMA(0,d,1)
           -IV

  Scaled  Truncated
Log-ARFIMA(0,d,1)
           -IV

   Return Squared
        (n=60)
Increased by 0.0465

Implied
Volatility
(n=20)

  zons MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE

1 0.0281 0.0013 0.0048 0.0000 0.0048 0.0001 0.0048 0.0000 0.0130 0.0002 0.0075 0.0001

5 0.0351 0.0016 0.0076 0.0001 0.0074 0.0001 0.0073 0.0001 0.0137 0.0003 0.0089 0.0002

10 0.0416 0.0020 0.0103 0.0002 0.0100 0.0002 0.0098 0.0002 0.0140 0.0003 0.0101 0.0002

20 0.0457 0.0024 0.0120 0.0002 0.0114 0.0002 0.0111 0.0002 0.0149 0.0003 0.0114 0.0003

30 0.0490 0.0027 0.0128 0.0003 0.0120 0.0003 0.0117 0.0002 0.0159 0.0003 0.0120 0.0003

40 0.0538 0.0032 0.0145 0.0003 0.0132 0.0003 0.0129 0.0003 0.0155 0.0003 0.0123 0.0003
50 0.0564 0.0036 0.0150 0.0004 0.0131 0.0003 0.0128 0.0003 0.0141 0.0003 0.0119 0.0002
60 0.0574 0.0037 0.0144 0.0003 0.0128 0.0003 0.0125 0.0003 0.0145 0.0003 0.0121 0.0002
80 0.0587 0.0038 0.0147 0.0004 0.0127 0.0003 0.0125 0.0003 0.0136 0.0003 0.0125 0.0003
100 0.0575 0.0037 0.0163 0.0005 0.0140 0.0003 0.0137 0.0003 0.0162 0.0004 0.0140 0.0003

120 0.0574 0.0036 0.0167 0.0005 0.0152 0.0004 0.0146 0.0004 0.0170 0.0005 0.0149 0.0004

Notes : GARCH(1,1)-RS forecasts for implied standard deviation (ISD) are obtained using return squared, while Log-
ARFIMA(0,d,1)-IV forecasts for ISD are calculated using implied volatility. Return and implied volatilities from 23 March 1992 to 7
October 1996 for a total of 1148 observations are used. The most recent 778 observations are used for estimating models and
predicting future ISDs over 120 horizons. The results are based on 240 out-of-sample forecasts. Bold numbers represent the smallest
MAFE and the smallest MSFE for given forecasting horizons. In the case of a tie or a non-ranking, both are recorded in bold.

The MAFE and MSFE used here show only the magnitude of the forecast error and do
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not show forecast bias (FB) and forecast standard deviation (FSTD)7. Figures 2A and 3A plot
the average forecast errors over forecasting horizons for British Steel and Glaxo. During the
forecasting period, the realized IV of Glaxo is relatively less volatile than that of British Steel.
The magnitude of the average forecast errors tends to increase as forecasting horizons increase
for both models. In short horizons, the log-ARFIMA(0,d,1)-IV average forecast errors are very
small. Over long horizons, the log-ARFIMA(0,d,1)-IV forecasts are less biased than the
GARCH(1,1)-RS forecasts for Glaxo, while the log-ARFIMA(0,d,1)-IV forecasts are more
biased than the GARCH(1,1)-RS forecasts for British Steel. This shows that as explained in
subsection 3.2.2, a drift term together with the truncation lag may result in a large forecast bias
in the log-ARFIMA model.

Figures 2B and 3B plot the FSTDs of the forecasts for the two companies. The log-
ARFIMA(0,d,1)-IV model has lower FSTD than the GARCH(1,1)-RS model in short
forecasting horizons. However, in long horizons, the FSTD of the GARCH(1,1)-RS model is
little different from that of the log-ARFIMA(0,d,1)-IV model for Glaxo. Although it is not
reported in this paper, British Petroleum and Barclays also show that the FSTD of the log-
ARFIMA(0,d,1)-IV model is lower than that of the GARCH(1,1)-RS model. Our conclusion is
that the log-ARFIMA(0,d,1)-IV model has less FSTD than the GARCH(1,1)-RS model.

Figure 2A  Average Forecast Error of GARCH(1,1)-RS, Log-ARFIMA(0,d ,1)-IV, 
Detrended Log-ARFIMA(0,d ,1)-IV, Scaled Truncated Log-ARFIMA(0,d ,1)-IV, 

Averaged RS, and Averaged IV
British Steel Plc
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7 Note that MSFE may be decomposed into the sum of squared forecast bias and forecast variance. For the

models such as log-ARFIMA(0,d,1)-IV model which have systematic forecast bias, the FB include both the
systematic forecast bias and the differences between forecasts and realised IVs for given forecasting horizons.
On the other hand, for models such as GARCH(1,1)-RS model which do not have systematic forecast bias, the
FB simply represents the sum of the differences between forecasts and realised IVs for a given forecasting
horizon.
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Figure 2B  Standard Deviation of Forecasts of GARCH(1,1)-RS, Log-
ARFIMA(0,d ,1)-IV, Detrended Log-ARFIMA(0,d ,1)-IV, Scaled Truncated Log-

ARFIMA(0,d ,1)-IV, Average RS, and Average IV 
British Steel Plc
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Figure 3A  Average Forecast Error of GARCH(1,1)-RS, Log-ARFIMA(0,d ,1)-IV, 
Detrended Log-ARFIMA(0,d,1)-IV, Scaled Truncated Log-ARFIMA(0,d ,1)-IV, 

Averaged RS, and Averaged IV 
Glaxo Wellcome Plc
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Figure 3B  Standard Deviation of  Forecasts of GARCH(1,1)-RS, Log-
ARFIMA(0,d ,1)-IV, Detrended Log-ARFIMA(0,d ,1)-IV, Scaled Truncated Log-

ARFIMA(0,d ,1)-IV, Averaged RS, and Averaged IV 
Glaxo Wellcome Plc
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Notes: Figures 2A and 3A plot average forecast errors over forecasting horizons for British Steel and Glaxo
Wellcome and figures 2B and 3B plot forecast standard deviations over forecasting horizons for the two companies.
The GARCH(1,1)-RS, log-ARFIMA(0,d,1)-IV, scaled truncated log-ARFIMA(0,d,1)-IV, and detrended log-
ARFIMA(0,d,1)-IV models are explained in subsections 3.1, 3.2.2, 3.2.3, and 3.2.4, respectively. The moving
average IV (n=20) represents forecasts based on averaged value of last 20 IVs. The moving average RS (n=60)
increased by a number (0.0661 for British Steel and 0.0465 for Glaxo Wellcome) represents forecasts based on
averaged value of last 60 RSs plus the optimal increase. The moving average methods were explained in
subsection 3.3 and a more detailed explanation on the empirical results are reported in subsection 4.4. The
MAFE and the MSFE of the forecasts are summarized in table 2.

We need to address the issue of when to re-estimate the models. In practice, daily
estimation of a model may be time-consuming work. If there is little difference in forecasting
performance between daily estimation and longer estimation intervals, e.g., weekly, monthly,
and quarterly, we need not estimate the models daily. For example, for the case of monthly
estimation, a model can be estimated once a month and the estimates can be used to forecast
implied volatility for the next month.

Table 3 reports the results. For British Steel, the forecasting performance gets better as
the estimation interval increases for the GARCH(1,1)-RS model, while it becomes slightly
worse for the larger estimation intervals for the log-ARFIMA(0,d,1)-IV model. On the other
hand, for Glaxo the forecasting performance gets worse as the estimation interval increases for
both log-ARFIMA(0,d,1)-IV and GARCH(1,1)-RS models. However, we find that the
GARCH(1,1)-RS model still does not outperform the log-ARFIMA(0,d,1)-IV model and the
difference between the forecasting performances from the different estimation intervals is
marginal for the log-ARFIMA-IV model. Therefore, on the ground of these results, we can
conclude that the log-ARFIMA(0,d,1)-IV model need not be estimated daily and can be
estimated monthly without particularly increasing the forecasting error.
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Table 3  Forecasting Performance of the GARCH(1,1)-RS and Log-ARFIMA(0,d,1)-IV
               Models Considering Estimation Intervals

A. British Steel Plc

Estimation Interval            1 (Daily)     5 (Weekly)   10 (Fortnightly)     20 (Monthly)     60 (Quarterly)
MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE

1 0.0308 0.0016 0.0304 0.0015 0.0303 0.0015 0.0294 0.0014 0.0273 0.0013
5 0.0288 0.0015 0.0285 0.0015 0.0282 0.0015 0.0279 0.0014 0.0261 0.0013

Forecasting 10 0.0270 0.0014 0.0267 0.0014 0.0266 0.0014 0.0266 0.0014 0.0248 0.0012
Performance 15 0.0255 0.0013 0.0254 0.0013 0.0254 0.0013 0.0250 0.0013 0.0240 0.0011

of 20 0.0259 0.0013 0.0257 0.0013 0.0256 0.0012 0.0249 0.0012 0.0240 0.0011
GARCH(1,1)-RS 30 0.0274 0.0014 0.0269 0.0013 0.0265 0.0013 0.0262 0.0012 0.0256 0.0012

Model 40 0.0256 0.0012 0.0253 0.0012 0.0252 0.0012 0.0252 0.0012 0.0243 0.0011
60 0.0265 0.0012 0.0265 0.0012 0.0266 0.0011 0.0261 0.0011 0.0237 0.0009
80 0.0254 0.0010 0.0250 0.0010 0.0250 0.0009 0.0248 0.0009 0.0236 0.0008
100 0.0255 0.0011 0.0254 0.0010 0.0250 0.0010 0.0245 0.0010 0.0226 0.0008
120 0.0260 0.0011 0.0258 0.0010 0.0253 0.0010 0.0247 0.0010 0.0242 0.0009
1 0.0117 0.0003 0.0117 0.0003 0.0118 0.0003 0.0117 0.0003 0.0117 0.0003
5 0.0165 0.0006 0.0165 0.0006 0.0165 0.0006 0.0164 0.0006 0.0165 0.0006

Forecasting 10 0.0186 0.0007 0.0186 0.0007 0.0186 0.0007 0.0184 0.0007 0.0186 0.0007
Performance 15 0.0195 0.0007 0.0195 0.0007 0.0195 0.0007 0.0195 0.0007 0.0197 0.0007

of 20 0.0200 0.0008 0.0200 0.0008 0.0200 0.0008 0.0201 0.0008 0.0204 0.0008
Log-ARFIMA(0,d,1) 30 0.0219 0.0008 0.0219 0.0008 0.0219 0.0008 0.0219 0.0008 0.0222 0.0008

 -IV 40 0.0208 0.0007 0.0208 0.0007 0.0209 0.0007 0.0211 0.0007 0.0216 0.0008
Model 60 0.0239 0.0009 0.0242 0.0009 0.0243 0.0009 0.0243 0.0009 0.0247 0.0009

80 0.0259 0.0010 0.0261 0.0010 0.0264 0.0010 0.0267 0.0010 0.0273 0.0011
100 0.0281 0.0012 0.0283 0.0012 0.0286 0.0012 0.0293 0.0012 0.0310 0.0013
120 0.0293 0.0012 0.0295 0.0012 0.0299 0.0012 0.0306 0.0012 0.0320 0.0013

B. Glaxo Wellcome Plc

Estimation Interval            1 (Daily)     5 (Weekly)  10 (Fortnightly)   20 (Monthly)    60 (Quarterly)
MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE

1 0.0281 0.0013 0.0281 0.0013 0.0286 0.0013 0.0300 0.0014 0.0319 0.0015
5 0.0351 0.0016 0.0353 0.0016 0.0360 0.0016 0.0376 0.0018 0.0405 0.0020

Forecasting 10 0.0416 0.0020 0.0420 0.0020 0.0427 0.0021 0.0443 0.0022 0.0478 0.0026
Performance 15 0.0457 0.0024 0.0462 0.0024 0.0469 0.0025 0.0484 0.0027 0.0521 0.0031

of 20 0.0490 0.0027 0.0495 0.0028 0.0501 0.0028 0.0516 0.0030 0.0551 0.0034
GARCH(1,1)-RS 30 0.0538 0.0032 0.0543 0.0033 0.0550 0.0034 0.0561 0.0035 0.0593 0.0039

Model 40 0.0564 0.0036 0.0569 0.0036 0.0574 0.0037 0.0584 0.0038 0.0613 0.0042
60 0.0585 0.0038 0.0588 0.0038 0.0593 0.0039 0.0600 0.0040 0.0625 0.0043
80 0.0583 0.0038 0.0586 0.0038 0.0591 0.0039 0.0596 0.0039 0.0618 0.0042
100 0.0575 0.0037 0.0578 0.0037 0.0582 0.0037 0.0587 0.0038 0.0608 0.0041
120 0.0574 0.0036 0.0577 0.0036 0.0581 0.0037 0.0585 0.0037 0.0605 0.0040
1 0.0048 0.0000 0.0048 0.0000 0.0049 0.0000 0.0049 0.0000 0.0049 0.0000
5 0.0076 0.0001 0.0076 0.0001 0.0076 0.0001 0.0077 0.0001 0.0077 0.0001

Forecasting 10 0.0103 0.0002 0.0104 0.0002 0.0104 0.0002 0.0104 0.0002 0.0105 0.0002
Performance 15 0.0120 0.0002 0.0120 0.0002 0.0120 0.0002 0.0120 0.0002 0.0122 0.0002

of 20 0.0128 0.0003 0.0128 0.0003 0.0128 0.0003 0.0128 0.0003 0.0132 0.0003
Log-ARFIMA(0,d,1) 30 0.0145 0.0003 0.0145 0.0003 0.0145 0.0003 0.0146 0.0003 0.0152 0.0004

 -IV 40 0.0150 0.0004 0.0150 0.0004 0.0150 0.0004 0.0151 0.0004 0.0160 0.0004
Model 60 0.0146 0.0004 0.0147 0.0004 0.0146 0.0004 0.0149 0.0004 0.0158 0.0004

80 0.0147 0.0004 0.0148 0.0004 0.0147 0.0004 0.0149 0.0004 0.0164 0.0005
100 0.0163 0.0005 0.0164 0.0005 0.0164 0.0005 0.0167 0.0005 0.0185 0.0006
120 0.0167 0.0005 0.0168 0.0005 0.0167 0.0005 0.0171 0.0005 0.0190 0.0006

Notes : GARCH(1,1)-RS forecasts for implied standard deviation (ISD) are obtained using return squared, while Log-
ARFIMA(0,d,1)-IV forecasts for ISD are calculated using implied volatility. Return squared and implied volatilities from 23
March 1992 to 7 October 1996 for a total of 1148 observations are used. The most recent 778 observations are used for



14

estimating models and predicting future ISDs over 120 horizons. The results are based on 240 out-of-sample forecasts. For the
case of daily estimation, each model is estimated and the forecasts are  obtained on the daily basis, whilst for the quarterly
estimation, the models are estimated once every 60 days and the estimates are used for the forecasts. Therefore, the number of
estimations is 240 for the daily estimation while it is only 4 for the quarterly estimation. Note that forecasting is always
performed on a daily basis.

4.4 Forecasting Performance of the Moving Average Methods
We need to investigate the forecasting performance of the practically widely used

moving average methods in detail. The moving average forecasts for implied volatility using IV
and RS with the n most recent observations at time t, FIV

t

n IV,  and FIV
t

n RS, , are discussed in

subsection 3.3. Table 4 reports mean and standard deviation of the forecasts. As expected, for a
given moving average lag (n), the mean of FIV

t

n RS,  is smaller than that of FIV
t

n IV, , while the

standard deviation of FIV
t

n RS,  is larger than that of FIV
t

n IV, .

Table 4  Mean and Standard Deviation of Moving Average Forecasts of RS and IV

A. British Steel Plc

       Moving Average Lag (n) 1 5 10 15 20 60

    Return Squared Mean 0.1767 0.1759 0.1753 0.1742 0.1734 0.1711
STD 0.1443 0.0755 0.0546 0.0479 0.0433 0.0282

Implied Volatility Mean 0.2428 0.2426 0.2424 0.2422 0.2420 0.2401
STD 0.0245 0.0198 0.0171 0.0153 0.0140 0.0106

B. Glaxo Wellcome Plc

       Moving Average Lag (n) 1 5 10 15 20 60

    Return Squared Mean 0.1473 0.1469 0.1464 0.1452 0.1438 0.1415
STD 0.1346 0.0651 0.0476 0.0397 0.0325 0.0154

Implied Volatility Mean 0.1938 0.1938 0.1938 0.1937 0.1936 0.1958
STD 0.0129 0.0118 0.0112 0.0104 0.0095 0.0110

Notes: Return and implied volatilities from 23 March 1992 to 7 October 1996 for a total of 1148 obser-
vations are used.

Using the same forecasting procedure in subsection 4.1, we calculate the MSFE and
MAFE of the moving average methods. The forecasting performances of FIV

t

n IV,  and FIV
t

n RS,

are reported in table 5. Table 5 also reports the forecast performance of FIV
t

n RS,  increased by

some numbers from the original FIV
t

n RS, . This is because RS is generally less than IV and the

original FIV
t

n RS,  may result in downward FB if unadjusted. The optimal increase (i.e., 0.0661*

for British Steel and 0.0465* for Glaxo) is chosen to match mean of FIV
t

RS1,  with that of FIV
t

IV1, .

FIV
t

n RS, *  is used for FIV
t

n RS,  with this increase. Therefore, FIV
t

n RS, *  is the sum of the moving

average forecasts at time t and the optimal increase which is obtained using all ex-post moving
average forecasts. In this sense, FIV

t

n RS, *  is not an out-of-sample forecast, but we use it for

purposes of comparison. Here, we consciously use ex-post values. This is because the procedure
reflects a simple forecasting rule communicated to us by practitioners, using ex-post
information allows us to build in practitioner expertise.

Note that the MSFEs of FIV
t

n RS, *

 with n>1 are smaller than those of the original FIV
t

RS1, .

Since MSFE can be decomposed into the sum of squared forecast bias and forecast variance,
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this can be explained by follows; as the moving average lag (n) increases, the FSTD of FIV
t

n RS,

reduces, and as the mean of FIV
t

n RS,  goes to FIV
t

n RS, *

, FB decreases. Therefore, the table shows

that, when we use moving averaged RS as forecast of future volatility, large n and an
appropriate increase should be considered.

FIV
t

n RS, *  may have less MAFE and MSFE than the GARCH(1,1)-RS method in the

previous section. However, we calculated the optimal increase by “data snooping”, and since we
do not know how much we increase FIV

t

n RS, , the simple moving average method may not be

preferred to the GARCH(1,1)-RS method. Moreover, even though we choose the optimal
increase and a large moving average lag, the forecast performance of the FIV

t

n RS, *  does not

outperform FIV
t

n IV, ; see the last rows of panels A and B of table 58. Therefore, we can conclude

that for the forecast of IV, IV should be used rather than RS.
In addition, we investigate the selection of n for FIV

t

n IV, . Table 5 shows that for the

forecast of short horizons, FIV
t

IV1,  outperforms FIV
t

n IV,  with n>1. However, for long forecasting

horizons, n=20 seems to be appropriate9. The last rows of panels A and B in table 5 show that
MAFE and MSFE tend to decrease as n becomes larger. For large n, there is little difference in
MSFE and MAFE and in particular, for Glaxo, some MSFEs and MAFEs of FIV

t

IV60,  are larger

than those of FIV
t

n IV,  with the smaller n.

Table 5  Forecasting Performance of Moving Average Forecasts of RS and IV

A. British Steel
   Average Lag(n) 1 10 20 60

MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE
1 0.13383 0.02506 0.07286 0.00752 0.07210 0.00669 0.07170 0.00590
5 0.13343 0.02518 0.07359 0.00760 0.07178 0.00665 0.07163 0.00588
10 0.13371 0.02540 0.07401 0.00758 0.07096 0.00662 0.07175 0.00588

Return 20 0.13206 0.02494 0.07268 0.00730 0.06970 0.00652 0.07123 0.00592
Squared 40 0.13470 0.02551 0.07304 0.00782 0.07127 0.00695 0.07337 0.00626

60 0.13511 0.02549 0.07481 0.00793 0.07405 0.00723 0.07527 0.00668
80 0.13497 0.02557 0.07532 0.00833 0.07464 0.00749 0.07585 0.00685
100 0.13542 0.02551 0.07665 0.00844 0.07615 0.00768 0.07463 0.00679
120 0.13821 0.02627 0.07863 0.00854 0.07676 0.00778 0.07568 0.00702
1 0.12479 0.02282 0.05982 0.00523 0.05513 0.00431 0.05184 0.00343
5 0.12407 0.02294 0.06051 0.00530 0.05507 0.00427 0.05187 0.00341

Return 10 0.12415 0.02316 0.06041 0.00528 0.05443 0.00424 0.05195 0.00342
Squared 20 0.12294 0.02271 0.05914 0.00502 0.05249 0.00417 0.05159 0.00347
Increased 40 0.12509 0.02321 0.05973 0.00546 0.05383 0.00452 0.05367 0.00374
by 0.02 60 0.12522 0.02312 0.06145 0.00550 0.05671 0.00473 0.05631 0.00409

80 0.12503 0.02320 0.06243 0.00590 0.05789 0.00498 0.05858 0.00425
100 0.12571 0.02316 0.06410 0.00604 0.06102 0.00520 0.05665 0.00422
120 0.12830 0.02387 0.06547 0.00608 0.06113 0.00525 0.05725 0.00440
1 0.11736 0.02137 0.05084 0.00373 0.04275 0.00274 0.03373 0.00176

                    
8 British Petroleum and Barclays also show that the forecast performance of the FIVt

n RS, *
 does not outperform

FIVt

n IV, .
9 Although it is not reported in this paper, British Petroleum and Barclays also show that n=20 is an appropriate

value.
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5 0.11637 0.02150 0.05125 0.00380 0.04199 0.00270 0.03347 0.00175
Return 10 0.11651 0.02172 0.05069 0.00378 0.04130 0.00266 0.03337 0.00175

Squared 20 0.11613 0.02129 0.04923 0.00354 0.04093 0.00261 0.03388 0.00182
Increased 40 0.11732 0.02171 0.05039 0.00391 0.04125 0.00288 0.03618 0.00201
by 0.04 60 0.11738 0.02155 0.05215 0.00387 0.04401 0.00302 0.04091 0.00229

80 0.11723 0.02162 0.05304 0.00427 0.04587 0.00327 0.04370 0.00246
100 0.11793 0.02162 0.05549 0.00444 0.04982 0.00353 0.04309 0.00245
120 0.12037 0.02227 0.05566 0.00443 0.04876 0.00352 0.04197 0.00258
1 0.11116 0.02069 0.046156 0.002974 0.03479 0.00188 0.02072 0.00079
5 0.11036 0.02082 0.045719 0.003055 0.03402 0.00185 0.02046 0.00078

Return 10 0.11033 0.02103 0.045123 0.003029 0.03434 0.00181 0.02077 0.00078
Squared 20 0.11005 0.02063 0.043493 0.002814 0.03523 0.00178 0.02211 0.00087
Increased 40 0.11019 0.02095 0.045859 0.003084 0.03607 0.00195 0.02471 0.00096

by 0.0661* 60 0.11071 0.02069 0.046274 0.002945 0.03485 0.00199 0.02713 0.00114
80 0.11062 0.02077 0.048408 0.003345 0.03945 0.00225 0.03014 0.00131
100 0.11118 0.02080 0.050181 0.003556 0.04242 0.00254 0.03071 0.00135
120 0.11362 0.02139 0.049591 0.00348 0.04034 0.00247 0.03075 0.00140
1 0.01238 0.00038 0.01411 0.00050 0.01417 0.00052 0.01449 0.00050
5 0.01826 0.00084 0.01686 0.00069 0.01527 0.00060 0.01534 0.00054
10 0.02128 0.00104 0.01908 0.00074 0.01646 0.00061 0.01622 0.00056

Implied 20 0.02310 0.00100 0.01929 0.00069 0.01813 0.00063 0.01743 0.00061
Volatility 40 0.02252 0.00098 0.01923 0.00064 0.01756 0.00057 0.01776 0.00060

60 0.02402 0.00106 0.02192 0.00081 0.01997 0.00070 0.01883 0.00063
80 0.02562 0.00108 0.02323 0.00087 0.02099 0.00076 0.01973 0.00066
100 0.02585 0.00106 0.02444 0.00088 0.02272 0.00080 0.02105 0.00075
120 0.02679 0.00119 0.02381 0.00083 0.02302 0.00081 0.02137 0.00076

B. Glaxo Wellcome
   Average Lag(n) 1 10 20 60

MAFE MSFE MAFE MSFE MAFE MSFE MAFE MSFE
1 0.11477 0.01977 0.05636 0.00416 0.05254 0.00337 0.05219 0.00294
5 0.11403 0.01963 0.05765 0.00430 0.05315 0.00343 0.05203 0.00296
10 0.11496 0.02000 0.05802 0.00437 0.05343 0.00339 0.05201 0.00299

Return 20 0.11428 0.01992 0.05767 0.00423 0.05312 0.00336 0.05176 0.00299
Squared 40 0.11584 0.02030 0.05925 0.00455 0.05431 0.00365 0.05230 0.00303

60 0.11577 0.02034 0.06075 0.00470 0.05569 0.00373 0.05349 0.00310
80 0.11616 0.02023 0.05895 0.00439 0.05530 0.00356 0.05517 0.00325
100 0.11726 0.02022 0.06153 0.00476 0.05790 0.00392 0.05667 0.00351
120 0.11764 0.02078 0.06361 0.00518 0.05987 0.00421 0.05725 0.00365
1 0.10658 0.01832 0.04379 0.00267 0.03663 0.00178 0.03221 0.00125
5 0.10586 0.01818 0.04408 0.00281 0.03728 0.00184 0.03211 0.00128

Return 10 0.10659 0.01855 0.04491 0.00288 0.03741 0.00181 0.03204 0.00130
Squared 20 0.10572 0.01848 0.04455 0.00275 0.03734 0.00179 0.03207 0.00132
Increased 40 0.10702 0.01884 0.04682 0.00305 0.03979 0.00205 0.03270 0.00134
by 0.02 60 0.10700 0.01884 0.04825 0.00316 0.04062 0.00208 0.03355 0.00136

80 0.10719 0.01866 0.04484 0.00278 0.03809 0.00185 0.03532 0.00144
100 0.10833 0.01859 0.04753 0.00308 0.04169 0.00215 0.03679 0.00164
120 0.10857 0.01912 0.04994 0.00349 0.04356 0.00242 0.03802 0.00176
1 0.09891 0.01762 0.03321 0.00192 0.02431 0.00090 0.01301 0.00024
5 0.09836 0.01750 0.03337 0.00208 0.02415 0.00097 0.01374 0.00028

Return 10 0.09888 0.01786 0.03334 0.00215 0.02350 0.00094 0.01402 0.00031
Squared 20 0.09823 0.01781 0.03342 0.00203 0.02372 0.00093 0.01494 0.00034
Increased 40 0.09853 0.01815 0.03648 0.00230 0.02685 0.00117 0.01554 0.00034
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by 0.0465* 60 0.09917 0.01808 0.03706 0.00234 0.02648 0.00113 0.01453 0.00029
80 0.09861 0.01780 0.03247 0.00187 0.02238 0.00081 0.01359 0.00028
100 0.09962 0.01766 0.03495 0.00210 0.02546 0.00103 0.01620 0.00040
120 0.09962 0.01816 0.03707 0.00248 0.02749 0.00127 0.01704 0.00050
1 0.09641 0.01781 0.03276 0.00208 0.02303 0.00099 0.01326 0.00027
5 0.09607 0.01769 0.03365 0.00224 0.02330 0.00106 0.01394 0.00032

Return 10 0.09670 0.01805 0.03346 0.00231 0.02296 0.00104 0.01428 0.00034
Squared 20 0.09632 0.01801 0.03295 0.00220 0.02270 0.00103 0.01525 0.00038
Increased 40 0.09661 0.01833 0.03590 0.00246 0.02610 0.00126 0.01451 0.00036
by 0.06 60 0.09694 0.01823 0.03566 0.00247 0.02506 0.00119 0.01302 0.00029

80 0.09590 0.01791 0.03132 0.00195 0.02114 0.00083 0.01183 0.00023
100 0.09706 0.01773 0.03273 0.00214 0.02264 0.00100 0.01423 0.00031
120 0.09673 0.01821 0.03454 0.00250 0.02476 0.00123 0.01400 0.00039
1 0.00509 0.00005 0.00650 0.00008 0.00749 0.00011 0.01027 0.00020
5 0.00764 0.00012 0.00844 0.00014 0.00889 0.00015 0.01091 0.00023
10 0.01007 0.00020 0.01024 0.00019 0.01010 0.00019 0.01175 0.00025

Implied 20 0.01240 0.00028 0.01176 0.00026 0.01145 0.00025 0.01280 0.00030
Volatility 40 0.01332 0.00033 0.01243 0.00029 0.01231 0.00027 0.01348 0.00033

60 0.01358 0.00030 0.01272 0.00026 0.01211 0.00024 0.01413 0.00034
80 0.01271 0.00027 0.01209 0.00024 0.01249 0.00026 0.01524 0.00040
100 0.01466 0.00037 0.01413 0.00035 0.01401 0.00034 0.01518 0.00041
120 0.01573 0.00041 0.01526 0.00040 0.01493 0.00036 0.01565 0.00039

Notes: The results are based on 240 out-of-sample moving average forecasts, see subsection 3.3 for the moving
average forecasts for implied volatility using IV and RS with the n most recent observations. The forecasting
procedure is described in subsection 4.1. Bold numbers represent the smallest MAFE and the smallest MSFE
for given forecasting horizons. In the case of a tie or a non-ranking, both are recorded in bold.

4.5 Comparison of Forecasting Performance of the Models
In this subsection, the results of the forecasting performance for all methods described in

the section 3 are compared: GARCH(1,1)-RS, log-ARFIMA(0,d,1)-IV, detrended log-
ARFIMA(0,d,1)-IV, scaled truncated log-ARFIMA(0,d,1)-IV, and the moving average method
for the RS and IV. Table 2 shows MAFE and MSFE of six methods. Bold numbers report the
smallest MAFE or the smallest MSFE for the given forecast horizons. As shown in subsections
4.3 and 4.4, the GARCH(1,1)-RS model and FIV

t

RS60, *  are not preferred to the log-

ARFIMA(0,d,1)-IV model and FIV
t

IV20, . Thus, from now on, the following four models are

considered: log-ARFIMA(0,d,1)-IV in sub-section 3.2.2, scaled truncated log-ARFIMA(0,d,1)-
IV in sub-section 3.2.3, detrended log-ARFIMA(0,d,1)-IV in sub-section 3.2.4, and the moving
average method for the IV in sub-section 3.3.

For short horizons, the long memory volatility models are preferred to FIV
t

IV20, . In this

case, FIV
t

IV1,  will give smaller forecast errors than FIV
t

IV20, (see table 5). The forecasting

performances of FIV
t

IV1,  and the long memory volatility models are indistinguishable in short

horizons. For long horizons, we may not differentiate the forecasting power of FIV
t

IV20,  from

that of the detrended and scaled truncated log-ARFIMA(0,d,1)-IV models. Therefore, FIV
t

IV1,

and FIV
t

IV20,  can be used for the forecast of short and long horizons, respectively.

The forecasting performance of the detrended log-ARFIMA(0,d,1) model is reported
in the third column of table 2. The detrended forecasts have less MAFE and MSFE than those
of the log-ARFIMA(0,d,1)-IV model. Figures 2A and 3A suggest that the systematic forecast
bias in the log-ARFIMA(0,d,1)-IV model can be reduced by this simple detrend method.
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Despite the increase in FSTD in long forecasting horizons, table 2 and figures 2A to 3B
suggest that the detrended method is not worse than the log-ARFIMA(0,d,1)-IV model, and
performs well in long horizons.

The forecasting performance of the scaled truncated log-ARFIMA(0,d,1)-IV model is
reported in the fourth column of table 2. The scaled truncated log-ARFIMA(0,d,1)-IV model
performs well over all forecasting horizons. Figures 2A and 3A show that the scaled truncated
log-ARFIMA(0,d,1)-IV model reduces the systematic forecast bias found in the log-
ARFIMA(0,d,1)-IV model to a trivial level. In addition, the scaled truncated log-
ARFIMA(0,d,1)-IV model reduces FSTD in long horizons; see figures 2B and 3B. Therefore,
by reducing the systematic forecast bias and standard deviation, the scaled truncated log-
ARFIMA(0,d,1)-IV model outperforms the log-ARFIMA(0,d,1)-IV in long forecasting
horizons, while it holds the same forecasting power in short horizons as the log-
ARFIMA(0,d,1)-IV. We suggest that the scaled truncated log-ARFIMA(0,d,1) model is
preferred to the log-ARFIMA(0,d,1)-IV.

To make sure that our results are not dependent on the stock chosen or the time period,
we selected 7 other stocks and FTSE100 index and three separate time periods. Although we
only report 2 stocks for the period, the other results, available on request from the authors, are
broadly similar and do not change our qualitative evaluations. However, we find that for some
companies such as BTR, British Telecommunication, General Electric, and FTSE100 European
call options, the log-ARFIMA(0,d,1)-IV model outperforms the scaled truncated log-
ARFIMA(0,d,1)-IV for the forecast of implied volatility in long forecasting horizons. These
implied volatilities have a common character that they have increasing trends during the
forecasting period. In this case, the systematic forecasting bias in the log-ARFIMA(0,d,1)-IV
model gives better forecasts. However, when an increasing trend in implied volatility is not
anticipated, the scaled truncated log-ARFIMA(0,d,1)-IV performs well.

5. Conclusion

One of the referees raised an interesting philosophical issue as to whether RS is any use
in forecasting IV. He notes that

“If anything other than forecasted volatility affects the market price (e.g., risk aversion;
expectations about the direction of future returns; supply and demand imbalances in the
options market from liquidity trading and noise trading; effects of taxes, margin
requirement, short sale constraints, and other “market imperfections”; etc., etc.), then
implied volatility will impound potentially measurable explanatory factors that are not
coming from expected volatility. Evidence of this comes from the fact that the author(s)
find that implied volatility is systematically higher than historical volatility in the data.
This means that if we really want to predict implied volatility, we are tying at least one
hand behind our back by considering only models of returns volatility.”

Our results rather support this view. We have used both RS data to forecast IV (GARCH(1,1)-
RS model) and IV to forecast IV (log-ARFIMA(0,d,1)-IV) model). A referee has also pointed
out that the GARCH(1,1)-RS model forecasts actual volatility, whilst the log-ARFIMA(0,d,1)-
IV) model forecasts some temporal average of volatility over the remaining lifetime of the
option. Thus, using GARCH models to forecast IV guarantees that the GARCH models will not
do well. We acknowledge this point, however, to construct IV from a temporal average of the
GARCH forecasts is not straightforward and we leave this for future research.

We can summarize our suggestion as follows. Firstly, for the forecast of implied
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volatility, IV rather than RS should be used. Secondly, log-ARFIMA(0,d,1)-IV is preferred to
GARCH(1,1)-RS. Besides the forecasting performance results reported above, the log-
ARFIMA(0,d,1) model does not need non-negativity constraints and estimates are easily
obtained. Thirdly, the moving average method is not inferior to the more sophisticated methods
such as GARCH and log-ARFIMA models for the forecast of long horizons. In addition, the
estimate of d which is greater than 0.5 for our long memory models means that our models are
actually random walks with some short memory correlation. Such a structure will favour short
term forecasts, not long term forecasts. Finally, we also address the important issue of scaled
truncation in ARFIMA(k,d,l) models and suggest a procedure that eliminates bias-induced
trending in the forecasts whilst preserving the essential pattern of hyperbolic decay if it is
present in the process. Our final recommendation for the forecast of implied volatility is scaled
truncated ARFIMA(k,d,l) models for both short and long horizons.

Our evidence shows that the long memory in volatility may be eliminated by
differencing, ln(x ) - ln(x )

t

2

t-1

2 . In this case, the growth rate in implied variance is covariance

stationary with autocorrelation that decays exponentially. This means that whilst there is
evidence of integration in IV models, there is no compelling evidence of long memory effects.

Finally, should financial houses use these models? It is by no means clear from our
evidence. Over short horizons, these “fractional models” do well. However, over longer
horizons, they only slightly outperform simple moving average forecasts. When costs are taken
into account, simple methods may triumph.

Appendix

Appendix 1  <Mathematical Details of LM Models and Their Properties>

A simple ARIMA(0,1,0) model is defined as
(A1-1)     (1- L)x =t tε
where εt is an independent identically distributed random variable. The equation (A1-1) means
that the first difference of xt is a discrete time white noise process. The idea of fractional
integration permits the degree of difference to take any real value rather than integral values.

More formally, a fractionally integrated process is defined to be a discrete time
stochastic process which is represented as
(A1-2)     d

t

d

tx L x∇  =  (1- )  =            
t

ε
The fractional difference operator ∇d is defined by the binomial series expansion:

(A1-3)     

∇ = −
−

+ −
∑

=

∞

d d

j

jL
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( ) ( )
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j d

j 1 d
     =

Γ
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where Γ(.) is the gamma function. Let γ
j

j d

j 1 d
=

Γ
Γ Γ

( −
+ −

)

( ) ( )
. Then, via Stirlings approximation,

it can be shown that γ
j

j≈
−

→ ∞
− −j

d

d 1

Γ ( )
. as  

The autocovariance, autocorrelation and spectral density functions of the fractionally
integrated process are10

                    
10 See Granger and Joyeux (1980) and Hosking (1981) for proof.
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We can see that the autocorrelations of the fractionally integrated series decline at a slower rate
than that of the ARMA model. The autocorrelation function (A1-5) decays at a hyperbolic rate,
while that of the ARMA model decays exponentially.

Fractionally integrated processes show different characteristics depending on the
parameter d. A fractionally integrated process is covariance stationary and invertible when
-0.5 < < 0.5d , and it is a long memory process when d lies between 0 and 0.5. The fractional
differencing parameter d is defined by the behaviour of the series up to infinite cycles. As d goes
to 0.5, the decay rate of the impact of a unit innovation becomes slower. Hence, the fractional
differencing parameter d decides the decay of the system's response to the innovation. Sowell
(1990) shows that, while the variance of the partial sums of variables grows linearly with
number of observations when d = 0, it grows faster than a linear rate when 0<d<0.5. On the
other hand, when -0.5<d<0, the process has short memory since each shock is negatively
correlated with the others, thus making the variance of the partial sums of variables less than the
variance of the individual shock.

Certain restrictions on the long memory parameter d are necessary for the process xt to
be stationary and invertible. The covariance stationarity condition needs the squared coefficients
of the infinite order moving average representation to be summable. The moving average
representation of equation (A1-2) is

(A1-7)     
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The variance of xt can be represented as

(A1-8)   
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where σ ε
2  is the variance of εt. Therefore, for the variance of xt to exist, we need 2d-2<-1 from

the theory of infinite series. The long memory parameter which satisfies this condition is d<0.5.
Thus, when d<0.5, xt is a (weakly) stationary process. On the other hand, to obtain a convergent
autoregressive representation of equation (A1-2), we can replace d in equation (A1-8) with -d.
In this case, the invertibility condition is -0.5<d for xt.

Table A1-1 summarizes the properties of the long memory process for various d in the
frequency domain context. Values of d outside the range -0.5<d<0.5 can be understood by
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differencing the series and examining the properties of the differenced process.

Table A1-1  Properties of the Fractionally Integrated Process in the Frequency Domain

d S I                                                   Properties
d=-0.5 Yes No s(ω)~0 as ω→0

-0.5<d<0 Yes Yes short memory with negative correlation and high spectral density at high
frequencies. s(ω)~0 as  ω→0

d=0 Yes Yes white noise with zero correlation and constant spectral density. s(ω)=σ2/2π
0<d<0.5 Yes Yes long memory with positive correlation and high spectral density at low frequencies.

s(ω)~∞ as ω→0
d=0.5 No Yes s(ω)~∞ as ω→0

Note: S and I represent stationarity and invertibility, respectively. s(ω) represents the spectral density function of the
discrete time long memory process, see equation (A1-6).

Table A1-2 reports some examples of long memory coefficients at various lags. The key
property of a long memory process is that its coefficients decay at a hyperbolical rate rather than
the exponential rate of short memory process such as ARMA models. Therefore, the long
memory process is a sensible process to describe high persistence in time series such as
volatility.

Table A1-2  Comparison of Coefficients on Moving Average Representation between Long
and Short Memory Processes

Lags Fractionally Integrated Process AR(1) Process
d=0.2 d=0.4 d=0.6* d=0.8* φ=0.2 φ=0.4 φ=0.6 φ=0.8

1 0.2000 0.4000 0.6000 0.8000 0.2000 0.4000 0.6000 0.8000
2 0.1200 0.2800 0.4800 0.7200 0.0400 0.1600 0.3600 0.6400
3 0.0880 0.2240 0.4160 0.6720 0.0080 0.0640 0.2160 0.5120
4 0.0704 0.1904 0.3744 0.6384 0.0016 0.0256 0.1296 0.4096
5 0.0591 0.1676 0.3444 0.6129 0.0003 0.0102 0.0778 0.3277
7 0.0454 0.1379 0.3031 0.5755 0.0000 0.0016 0.0280 0.2097
9 0.0372 0.1190 0.2752 0.5487 0.0000 0.0003 0.0101 0.1342
10 0.0342 0.1119 0.2642 0.5377 0.0000 0.0001 0.0060 0.1074
15 0.0248 0.0881 0.2255 0.4971 0.0000 0.0000 0.0005 0.0352
20 0.0197 0.0743 0.2014 0.4699 0.0000 0.0000 0.0000 0.0115
30 0.0143 0.0583 0.1716 0.4339 0.0000 0.0000 0.0000 0.0012
40 0.0114 0.0491 0.1531 0.4099 0.0000 0.0000 0.0000 0.0001
50 0.0095 0.0430 0.1401 0.3922 0.0000 0.0000 0.0000 0.0000
60 0.0082 0.0386 0.1303 0.3782 0.0000 0.0000 0.0000 0.0000
80 0.0065 0.0325 0.1162 0.3572 0.0000 0.0000 0.0000 0.0000
100 0.0055 0.0284 0.1063 0.3417 0.0000 0.0000 0.0000 0.0000
120 0.0047 0.0255 0.0988 0.3295 0.0000 0.0000 0.0000 0.0000
140 0.0042 0.0232 0.0929 0.3195 0.0000 0.0000 0.0000 0.0000
160 0.0038 0.0214 0.0881 0.3111 0.0000 0.0000 0.0000 0.0000
180 0.0034 0.0200 0.0841 0.3039 0.0000 0.0000 0.0000 0.0000
200 0.0031 0.0188 0.0806 0.2976 0.0000 0.0000 0.0000 0.0000
300 0.0023 0.0147 0.0686 0.2744 0.0000 0.0000 0.0000 0.0000
400 0.0018 0.0124 0.0611 0.2591 0.0000 0.0000 0.0000 0.0000
499 0.0015 0.0108 0.0559 0.2479 0.0000 0.0000 0.0000 0.0000

Notes: * means that the process is not stationary. The coefficients on the moving average representation of
discrete time long memory processes are calculated using the following equation.

xt   = (1-L)-dεt
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     =Σ γj εt-j

where  γj= Γ(j+d)/(Γ(j+1)Γ(d)) and Γ(.) is the Gamma Function. The coefficients on the moving average
representation of AR processes are calculated using the following equation.

xt   = (1-φL)-1et

    =Σ φ j εt-j

Appendix 2 <The Definition and Properties of the FIGARCH and Log-ARFIMA Models>

Baillie, Bollerslev, and Mikkelsen (1996) introduce the concept of the fractional
integration to GARCH models to make the following FIGARCH(p,d,q) model:
(A2-1)       ( ( ))( ) ( ( ))1 1 12− − = + −Φ ΘL L y w L vd

t t

where 0 1 2≤ ≤ = −d v y h
t t t

,  ,  Φ( ) ,...,L L L
q

q= + +φ φ
1

 and Θ( ) = ,...,
1

L L Lθ θ+ +
p

p . The

conditional variance of the above FIGARCH model is expressed as
(A2-2)      h  =  w + (L)h [ (L) ( (L)) ( L ) ] y

t t

d

t

2Θ Θ Φ+ − − − −1 1 1

In the FIGARCH model, the long memory parameter, d, is defined to have a value, 0≤d≤1,
while in the ordinary long memory return process, d is defined as -0.5<d<0.5 to be covariance
stationary and invertible. In the FIGARCH model, d must not be less than zero because of the
non-negativity conditions imposed on the conditional variance equation.

Note that there is a difference between the definition of the stationarity in the long
memory return process and the long memory volatility process. In the long memory return
process as shown in Appendix 1, the covariance stationary condition needs the summability
of the squared moving average coefficients. However, in the FIGARCH model, the stationary
condition depends on the summability of the moving average coefficients11. That is,
stationarity in the FIGARCH model is defined as having an infinite moving average
representation in L1 space rather than L2 space. The stationary condition in L1 space is
satisfied only when d<0. Therefore, when 0≤d≤1, FIGARCH models are not covariance
stationary.

Baillie, Bollerslev, and Mikkelsen (1996) suggest that FIGARCH models with 0≤d≤1
are strictly stationary and ergodic by applying Bougerol and Picard (1992): IGARCH models are
strictly stationary and ergodic. As explained in Baillie, Bollerslev, and Mikkelsen (1996),
equation (A2-2) is equivalent to h  =  ( ) w + y

t t

2( )1 1 1− −Θ  at L=1. Therefore, w>0 in FIGARCH

models can be interpreted in the same way as in IGARCH models, and the unconditional
distribution of yt

2  has infinite mean. This is a property of the long memory volatility process:

every fractionally integrated volatility process with a drift does not have an unconditional
distribution with finite mean12. This seems to be a major drawback as it says that,
unconditionally, the expected value of implied volatility is infinite.

When equation (3-5) is combined together with conventional ARMA models, we can
obtain ARFIMA(k,d,l) models. The model used in this study is a log-ARFIMA model which is
represented as
(A2-3)     ( ( ))( ) ln( ) ( ( ))1 1 12− − = + + ≤ ≤Φ ΘL L x Ld

t t
µ ψ           0 1d

where Φ( ) ,...L L L L
k

k= + + +φ φ φ
1 2

2 , and Θ( ) ,...L L L L
l

l= + + +θ θ θ
1 2

2 , and ψt is a white noise

                    
11 See Baillie, Bollerslev, and Mikkelsen (1996) for further discussion.
12 The following log-ARFIMA model has the same property.
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zero mean process (ψt= ln( ) (ln( ))x E x
t t t

2

1

2− − ). The conditional log-variance of the log-ARFIMA

model which follows from (A2-3) is
(A2-4)     H L L L x

t t

d

t
= + + − − −µ ψΘ Φ( ) ( ( ( ))( ) )ln( )1 1 1 2

                    = − + + − − −µ Θ Θ Φ( ) ( ( ) ( ( ))( ) )ln( )L H L L L x
t

d

t
1 1 1 2

where H E x
t t t
= −1

2(ln( )) . The log-ARFIMA model is defined as an ARFIMA model for log-

variance and does not need non-negativity constraints. The above relationship expresses the
conditional log-variance (Ht) in terms of lagged values of ln( )x

t

2  and Ht.

Note that equation (A2-4) is equivalent to H  =  ( ) + x
t t

( ) ln( )1 1 1 2+ −Θ µ  at L=1. In log-

ARFIMA models, therefore, µ≠0 has the same interpretation as in FIGARCH models. That is,
the unconditional distribution of t

2xln( )  has infinite mean.

Appendix 3   <The Correction Factor of the Log-ARFIMA Model>

Notice that in log-ARFIMA models, the f-step-ahead conditional variance can not be
represented as an exponential form of the f-step-ahead conditional log-variance. On the basis
of Jensen’s Inequality, the forecast h H

t f t f+ +=* exp( ) obtained from equation (3-10) is different

from the appropriate forecast h
t f+ .  More formally,

(A3-1)    
h E y

E y H h

t f t t f

t f t f t f

+ +

+ + +

=

> = =

(exp(ln ))

exp( (ln )) exp( ) *

2

2                

If we assume that ψ t  is normal and define ζ i  to be the i-th coefficient of the moving average

representation of the log-ARFIMA model, the appropriate forecast for the log-ARFIMA model
is

(A3-2)    

h E y

E H

H

t f t t f

t t f i t f i
i

f

t f i
i

f

+ +

+ + −
=

−

+
=

−

=

+ ∑ =

= ∑

(exp(ln ))

(exp( ) )

exp( )exp( )

2

0

1

0

2

0

1
2

1

1
2

     =       (

     

ζ ψ ζ

ζ σ ψ

since for a normally distributed variable a, E a E a a(exp( )) exp( ( ) var( ))= + 1

2
 where E(a) and

var( )a  are the mean and variance of a. Note that the correction factor, exp( )
1
2

2

0

1
2ζ σ ψi

i

f

=

−

∑ , is

always larger than 1. Therefore, exp(Ht+f) gives downward biased forecasts, and the bias is an
increasing function of the forecasting horizon, σ ψ

2 , and ζ i .

Appendix 4   <The Systematic Forecast Bias>

Consider the following simple log-ARFIMA(0,d,0) model with a drift,
( ) ln( )1 2− = +L xd

t t
µ ψ . The process can be represented as

(A4-1)    ln( ) ln( )x x
t j t j

j
t

2 2

1
= − ∑ +−

=

∞

µ γ ψ

where γ
j

j d

j d
= −

+ −
Γ

Γ Γ
( )

( ) ( )1
. Note that with infinite observations, −∑ =

=

∞

γ
j

j 1

1  and unconditional
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log-variance does not exist. When we use a truncation lag, m, the process is represented as

(A4-2)    ln( ) ~ ln( )x x
t j t j

j

m

t

2 2

1
= − ∑ +−

=
µ γ ψ

where ~ ln( )µ µ γ= − ∑ −
= +

∞

j t j
j m

x2

1

. The drift, ~µ , varies with m, d, and the magnitude of the log-

variances beyond the truncation lag. Treating ~µ  as a constant, we can obtain the following
unconditional log-variance:

(A4-3)   E x
t

j
j

m(ln( ))
~

2

0

=
∑

=

µ
γ

where 0
0

< ∑
=

γ
j

j

m

.  Therefore, when we use a truncation lag, an unconditional log-variance exists.

The unconditional log-variance is achieved with a hyperbolic rate rather than an
exponential rate as in GARCH and ARMA processes. Let Af be a parameter on the drift term
( ~µ ) in the f-step-ahead conditional log-variance of the log-ARFIMA(0,d,0) model. Then, Af

evolves hyperbolically as f increases as follows:

(A4-4)   A f
1

= = − ∑ ≥−
=

−

1 1
1

1

, and  ,   2.A A
f j f j

j

f

γ

Therefore, the forecasts from the log-ARFIMA(0,d,1) model approach an unconditional
variance with a slow decay rate.

Table A4-1 reports the sum of the AR coefficients,−∑
=

γ
j

j

m

1

, over various values of d

when a truncation is used. When d is close to 1, the sum of the AR coefficients becomes one for
a relatively small truncation lag. However, it is far from 1 when d is small and m is moderate.
When d=0.1, for example, the sum of the AR coefficients is far less than 1 even with the
truncation lag of 10000 and we may obtain a large significant ~µ , where ~µ  is defined in
equation (A4-2). In this case, applying such long memory processes with finite valued
interpretations needs to be done in such a way as to preserve as many of the salient features of
the theoretical process as possible.

Table A4-1  Sum of AR Coefficients of Fractionally Integrated Processes

Truncation Lag \ d 0.1 0.2 0.3 0.5 0.7 0.9 0.99
50 0.3678 0.6078 0.7623 0.9204 0.9784 0.9969 0.9998
100 0.4098 0.6583 0.8067 0.9437 0.9867 0.9983 0.9999
300 0.4711 0.7256 0.8609 0.9674 0.9938 0.9994 1.0000
500 0.4974 0.7522 0.8806 0.9748 0.9957 0.9996 1.0000
800 0.5204 0.7744 0.8963 0.9801 0.9969 0.9997 1.0000
1000 0.5310 0.7843 0.9030 0.9822 0.9973 0.9998 1.0000
1500 0.5496 0.8011 0.9141 0.9854 0.9980 0.9999 1.0000
2000 0.5624 0.8122 0.9212 0.9874 0.9984 0.9999 1.0000
2500 0.5721 0.8204 0.9263 0.9887 0.9986 0.9999 1.0000
3000 0.5798 0.8268 0.9302 0.9897 0.9988 0.9999 1.0000
5000 0.6007 0.8436 0.9402 0.9920 0.9991 1.0000 1.0000
7000 0.6139 0.8538 0.9459 0.9933 0.9993 1.0000 1.0000
10000 0.6275 0.8639 0.9514 0.9944 0.9995 1.0000 1.0000

Notes : A fractionally integrated process can be transformed into the following AR process:
           xt = -Σ γj xt-j +εt

where γj=Γ(j-d)/(Γ(j+1)Γ(-d)) and Γ(.) is the Gamma function. The numbers in the above table are sums of the
AR coefficients for a given lag and d.
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Appendix 5   <Scaled Truncated Long Memory Models>

The scaled truncated long memory model for a variable z is presented as
(A5-1)    ( )1− =L zdST

t t
ε

The properties of the scaled truncated long memory process are clearly expressed in the
following AR representation.

(A5-2)   z z
t j t j

j

m

t
= ∑ +−

=
γ ε*

1

where =γ
j

j

mj d

j

j d

j
* ( )

( )
/

( )

( )

Γ
Γ Γ

Γ
Γ Γ

−
+

−
+

∑
=1 11(-d) (-d)

 and d is the original long memory parameter.

Note that the sum of the scaled AR coefficients is always 1, γ
j

j

m
*

=
∑ =

1

1, while 0 1
1

< −∑ <
=

γ
j

j

m

 in

equation (A4-2).
We shall now discuss the properties of the scaled truncated long memory process. The

scaled truncated long memory process can be regarded as an AR(m) model with the sum of the
AR coefficients constrained to be 1. However, in the scaled truncated long memory model, only
one parameter, dST , is used for the long range dependence instead of m parameters as in the

case of the AR(m) model. Furthermore, the decay rate retains the hyperbolic character
associated with a long memory process. The invertibility conditions are the same as those of the
ordinary fractionally integrated process in equation (3-5), since the AR coefficients in the scaled

truncated long memory process are increased by a multiplication factor of 1/
Γ

Γ Γ
( )

( )

j d

jj

m −
∑

= (-d)1

.

Stationarity conditions will require checking if the roots of the appropriate polynomial lie
outside the unit circle. There seems to be no results available on this question.

The scaled truncated fractionally integrated process does not result in the same degree of
divergence between theory and practice as other forms of truncation imply for estimated models.
In addition, it is worth noting that the long memory parameter of the scaled truncated
fractionally integrated process is always less than the original long memory parameter for
0<d<1. The gap between the two long memory parameters is smaller as d goes to 1 and vice
versa. As the truncation lag increases, the long memory parameter of the scaled truncated
fractionally integrated process will approach that of the ordinary fractionally integrated process.
Therefore, with infinite samples and a truncation lag, the scaled truncated fractionally integrated
process is equivalent to the ordinary fractionally integrated process.

Using the scaled truncated fractionally integrated process, we suggest the scaled
truncated log-ARFIMA(k,d,l) model as follows:
(A5-3)  ( ( ))( ) (ln( ) ) ( ( ))1 1 12− − − = +Φ ΘL L x Ld

t t
ST δ ψ

where Φ( ) ,...L L L L
k

k= + + +φ φ φ
1 2

2 , and Θ( ) ,...L L L L
l

l= + + +θ θ θ
1 2

2 , and ψt is a white noise

zero mean process (ψt= ln( ) (ln( ))x E x
t t t

2

1

2− − ). The conditional log-variance of the log-ARFIMA

model which follows from (A5-3) is
(A5-4)     H L L L xt t

d
t

ST= + + − − − −δ ψ δΘ Φ( ) ( ( ( ))( ) )(ln( ) )1 1 1 2

where H E x
t t t
= −1

2(ln( )) . Therefore, the scaled truncated log-ARFIMA(0,d,1)-IV model is

(A5-5)     ( ) (ln( ) ) ( )1 12− − = +L x Ld
t t

ST δ θ ψ
and using the same method as in equation (3-10), the f-step-ahead conditional log-variance from
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the scaled truncated log-ARFIMA(0,d,1)-IV model is

(A5-6)   H H xt f
ST

j
j

f

t f j
ST

j t f j
j f

m

+
=

−

+ − + −
=

= − ∑ − − −∑ ≥δ γ δ γ δ* *( ) (ln( ) )
1

1
2         f 2

where γ j
*  is defined in equation (A5-2) and  with m is a truncation lag.
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