Enhanced Choice-Based Network
Revenue Management

Arne K. Strauss
Warwick Business School, UK

October 2011
Independent versus Dependent Demand

Independent Demand
- class availability
 - Y
 - K
 - B
 - Q
- booking classes
- customer segments

Dependent Demand
- class availability
 - Y
 - K
 - B
 - Q
- booking classes
- customer segments
Dimensions of Customer Choice

Lufthansa

- **Flight Options**
- **Price**
- **Passenger Details**
- **Payment**
- **Booking Summary**

Please select your departing and returning flights, then review the price before booking.

Lowest Price

_Flight Price 1) -
1 adult
£ 249.58 2)_

Duration

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Flight</th>
<th>Duration</th>
<th>Economy Basic</th>
<th>Economy Flex</th>
<th>Business Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>06:25 London, Heathrow</td>
<td>Frank.furt</td>
<td>LH921</td>
<td>1h35</td>
<td>£ 176.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:15 London, Heathrow</td>
<td>Frank.furt</td>
<td>LH923</td>
<td>1h35</td>
<td>£ 197.58</td>
<td>£ 302.58</td>
<td></td>
</tr>
<tr>
<td>09:10 London, Heathrow</td>
<td>Frank.furt</td>
<td>LH901</td>
<td>1h35</td>
<td>£ 249.58</td>
<td>£ 302.58</td>
<td>£ 356.58</td>
</tr>
</tbody>
</table>

Currency Converter

- Rebooking: EUR 50
- Not included
- Mileage Credit:* 750 miles
- Allowed
- Mileage Upgrade:** not applicable
- Allowed
- Fee
- Fee
Importance of Choice Models in Mixed Fare Environments

Motivation

- Restricted fares: Use e.g. mandatory Saturday night stay to segment the market.
- Unrestricted fares: Price is the only differentiating feature.
 ⇒ customers only buy at the lowest open fare
- Trend in recent year towards simplified fare structures in some markets
- RM model need to handle mix of restricted & unrestricted fares, as well as customer choice behaviour

Example

Fiig, Isler, Hopperstad and Belobaba (2010)
“Optimization of mixed fare structures: Theory and applications”. *JRPM*

Meissner and Strauss (2010)
“Pricing Structure Optimization in mixed restricted/unrestricted fare environments”. *JRPM*
How to model customer choice?

Choice Models

- Reservation price models
- Random utility models (e.g. Multinomial Logit)
Choice Modelling for Fixed Itinerary

Example

Lufthansa Systems’ Choice Model

- Buy-down forecasts
- Nested product sets: allows to pre-compute choice probabilities

Product Clusters

- C
- D
- Y
- B
- M
- H
- G
- T

Fare

- $699
- $419
- $399
- $379
- $250
- $219
- $149
- $99

Demand Graph

- Direction of buy-down
- 100% buy-down
- 4 Buy-down potential
- 8 Demand

Nodes and edges indicate the structure and flow of the choice model.
Disjoint Consideration Sets

In sufficiently fenced markets:
Customer segments consider disjoint sets of products for purchase.
If strong segmentation not possible:
Customer segments consider **overlapping** sets of products for purchase.
Multinomial Logit

Parameter estimation requires only past capacity availability, revenue accounting and flight schedule data.

Multinomial Logit Choice Model

1. Define preference vector for each segment
2. Probability that a customer of a segment purchases product j subject to which alternatives are offered

\[
\text{Probability} = \frac{\text{preference for product } j}{\text{sum of preferences for considered available alternatives}}
\]

G. Vulcano, G. van Ryzin and W. Chaar (2010)
“Choice-Based Revenue Management: An Empirical Study of Estimation and Optimization”. MSOM.
Model Context and Purpose

Airline Modelling Framework

- Multiple products, sold over finite booking time horizon
- Flight network with fixed capacities
- Unused capacity becomes worthless at departure T
- Customer choice model: MNL with overlapping consideration sets

Goal

Policy stating which set of products to offer given time and remaining inventory.
Model Context and Purpose

Airline Modelling Framework

- Multiple products, sold over finite booking time horizon
- Flight network with fixed capacities
- Unused capacity becomes worthless at departure T
- Customer choice model: MNL with overlapping consideration sets

Goal
Policy stating which set of products to offer given time and remaining inventory.
General Approach

Given time period t and vector of available inventory x, which set S^* to offer?

$$S^* = \arg\max_{\text{feasible } S} E \left[\text{revenue} - \text{opp.cost}(t, x) | \text{offer set } S \right]$$

How to get opportunity cost? Dynamic Programming formulation:

$$v_t(x) = \max_{\text{feasible } S} \sum_{j \in S} \lambda P_j(S) \left[r_j - (v_{t+1}(x) - v_{t+1}(x - A_j)) \right] + v_{t+1}(x), \forall t, x.$$

Boundary condition: $v_{T+1}(x) = 0$ for all x
General Approach

Given time period t and vector of available inventory x, which set S^* to offer?

$$S^* = \arg \max_{\text{feasible } S} \mathbb{E} \left[\text{revenue} - \text{opp.cost}(t, x) \mid \text{offer set } S \right]$$

How to get opportunity cost? Dynamic Programming formulation:

$$v_t(x) = \max_{\text{feasible } S} \sum_{j \in S} \lambda P_j(S) \left[r_j - (v_{t+1}(x) - v_{t+1}(x - A^j)) \right] + v_{t+1}(x), \forall t, x.$$

Boundary condition: $v_{T+1}(x) = 0$ for all x
General Approach

Given time period t and vector of available inventory x, which set S^* to offer?

$$S^* = \arg \max_{\text{feasible } S} \mathbb{E} \left[\text{revenue} - \text{opp.cost}(t, x) \mid \text{offer set } S \right]$$

How to get opportunity cost? Dynamic Programming formulation:

$$v_t(x) = \max_{\text{feasible } S} \sum_{j \in S} \lambda P_j(S) \left[r_j - (v_{t+1}(x) - v_{t+1}(x-A^j)) \right] + v_{t+1}(x), \forall t, x.$$

Boundary condition: $v_{T+1}(x) = 0$ for all x
Given time period t and vector of available inventory x, which set S^* to offer?

$$S^* = \arg \max_{\text{feasible } S} E \left[\text{revenue} - \text{opp.cost}(t, x) | \text{offer set } S \right]$$

How to get opportunity cost? Dynamic Programming formulation:

$$v_t(x) = \max_{\text{feasible } S} \sum_{j \in S} \lambda P_j(S) \left[r_j - (v_{t+1}(x) - v_{t+1}(x - A^j)) \right] + v_{t+1}(x), \forall t, x.$$

Boundary condition: $v_{T+1}(x) = 0$ for all x
Choice-Based Deterministic Linear Program (CDLP)

- $R(S)$ — expected revenue from offering S
- $Q_i(S)$ — inventory consumption on resource i
- $w(S)$ — number of time periods that set S is offered

\[
\begin{align*}
\max & \quad \sum_{S \subseteq J} \lambda R(S) w(S) & \text{Expected revenue} \\
\text{s.t.} & \quad \sum_{S \subseteq J} \lambda w(S) \tilde{Q}(S) \leq \tilde{c} & \text{Capacity constraints} \\
\sum_{S \subseteq J} w(S) = T & \quad \text{Finite time horizon} \\
0 \leq w(S), \forall S \subseteq J. & \end{align*}
\]

Gallego et al. (2004)

Liu and van Ryzin (2008)
“On the choice-based linear programming model for network revenue management”. MSOM.
Choice-Based Deterministic Linear Program (CDLP)

- $R(S)$ — expected revenue from offering S
- $Q_i(S)$ — inventory consumption on resource i
- $w(S)$ — number of time periods that set S is offered

\[
\begin{align*}
\text{max} & \quad \sum_{S \subseteq J} \lambda R(S) w(S) & \text{Expected revenue} \\
\text{s.t.} & \quad \sum_{S \subseteq J} \lambda w(S) \tilde{Q}(S) \leq \tilde{c} & \text{Capacity constraints} \\
& \quad \sum_{S \subseteq J} w(S) = T & \text{Finite time horizon} \\
& \quad 0 \leq w(S), \forall S \subseteq J.
\end{align*}
\]

Gallego et al. (2004)

Liu and van Ryzin (2008)
“On the choice-based linear programming model for network revenue management”. MSOM.
Problems with CDLP

- 2^n variables (n: number of products)
- Column generation NP-hard for overlapping segments (Miranda Bront et al. 2009, OR)
- Only guaranteed upper bound once optimal solution has been reached
- Time-consuming
Numerical Example

Joint work with K. Talluri and J. Meissner:

<table>
<thead>
<tr>
<th>Spokes</th>
<th>Legs</th>
<th>OD pairs</th>
<th>Itineraries</th>
<th>Products</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>36</td>
<td>90</td>
<td>172</td>
<td>860</td>
<td>360</td>
</tr>
<tr>
<td>16</td>
<td>68</td>
<td>306</td>
<td>596</td>
<td>2980</td>
<td>1224</td>
</tr>
</tbody>
</table>
New Approach Outperforms CDLP
Forced CDLP to stop after maximum of 10 hours.
New Approach Outperforms CDLP
Forced CDLP to stop after maximum of 10 hours.
New Approach Outperforms CDLP
Forced CDLP to stop after maximum of 10 hours.
How Does It Work?

Idea

- Each customer segment considers only a few products
- Therefore, CDLP can be solved for a single segment
 → Segment-based Deterministic Concave Program (SDCP), Talluri (2010)
- Add constraints to enforce consistency between segment-based decisions
 → SDCP with “product constraints”

Talluri (2010)

Segment-based Deterministic Concave Program

\[
\begin{align*}
\text{max} & \quad \sum_l \sum_{s_l} \lambda_l R_l(s_l) w^l(s_l) \\
\sum_l \tilde{y}^l & \leq \bar{c} \\
\sum_{s_l} \lambda_l \bar{Q}_l(s_l) w^l(s_l) & \leq \tilde{y}^l & \forall l \\
\sum_{s_l} w^l(s_l) & = T & \forall l \\
w^l(s_l) & \geq 0 \\
\tilde{y}_l & \leq \lambda_l T \bar{t} \\
\tilde{y}_l & \geq 0
\end{align*}
\]

- **max total revenue**
- **network capacity constraints**
- **segment capacity constraints**
- **time constraints**
- **duration of offering \(S_l \)**
- **segment demand constraint**
- **capacity allocation to segment \(l \)**
Product Cuts

Example

Two segments with $C^l = \{1, 2\}$ and $C^k = \{2\}$.

Suppose the SDCP solution for segments l and k is:

- Need to coordinate interaction on overlap $C^l \cap C^k = \{2\}$
- Add constraint $w^l(\{2\}) + w^l(\{1, 2\}) = w^k(\{2\})$
- Solve SDCP with new constraints.
Example

Two segments with $C^l = \{1, 2\}$ and $C^k = \{2\}$.

Suppose the SDCP solution for segments l and k is:

- Need to coordinate interaction on overlap $C^l \cap C^k = \{2\}$
- Add constraint $w^l(\{2\}) + w^l(\{1, 2\}) = w^k(\{2\})$
- Solve SDCP with new constraints.
SDCP with Product Cuts

\[\text{Solve} \quad \text{SDCP} \]
\[\text{s.t.} \quad \sum_{S_l \supseteq S_{lk}} w^l(S_l) = \sum_{S_k \supseteq S_{lk}} w^k(S_k) \quad \forall S_{lk} \subseteq C_l \cap C_k, \forall \{l, k\} \]

Results

- Provides upper bound on optimal expected revenue
- Same objective as CDLP in all test scenarios where CDLP tractable
- Sufficient to consider constraints for \(|S_{lk}| \leq 2\)
- Dramatic run time reductions (10 min vs. 10 hours)
Dynamic Programming Decomposition

Solve for all flight legs i:

\[v^i_t(x_i) = \max_{\text{feasible } S} \sum_{j \in S} P_j(S) \left(\frac{A_{ij} \pi_j r_j}{\sum_k A_{kj} \pi_k} - (v^i_{t+1}(x_i) - v^i_{t+1}(x_i - 1)) \right) \]

\[+ v^i_{t+1}(x_i) \quad \forall t, x_i, \]

\[v^i_{T+1}(x_i) = 0 \quad \text{for all } x_i, \]

\[v^i_t(0) = 0 \quad \text{for all } t. \]

- Runs sufficiently quick
- Good performance with iterations and resolving

Approximate opportunity cost with

\[\sum_{i \in A_j} (v^i_{t+1}(x_i) - v^i_{t+1}(x_i - 1)) \] to obtain policy
Further Potential for Improvement

Joint with T. Winter and P. Kemmer at Lufthansa Systems:

Idea

- Dynamic Programs are already solved in parallel
- Exploit knowledge on v_t^i as soon as it becomes available

\Rightarrow can obtain time-dependent marginal capacity values (almost) for free!
Dynamic Marginal Capacity Value Candidates

In time t, suppose we have solved v_i^t for all legs i and $t \in \{t + 1, \ldots, T\}$.

$$\pi_{t+1}^i := \frac{\sum_{h=1}^{c_i} (v_{t+1}^i(h) - v_{t+1}^i(h-1))}{c_i}$$

Increased average revenues in simulation studies up to 1%.
Summary

- Choice-based demand model important but complex
- Difficult optimisation if products are considered by more than one segment
- But sufficiently powerful tools now available
Contact

- **Arne K. Strauss**
 Assistant Professor of Operational Research
 Operational Research/Management Sciences Group
 Warwick Business School
 Coventry CV4 7AL United Kingdom
- E-Mail: arne.strauss@wbs.ac.uk

“An Enhanced Concave Program Relaxation for Choice Network Revenue Management”.

“Dynamic Simultaneous Fare Proration for Large-Scale Network Revenue Management”