Outline

• Who are Infineum and what do we do?
• Engine oil and engine function
 – Destructive processes in the engine environment
• Overview of oil additives
• Collaborations with UK Universities
 – Criteria for selection
 – What would we like to work with Warwick on
Infineum in our everyday life

Infineum additives are in over 200 million motorcycles worldwide

Infineum additives are inside 1 in 3 vehicles

We operate in every continent

Our fuel additives treat more than 150 million tons of diesel fuel/year

©INFINEUM INTERNATIONAL LIMITED 2015. All Rights Reserved. 2015006f.
Business Profile

- Independent additives company with an annual revenue in excess of $3 billion
- Worldwide resourcing of approximately 1,600 colleagues in multicultural and multifunctional teams
- Globally positioned
 - Global Corporate HQ in UK with regional business centres in the UK, USA, China and Singapore
 - Sales and Marketing representation in more than 70 countries
 - R&D facilities in the UK, USA, China, Japan and Singapore
 - Global manufacturing facilities strategically located
A truly global company
Destructive processes in the engine

What destructive process are present in the engine?

1. Combustion
2. Oxidation
3. Friction and Wear
4. Rust and Corrosion
5. Shear
 - Mechanical degradation
 - ‘Tearing apart’
Destructive processes in the engine

Fuel combustion

- **Ideal situation** – Complete combustion of fuel with oxygen

 \[
 \text{Fuel + Air} \rightarrow \text{Energy} + \text{CO}_2 + \text{H}_2\text{O}
 \]

- **What actually happens** – Incomplete combustion of fuel produces undesirable by-products

 \[
 \text{Fuel + Air} \rightarrow \text{Energy} + \text{CO}_2 + \text{H}_2\text{O} + \text{NO}_x + \text{SO}_x + \text{CO} + \text{HC} + \text{Particulate Matter (PM-Soot)} + \text{Radicals}
 \]

- **Result** – Accelerate the oxidation and degradation of engine oil, viscosity increase, acid build-up, corrosive wear and deposits
Balance of additives and base oil
what’s in a typical oil formulation

Key is balancing the additives for the application.
Dispersants

- **Functions**
 - Suspend soot (carbonaceous particles)
 - Inhibit and disperse sludge
 - Reduce formation of deposits
 - Keep things clean
 - Typical composition
 - Metal free (ashless)
 - Polyisobutene succinimide (PIBSA PAM)

![Polyisobutylene Oleophile (oil-loving)](image)

Polyisobutylene

![Succinic Acid](image)

Succinic Acid

![Polyalkylene Amine](image)

Polyalkylene Amine

= PIBSA/PAM
Detergents

- Functions:
 - Neutralise acidic species (sulfur oxides and organic acids)
 - Reduce lacquer, carbon and varnish deposits on the engine’s pistons
 - Prevent ring sticking under severe high-temperature operating conditions

- Typical compositions – colloidal
 - Alkylated metal sulfonates, sulfurised phenates, salicylates
 - Neutral or overbased (Excess base)
Antiwear Agents and Friction Modifiers

General function and types

• Function
 – Reduce metal-metal wear

• Types
 – Zinc-based: zinc dialkyldithiophosphates (ZDDP)
 • Engine oils
 – Molybdenum-based: molybdenum dithiocarbamates (MoDTC)
 – Phosphorus-based: tri-cresyl phosphate
 • ATF, gear, aviation
 – Extreme pressure: highly reactive sulfur-phosphorus compounds
 • Gear oils
 – Friction modifiers
 • Organic molecules like GMO
Friction modifiers organic

- Molecular geometry is similar to detergents (surfactant)
- Act “intact” (not chemically transformed at the surface)
- Examples include oleic acid and glycerol mono oleate (GMO)

![Diagram of Friction modifiers organic](image-url)

Glycerol monooleate

Performance you can rely on.
Friction modifiers inorganic

Solid friction modifiers
- Molecular geometry describes a “flat plate”
- Act after chemical transformation at the surface
- Examples include molybdenum disulphide (MoS$_2$) from molybdenum trimer (MoDTC)
Antioxidants

- Primary antioxidants (chain stopping, radical traps)
 - Hindered Phenols
 - Alkylated DiPhenyl Amines (DPA)

\[
R\bullet + \text{In-H} \quad \xrightarrow{\text{Reactive}} \quad R-H + \text{In}\bullet \quad \xrightarrow{\text{Stable}}
\]

Where: In-H = inhibitor

- Secondary antioxidants (peroxide decomposers)
 - Zinc Dialkyl Dithiophosphates (ZDDP)
 - Molybdenum Dialkyldithiocarbamates (MoDTC)
 - Thioethers

\[
\text{ROOH} + \text{PD} \quad \rightarrow \quad \text{ROH} + \text{PD}[O]
\]

Where:
- ROOH = Peroxide
- PD = Peroxide decomposer
- ROH = Alcohol
- PD[O] = Oxidised peroxide decomposer
Viscosity modifiers

- **Ethylene-Propylene Co-polymer (OCP)**
 - Can be semi-crystalline or amorphous depending on structural details

- **Polymethacrylate: (PMA)**

- **Hydrogenated Styrene-Diene: Linear Polymer**

- **Hydrogenated Styrene-Diene: Star Polymer**
 - Chemically bonded together
 - Loose physical association due to polarity differences
Criteria for selection of a university/department

Infineum targets external projects in a limited number of areas at key universities based on:

1. Appropriate Skills of the department/academic
2. Ease of working with (e.g. contract/IP negotiations, previous experiences)
3. Partner University
4. Ongoing relationship with key academics
5. Connections with other programmes
6. Other Possible benefits, idea generation etc.
7. Cost
Working with Warwick

- **Areas for potential collaboration with Warwick University**
 - Identification of trace contaminants in complex sample mixtures
 - High end analytical techniques (high end for the lubricant industry)
 - Custom synthesis (we are already working with Peter Scott’s group on this)
 - Process development, continuous processing etc.
 - NAIC, Engine understanding, lubricant development/formulation work
 - More work with chemistry and physics into calcium carbonate based detergents
 - Work on fuels additives in conjunction with Warwick Chemistry
 - Potential for collaboration with non-competing industries
Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user’s responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party website from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those third party websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

INFINEUM, PARATAC, SYNACTO, VISTONE and the interlocking ripple device are Trade Marks of Infineum International Limited.

© Infineum International Limited 2015. All rights reserved. 2015006f.