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Overview
The Intelligent Water Drops algorithm was modi-
fied (MIWD) and adapted to allow it to determine
the most stable configurations, for the first time,
of Lennard-Jones (LJ), Binary LJ (BinLJ), Morse
and Janus Clusters. The algorithm, referred as
MIWD+PerturbOp, is an unbiased type of algo-
rithm where no a priori cluster geometry infor-
mation and construction were used during initial-
ization. Cluster perturbation operators were ap-
plied to clusters generated by MIWD to further
generate lower energies. A limited-memory quasi-
Newton algorithm, called L-BFGS, was utilized
to further relax clusters to its nearby local mini-
mum.

Basic Properties of IWD
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Figure 1: A path measures quality of connectivity be-
tween particles. (a) An IWD gathers soil (brown el-
lipse) as it flows from particle i to particle j while
path(i,j) loses an amount of soil; (b) Soil gathered in-
creases with IWD velocity; (c) An IWD travelling on
a path with lesser soil, path(m,n), will gather more
soil and higher velocity. (d) The algorithm progres-
sively builds the cluster by choosing the connectivity
with desirable measures.
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Modifications to IWD
1. The probability of choosing a path depends on
amount of soil and the potential energy.
pIWD
i,j = f(soil(i,j))η(i,j)∑

kεV IWD
a

f(soil(i,j))η(i,j)

η(i, j) = 1
2+Vtype(ri,j)

VM = ea(1−ri,j)
(
ea(1−ri,j) − 2

)
VLJ(ri,j) = 4εi,j

((
σi,j
ri,j

)12

−
(
σi,j
ri,j

)6
)

VJ(ri,j) = VLJ(ri,j)f (Ωi) f (Ωj)

f(Ωi) = −exp
(
θ2i,j
2σ2

)
+ exp

(
(θi,j−180)2

2σ2

)
2. An appropriate heuristic undesirability factor,
HUD, is chosen to fit atomic cluster optimization.
HUDi,j = η(i, j)−1 + µri,j + β(max(0, r2i,j −D2))2

3. Worst iteration agent, TIW, affects the soil content
as well.
soil(i, j) = (1 + ρ)soili,j + ρ

(
soilIWD

N−1

)
4. L-BFGS was used as a relaxation algorithm for
IWDs.

On LJ Clusters
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Figure 2: Left : Five independent LJ98 test runs
(color lines) (10,000 iterations/run) showing decline
in cluster energy. Right : Cubic Bounding volume
and Grow Etch perturbation operator combination
shows energy decline as tested on LJ38.
Runs of MIWD alone show improvement as it-
erations progress. Energies of the final runs for
MIWD+GrowEtch, utilizing spherical bounding
volume for scattering of initial sites, agree exactly
with CCD (Cambridge Cluster Database) results up
to N = 104 atoms. Compactness measures (Fig. 3)
of this study versus CCD results show high-accuracy.
Rotation and translation reveal that chiral clus-
ters were generated. MIWD+GrowEtch achieved
relatively high-success rates for difficult clusters
compared to Basin-Hopping (BH), Basin-Hopping
with Occasional Jumping (BHOJ) and Parallel Fast
Annealing Evoluationary Algorithm (PFAEA) (Table
1).

Cluster MIWD+ BH BHOJ PFAEA
Size PerOp
38 100% 87% 96% 39%
75 50% 1% 5% 1%
76 20% 5% 10% 4%
77 10% 6% 5% 2%
98 75% 10% 10% 4%
102 5% 3% 16% 9%
103 40% 3% 13% 10%
104 15% 3% 12% 7%

Table 1: Good success rates with all "difficult" LJ
clusters.

Figure 3: Compactness of clusters MIWD+GrowEtch
versus CCD.

Figure 4: Row 1 : Overlayed clusters showing un-
matched positions. Row 2 : Rotated and translated
clusters showing matching configurations.

On Binary LJ and Morse
BINARY LJ : Tested for up to 50 atoms on 6
instances of σBB = 1.05 − 1.30. MIWD+Knead
rediscovered the global minima (GM) for most of the
clusters except for N = 41, 43, 45-49 for σBB = 1.05
and N = 46,47 for σBB = 1.10. MIWD+CutSpliceVar
rediscovered most of the GM except for N = 35-36,
39-50 for σBB = 1.05, N = 46-47, 49-50 for σBB
= 1.10, N = 35 for σBB = 1.15, and N = 30-32
for σBB = 1.30. Combination of perturbation
operators (CombiOp) in Phase 2 (CutSplice+Knead,
CutSplice+H1L2, CutSplice+H2L1, Knead+H1L2
and Knead+H2L1) were further done. Combinations
were able to arrive at the GM except for N =
41,43,45,46,48,49 for σBB = 1.05 and N = 46 for σBB
= 1.10.
MORSE : Tested for up to 60 atoms on 2 values of in-
terparticle force range (a = 6, 14). MIWD+GrowEtch
located the GM for most of the clusters except for N
= 47, 55, 57, 58, 60 for a = 14.

Figure 5: GM configurations generated from
MIWD+CombiOp for selected Binary LJ Clus-
ters.

Figure 6: GM configurations from MIWD+GrowEtch
for selected Morse Clusters.

On Janus Clusters
MIWD+CombiOP was applied on Janus clusters us-
ing the LJ potential as the patchy particles model but
where anisotropic attraction and repulsion is modu-
lated by an orientational dependent termMVang (Fig.
7). Configurations were predicted for cluster sizes
N = 3 − 50 and N = 100. MIWD with GrowEtch
and Patch Orientation Mutation produced the config-
urations with the lowest energies.
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Figure 7: Orientation interaction, MVang, for pairs of
angles between 0◦ to 180◦. MVang for σ = 90 (Col-
umn 1) and σ = 30 (Column 2).
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Figure 8: Left : Lowest Cluster Energies generated by
MIWd+CombiOp for Janus clusters sizes N = 3−50.
Right : Observed basic structures in Janus Clusters.

Cluster Size
10 20 30 40 50

A
ve

ra
g
e
 C

lu
st

e
r 

O
ri
e
n
ta

tio
n
 M

e
a
su

re

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cluster Size
10 20 30 40 50

C
o
m

p
a
ct

n
e
ss

0

1

2

3

4

5

6

7

8

MIWD+GrowEtchOr
LJ

Figure 9: Left : Average orientation measure of each
Janus particle with its neighbourhing particles. Right
: Compactness of Janus clusters compared to global
optima LJ clusters.

Figure 10: Snapshots from iterations of
MIWD+CombiOp for J100. Geometries in a
and b are from Phase 1 while structures obtained
from d to m are Phase 2 results. Geometry in c is
the relaxed configuration resulting from Phase 1.
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Figure 11: Left : Energies of Janus configurations in
snapshots a to m. Right : Compactness of configura-
tions in snapshots a to m.
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