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1.2.1 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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Abstract

We introduce, and analyze in terms of convergence rates of transition kernels, a

continuous-time Markov chain approximation to Lévy processes. A full fluctuation

theory for what are right-continuous random walks embedded into continuous-time

as compound Poisson processes, is provided. These results are applied to obtaining

a general algorithm for the calculation of the scale functions of a spectrally negative

Lévy process. In a related result, the class of Lévy processes having non-random

overshoots is precisely characterized.
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Chapter 1

Introduction

In this chapter we (i) review the relevant theory and terminology; in the

process, or otherwise, (ii) fix notation (Sections 1.1 and 1.2); and (iii)

explain the structure of the remainder of the thesis (Section 1.3). Further

(more specific) concepts and notation will be introduced in subsequent

chapters, as and where appropriate.

1.1 Miscellaneous general notation

Notation 1.1 (Number sets).

(1) For h > 0, d ∈ N: Zh := hZ := {hk : k ∈ Z} and Zdh := (Zh)d = {hk : k ∈ Zd}.

(2) The nonnegative, nonpositive, positive and negative real numbers are denoted

by R+ := {x ∈ R : x ≥ 0}, R− := {x ∈ R : x ≤ 0}, R+ := R+\{0} and

R− := R−\{0}, respectively. Then Z+ := R+∩Z, Z− := R−∩Z, Z+ := R+∩Z
and Z− := R− ∩ Z are the nonnegative, nonpositive, positive and negative

integers, respectively.

(3) Similarly, for h > 0, Z+
h := Zh ∩ R+, Z−h := Zh ∩ R−, Z++

h := Zh ∩ R+ and

Z−−h := Zh ∩ R−, are the apposite elements of Zh.

(4) The following introduces notation for the relevant half-planes of C; the arrow

notation is meant to be suggestive of which half-plane is being considered:

C→ := {z ∈ C : <z > 0}, C← := {z ∈ C : <z < 0}, C↓ := {z ∈ C : =z < 0}
and C↑ := {z ∈ C : =z > 0}. C→, C←, C↓ and C↑ are then the respective

closures of these sets.
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(5) N = {1, 2, . . .} and N0 = N ∪ {0} are the positive and nonnegative integers,

respectively.

Notation 1.2 (Balls and spheres). B(x, δ) (respectively B(x, δ), S(x, δ)) is the open

ball (respectively closed ball, sphere), centre x ∈ Rd, radius δ > 0 (d ∈ N).

Notation 1.3 (Ceiling and min/max functions). dxe := min{k ∈ Z : k ≥ x} (x ∈ R)

is the ceiling function. For {a, b} ⊂ [−∞,+∞]: a ∧ b := min{a, b} and a ∨ b :=

max{a, b}.

Convention 1.4 (Usage of increasing and decreasing, positive and negative). In-

creasing will always mean strictly increasing and positive will mean strictly positive

(similarly decreasing and negative). Exceeding will mean strictly exceeding. xn ↓ x
(respectively xn ↑ x) will mean xn > x (respectively xn < x) and xn nonincreasing

(respectively nondecreasing) to x (as n→∞).

Notation 1.5 (Big O and little o notation; usage of ∼). For functions f and g > 0,

defined on some right neighborhood of 0, we shall write f = O(g) (respectively

f = o(g), f ∼ g) for lim suph↓0 |f |(h)/g(h) <∞ (respectively limh↓0 |f |(h)/g(h) = 0,

limh↓0 |f |(h)/g(h) ∈ (0,∞)) — if further g converges to 0, then we will say f decays

no slower than (respectively faster than, at the same rate as) g. Analogous notation

obtains for the behavior of functions at +∞ or −∞.

Notation 1.6 (The geometric and exponential laws). The geometric law geom(p) on

N0 with success parameter p ∈ (0, 1] has geom(p)({k}) = p(1− p)k (k ∈ N0). 1− p
is called the failure parameter. The exponential law Exp(λ) on R+ with parameter

λ ∈ (0,∞) is specified by the density Exp(λ)(dt) = λe−λtdt. Additionally, we will

understand any random element, which is equal to +∞, a.s., to have the Exp(0)-law.

Notation 1.7 (Image measure; random elements). If µ is a measure on some mea-

surable space (X,A) and f is a measurable mapping between the measurable spaces

(X,A) and (Y,B), then the push-forward or image measure f?µ = µ ◦ f−1 on (Y,B)

is given by f?µ(B) = µ(f−1(B)) (B ∈ B).

If (Ω,F ,P) is a probability space, then by a random element X thereon, we

mean a measurable mapping from (Ω,F) into some measurable space (S,S). In

this instance we shall use the notation PX = X?P for the law of X (on (S,S) with

respect to P) [Kallenberg, 1997, p. 24].

Notation 1.8 (Borel σ-fields and supports; Dirac measures). B(S) will always denote

the Borel σ-field of a topological space S; supp(m) the support of a measure m

thereon [Kallenberg, 1997, p. 9]; we shall say m is carried by A ∈ B(S), if m(S\A) =

0; δx := (A 7→ 1A(x)), mapping B(S) into [0, 1], is the Dirac measure at x ∈ S.

2



Notation 1.9 (Completions). For a measure µ on a σ-field A, Aµ denotes the comple-

tion of A with respect to µ, while µ is the unique extension of µ to Aµ [Kallenberg,

1997, p. 13]. A ⊂ X is said to be µ-negligible (or µ-null), if A is measurable and of

µ-measure 0.

The universal completion of a σ-field F will be denoted by F?.
Convention 1.10 (Abbreviations). DCT (MCT) is shorthand for dominated (mono-

tone) convergence theorem. CP stands for compound Poisson.

Convention 1.11 (Usage of 0·∞, a/0). By convention, 0·∞ = 0. We will understand

a/0 = ±∞ for a ∈ ±(0,∞).

Convention 1.12 (Usage of ⊥). The symbol ⊥ will sometimes be used to indicate

stochastic independence (relative to the probability measure P, or some conditional

measure P(·|A) (with A ∈ F and P(A) > 0) derived therefrom, depending on the

context).

Notation 1.13 (Identity function). For a set A, idA shall denote the identity function

on A.

Notation 1.14 (Laplace transforms and Lebesgue-Stieltjes measures). The Laplace

transform of a measure µ on R, concentrated on [0,∞), is denoted µ̂: µ̂(β) =∫
[0,∞) e

−βxµ(dx) (for all β ≥ 0 such that this integral is finite). To a nondecreasing

right-continuous function F : R → R, a measure dF may be associated in the

Lebesgue-Stieltjes sense.

Definition 1.15 (Functions of exponential order; limits at infinity). A function

f : [0,∞)→ [0,∞) is said to be of exponential order, if there are {α,A} ⊂ R+, such

that f(x) ≤ Aeαx (x ≥ 0); f(+∞) := limx→∞ f(x), when this limit exists.

Definition 1.16 (Usual assumptions/conditions; augmentations). A filtered prob-

ability space (Ω,F ,F := (Ft)t≥0,P) is complete, if F is complete relative to the mea-

sure P, and F0 contains all the P-null sets of F . If in addition F is right-continuous,

we say that the filtered probability space satisfies the usual assumptions/conditions.

There is a smallest augmentation of the filtration (upon completion of (F ,P)) which

achieves this, when it is not already so, see e.g. [Kallenberg, 1997, p. 101, Lemma

6.8]. We refer to the latter as the usual augmentation.

1.2 Lévy processes and continuous-time Markov chains

1.2.1 Lévy processes

Throughout this subsection we fix a filtered probability space (Ω,F ,F = (Ft)t≥0,P)

and a dimension d ∈ N. For Lévy processes canonical references are [Bertoin, 1996;

3



Sato, 1999].

Definition 1.17 (Lévy process). A continuous-time stochastic processX = (Xt)t≥0,

with state space Rd, is a Lévy process, if it starts at 0, P-a.s., is continuous in proba-

bility, has independent and stationary increments and is càdlàg off a P-negligible set

[Sato, 1999, p. 3, Definition 1.6]. It is a Lévy process in law if we do not insist on

the càdlàg property. Finally it is so with respect to the filtration F, if it is F-adapted

and Fs ⊥ (Xt −Xs), whenever t ≥ s ≥ 0.

A Lévy process in law X is uniquely characterized by its characteristic triplet

(Σ, λ, µ)c̃. Here Σ ∈ Rd×d is a symmetric nonnegative definite matrix, called the

diffusion matrix (reducing to the scalar, diffusion coefficient, when d = 1), Λ is

a measure on Rd satisfying Λ({0}) = 0 and
∫
Rd(|x|

2 ∧ 1)Λ(dx) < ∞ (i.e. Λ does

not charge {0}, integrates 1 outside every neighborhood of 0 and |idR|2 on every

compact neighborhood of 0 — we say it is a Lévy measure), and µ ∈ Rd is the drift

coefficient relative to some cut-off function (also called truncation function) c̃ [Sato,

1999, p. 39].

The characteristic function of the law µt := Xt∗P (t ≥ 0) is then given by

the celebrated Lévy-Khintchine formula [Sato, 1999, p. 38, Corollary 8.3]:

φXt(p) :=

∫
R
ei〈p,x〉µt(dx) = exp {tΨ(p)} (t ≥ 0, p ∈ Rd) (1.1)

where:

Ψ(p) := −1

2
〈p,Σp〉+ i〈µ, p〉+

∫
Rd

(
ei〈p,x〉 − 1− i〈p, x〉c̃(x)

)
Λ(dx) (p ∈ Rd) (1.2)

is the characteristic exponent. Note that X is a Markov process admitting a tem-

porally and spatially homogeneous transition function Pt,T (x,B) := µT−t(B − x),

where 0 ≤ t ≤ T , x ∈ Rd and B ∈ B(Rd) (see e.g. [Sato, 1999, pp. 54-58]).

Definition 1.18 (Compound Poisson processes). X is called a compound Poisson

(CP) process in law, if Λ is finite and, with c̃ = 0, Σ = 0 and µ = 0. In case X is a

Lévy process, the qualification “in law” is of course dropped. Remark that we allow

in this definition for the case when X = 0 identically (P-a.s.).

1.2.2 Fluctuation theory of Lévy processes

Fluctuation theory of Lévy processes studies the first passage times (above, or below

a certain level), the running supremum and infimum processes, the two-sided exit

problem, and related concepts — with the Wiener-Hopf factorization being one of

4



its most important results. [Kyprianou, 2006] is a book dedicated entirely to these

ideas and their applications.

In this subsection we fix a Lévy process X on a filtered probability space

(Ω,F ,F,P). We shall assume without loss of generality that the latter satisfies the

usual assumptions (see Definition 1.16).1

We also let e1 stand for an Exp(1)-distributed random variable independent

of X, then define ep := e1/p (p ∈ (0,∞)\{1}). We insist (harmlessly) that our

probability space is already rich enough to support e1 (if not, it can be made as

such, by taking a suitable tensor product).

Definition 1.19 (Subordinators). X is called a subordinator, if it is nondecreasing

off a P-null set.

Definition 1.20 (First passage times and overshoots). For x ∈ R introduce Tx :=

inf{t ≥ 0 : Xt ≥ x} (respectively T̂x := inf{t ≥ 0 : Xt > x}, T−x := inf{t ≥ 0 :

Xt < −x}), the first entrance time of X to [x,∞) (respectively (x,∞), (−∞,−x)).

We will informally refer to Tx and T̂x (respectively T−x ) as the times of first passage

above (respectively, below) the level x (respectively −x). Rx := X(T̂x) − x is the

overshoot at the level x, x ≥ 0 [Sato, 1999, p. 369].

Remark 1.21. By the Début Theorem [Kallenberg, 1997, p. 101, Theorem 6.7],

times of first passage, as in Definition 1.20, are stopping times.

Definition 1.22 (Supremum and infimum pocesses). We define:

(a) Xt := sup{Xs : s ∈ [0, t]} (t ≥ 0), the running supremum or maximum

process.

(b) X := −−X, the running infimum or minimum process.

(c) Gt := sup{s ∈ [0, t] : Xs = Xs}, the last time on [0, t] of attaining the running

supremum (t ≥ 0).

(d) Gt := sup{s ∈ [0, t] : Xs = Xs}, the last time on [0, t] of attaining the running

infimum (t ≥ 0).

1We can always achieve this by first completing (Ω,F ,P) (clearly X remains a Lévy process on
this space as well); then (harmlessly) discarding the P-negligible set on which X is not càdlàg; and
finally performing the usual augmentation (see Definition 1.16) of the filtration F, by (i) making it
first right-continuous, and then (ii) adding the P-null sets. In both steps (i) and (ii), the property
of X being a Lévy process with respect to the filtration F is preserved. For, in step (i), if 0 ≤ s < t,
then for any s < s′ < t one has (Xt −Xs′′)s′≤s′′≤t ⊥ Fs′ ⊃ Fs+. Therefore (by a π/λ-argument)
(Xt−Xs′)s<s′≤t ⊥ Fs+. By right-continuity of the sample paths, this implies (Xt−Xs) ⊥ Fs+. In
step (ii), we have as follows. If N is the set of P-negligible sets, then for every 0 ≤ s < t, Fs+ ∪N
is a π-system, independent of Xt −Xs. Since one is able to raise independence from a π-system to
the σ-algebra generated by it, this establishes the property.

5



When X is CP we additionally set:

(e) G
∗
t := inf{s ∈ [0, t] : Xs = Xt}, i.e., P-a.s., G

∗
t is the last time in the interval

[0, t] that X attains a new maximum (t ≥ 0).

(e) G∗t := inf{s ∈ [0, t] : Xs = Xt}, i.e., P-a.s., G∗t is the last time in the interval

[0, t] that X attains a new minimum (t ≥ 0).

Assume henceforth (for convenience, cf. Footnote 1) that X is càdlàg with

certainty (rather than just P-a.s.).

Remark 1.23. In the above we have taken right continuous versions of the nonde-

creasing processes G and G. Since in the sequel they enter the results only after

they have been evaluated at ep, working with their left continuous versions instead

(they are: G
′
0 := 0, G

′
t := sup{s ∈ [0, t) : Xs = Xs} = lims↑tGs (t > 0) and G′0 := 0,

G′t := sup{s ∈ [0, t) : Xs = Xs} = lims↑tGs (t > 0)) would not change any of

the results (thus, G
′
ep = Gep and G′ep = Gep P-a.s.).2 Moreover, by the remark in

the introduction to [Bertoin, 1996, Section VI.2], it follows that we could just as

easily also work with the definitions G
′′
t := sup{s ∈ [0, t] : Xt ∈ {Xs, Xs−}} and

G′′t := sup{s ∈ [0, t] : Xt ∈ {Xs, Xs−}} (thus, G
′′
ep = Gep and G′′ep = Gep P-a.s.).

An almost indispensable tool in studying fluctuation theory are also the

notions of local time and ladder processes. We take the definition from [Kyprianou,

2006].

Definition 1.24 (Local time, ladder and reflected processes). A (continuous, unless

0 is irregular for [0,∞) see [Kyprianou, 2006, p. 144, Theorem 6.7]), nondecreasing,

R+-valued, F-adapted process L = (Lt)t≥0 is called a local time at the maximum (or

just local time for short) if the following hold:

1. The support of the Stieltjes measure dL is the closure of the (random) set of

times {t ≥ 0 : Xt = Xt} for each t ≥ 0.

2. For every F-stopping time T such that XT = XT on {T < ∞}, P-a.s., the

shifted trivariate process

(XT+t −XT , XT+t −XT , LT+t − LT ))t≥0

is independent of FT conditionally on {T < ∞} and has the same law under

P(·|{T <∞}) as does (X,X −X,L) under P.

2Since a nondecreasing function has only countably many points of discontinuity (jumps), then
G and G′ (generically for both of the cases) disagree at most on a countable set. Thus, as ep ⊥ X,
P-a.s., ep will not equal a point of disagreement of G and G′.
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The process which is, P-a.s., identically equal to zero, is excluded. By applying this

definition to −X, one gets also the notion of a local time at the minimum, denoted

L̂. X − X is called the reflected process at the maximum (similarly X − X the

reflected process at the minimum).

We let L−1
t := inf{s ≥ 0 : Ls > t} be the right-continuous inverse local time

at the maximum and Ht = X(L−1
t ) be the ascending ladder heights (for 0 ≤ t <

L+∞; L−1
t := +∞ and Ht := +∞ for t ≥ L+∞). (L−1, H) is the ascending ladder

process. By applying the same procedure to L̂ we get also the descending ladder

process (L̂−1, Ĥ).

Remark 1.25. Local times, as described above, always exist (and are unique up

to a multiplicative constant, unless 0 is irregular for [0,∞)). The ascending and

descending ladder processes are (possibly exponentially killed [Kallenberg, 1997,

p. 242]) bivariate subordinators. To them there correspond the bivariate Laplace

exponents κ and κ̂ with

E[exp{−αL−1
1 − βH1}1{1<L∞}] = exp{−κ(α, β)}

and

E[exp{−αL̂−1
1 − βĤ1}1{1<L̂∞}] = exp{−κ̂(α, β)}

({α, β} ⊂ C→) [Kyprianou, 2006, pp. 149 & 157]. Indeed, κ and κ̂ are non-zero

whenever α ∈ C→, continuous (by the DCT) and they are analytic in the interior of

their domains (use e.g. the theorems of Cauchy [Rudin, 1970, p. 206, 10.13 Cauchy’s

theorem for triangle], Morera [Rudin, 1970, p. 209, 10.17 Morera’s theorem] and

Fubini).

We do not offer any more details here but refer the reader to, say, [Kyprianou,

2006, Chapter 6].

Next, while e.g. [Kyprianou, 2006, p. 158, Theorem 6.16] is explicit regarding

the Wiener-Hopf factorization in the case when X is not compound Poisson, we shall

actually find use in the sequel of the following result:

Proposition 1.26 (Wiener-Hopf factorization for CP processes). Let X be com-

pound Poisson and p > 0. Then:

(i) The pairs (G
∗
ep , Xep) and (ep−G

∗
ep , Xep −Xep) are independent and infinitely

divisible, yielding the factorisation:

p

p− iη −Ψ(θ)
= Ψ+

p (η, θ)Ψ−p (η, θ),

7



where for {θ, η} ⊂ R,

Ψ+
p (η, θ) := E[exp{iηG∗ep + iθXep}] and Ψ−p (η, θ) := E[exp{iηGep + iθXep}].

Duality: (ep−G
∗
ep , Xep−Xep) is equal in distribution to (Gep ,−Xep). Ψ+

p and

Ψ−p are the Wiener-Hopf factors.

(ii) The Wiener-Hopf factors may be identified as follows:

E[exp{−αG∗ep − βXep}] =
κ∗(p, 0)

κ∗(p+ α, β)

and

E[exp{−αGep + βXep}] =
κ̂(p, 0)

κ̂(p+ α, β)

for {α, β} ⊂ C→.

(iii) Here, in terms of the law of X,

κ∗(α, β) := k∗ exp

(∫ ∞
0

∫
(0,∞)

(e−t − e−αt−βx)
1

t
P(Xt ∈ dx)dt

)

and

κ̂(α, β) = k̂ exp

(∫ ∞
0

∫
(−∞,0]

(e−t − e−αt+βx)
1

t
P(Xt ∈ dx)dt

)

for α ∈ C→, β ∈ C→ and some constants {k∗, k̂} ⊂ R+.

(iv) For some constant k′ < 0 and then all θ ∈ R:

k′Ψ(θ) = κ∗(0,−iθ)κ̂(0, iθ).

Alternatively:

(i) The pairs (Gep , Xep) and (ep−Gep , Xep −Xep) are independent and infinitely

divisible, yielding the factorisation:

p

p− iη −Ψ(θ)
= Ψ+

p (η, θ)Ψ−p (η, θ),

where for {θ, η} ⊂ R,

Ψ+
p (η, θ) := E[exp{iηGep + iθXep}] and Ψ−p (η, θ) := E[exp{iηG∗ep + iθXep}].
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Duality: (ep−Gep , Xep−Xep) is equal in distribution to (G∗ep ,−Xep). Ψ+
p and

Ψ−p are the Wiener-Hopf factors.

(ii) The Wiener-Hopf factors may be identified as follows:

E[exp{−αGep − βXep}] =
κ(p, 0)

κ(p+ α, β)

and

E[exp{−αG∗ep + βXep}] =
κ̂∗(p, 0)

κ̂∗(p+ α, β)

for {α, β} ⊂ C→.

(iii) Here, in terms of the law of X,

κ(α, β) = k exp

(∫ ∞
0

∫
[0,∞)

(e−t − e−αt−βx)
1

t
P(Xt ∈ dx)dt

)

and

κ̂∗(α, β) := k̂∗ exp

(∫ ∞
0

∫
(−∞,0)

(e−t − e−αt+βx)
1

t
P(Xt ∈ dx)dt

)

for α ∈ C→, β ∈ C→ and some constants {k, k̂∗} ⊂ R+.

(iv) For some constant k′ < 0 and then all θ ∈ R:

k′Ψ(θ) = κ(0,−iθ)κ̂∗(0, iθ).

Proof. These claims are contained in the remarks regarding compound Poisson pro-

cesses in [Kyprianou, 2006, p. 167] pursuant to the proof of Theorem 6.16 therein.

Analytic continuations have been effected in both parts (iii) using properties of ze-

ros of holomorphic functions [Rudin, 1970, p. 209, Theorem 10.18], the theorems

of Cauchy, Morera and Fubini, and finally the finiteness/integrability properties of

potential measures [Sato, 1999, p. 203, Theorem 30.10(ii)].

Finally we consider:

Definition 1.27 (Spectrally negative Lévy processes). X is said to be spectrally

negative, if it has no positive jumps, a.s., and does not have a.s. monotone paths.

For the remainder of this subsection, assume X is spectrally negative. In

this case, further particulars of the fluctuation theory (e.g. of the Wiener-Hopf
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factorization) for X can be established, see [Bertoin, 1996, Chapter VII] [Sato,

1999, Section 9.46] and especially [Kyprianou, 2006, Chapter 8]. In particular, X

admits a Laplace exponent ψ, defined via ψ(β) := log E[eβX1 ] (β ∈ C→) and for

q ≥ 0, we may let Φ(q) denote the largest root of ψ− q on [0,∞) [Kyprianou, 2006,

p. 211].

In addition, the two-sided exit problem admits a semi-explicit solution in

terms of two families of scale functions, (W (q))q∈[0,∞) and (Z(q))q∈[0,∞) [Kyprianou,

2006, Section 8.2]. Indeed, for each q ≥ 0, we have W (q)(x) = 0 for x < 0 and

on [0,∞), W (q) is characterized as the unique continuous and strictly increasing

function whose Laplace transform satisfies:∫ ∞
0

e−βxW (q)(x)dx =
1

ψ(β)− q
(β > Φ(q)),

whereas:

Z(q)(x) = 1 + q

∫ x

0
W (q)(y)dy (x ∈ R).

Then, with {x, y} ⊂ (0,∞):

E[e−qTy1{Ty<T−x }] =
W (q)(x)

W (q)(x+ y)
,

while:

E[e−qT
−
x 1{T−x <Ty}] = Z(q)(x)− Z(q)(x+ y)

W (q)(x)

W (q)(x+ y)

(note that from the regularity of 0 for (0,∞) [Kyprianou, 2006, p. 212] and by

the strong Markov property of Lévy processes [Sato, 1999, p. 278, Theorem 40.10]

applied at the time Ty, T̂y = Ty, P-a.s.).

1.2.3 Continuous-time Markov chains

For the general theory of continuous-time Markov chains (CTMCs) see e.g. [Chung,

1960; Grimmett and Stirzaker, 2001; Norris, 1997].

For our part, and for the reader’s convenience, we provide below a rigorous

exposition of the construction of a (non-explosive) CTMC starting with a regular

Q-matrix Q (see Definition 1.28 below) as its basic datum (we will see Q in just such

a rôle in Chapter 2 below). This is as much to introduce the relevant concepts, as it

is to demonstrate that CTMCs are (comparatively speaking) very simple stochastic

objects indeed. Moreover, given that CTMCs feature (together with Lévy pro-

cesses) centrally in this thesis, such an exposition seems a small sacrifice of space

10



with the benefit that the thesis is more self-contained. The reader already familiar

with these classical results will of course harmlessly skip their proofs (but not their

formulation).

In addition to this, we also establish some more specific properties of CTMCs,

which will prove useful in the sequel (see Proposition 1.35 and Theorem 1.39).

Throughout we fix a countable non-empty set S endowed (where necessary)

with the discrete σ-algebra making it into a standard measurable space [Dudley,

2004, p. 440].

Let us first recapitulate the definition of a Q-matrix [Norris, 1997, p. 60]:

Definition 1.28 (Q-matrix). A Q-matrix is a mapping from S × S into the re-

als, entries denoted Qsu := Q(s, u) := Q((s, u)) (for {s, u} ⊂ S), and having the

following properties:

(i) nonnegative off-diagonal entries: Qsu ≥ 0, whenever {s, u} ⊂ S and s 6= u.

(ii) nonpositive diagonal entries: Qss ≤ 0 for s ∈ S.

(iii) rows summing to 0: for each s ∈ S, −Qss =
∑

u∈S\{s}Qsu.

It is called regular if sup{−Qss : s ∈ S} < ∞, i.e. if the entries of Q are uniformly

bounded in absolute value.

One considers the Q-matrix as furnishing the infinitesimal generator of the

continuous-time Markov chain. Hence the following definition:

Definition 1.29 (Infinitesimal generator). Let Q be a regular Q-matrix on S. We

define the infinitesimal generator corresponding to Q, as the mapping L := LQ on

l∞(S), the set of all real- (or complex-) valued bounded functions on S, as follows

(f ∈ l∞(S), s ∈ S):

Lf(s) :=
∑
u∈S

Qsuf(u). (1.3)

Lemma 1.30. If Q is a regular Q-matrix, then the corresponding infinitesimal gen-

erator L : l∞(S)→ l∞(S) is a bounded linear mapping on the Banach space l∞(S)

with the supremum norm.

Proof. Follows at once from the regularity of Q.

We may hence fully exploit the theory of Banach spaces. Recall that the space

of bounded linear operators on l∞(S), denoted L(l∞(S)), is in turn a Banach space,

and if a sequence (An)n∈N in this space converges to A, then for any f ∈ l∞(S),
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(Anf)n∈N converges in l∞(S) and its limit is limn→∞Anf = Af (see e.g. [Reed

and Simon, 1980, p. 70, Theorem III.2]). Furthermore, for a sequence (fn)n∈N

converging to f in l∞(S), (fn(s))n∈N converges to f(s) (uniformly in s ∈ S).

Definition 1.31 (Transition semigroup). Let Q be a regular Q-matrix on the state

space S with corresponding infinitesimal generator L. We define the transition

semigroup (Pt)t≥0 associated to Q by

Pt := exp(tL) :=
∞∑
k=0

(tL)k

k!
(t ≥ 0) (1.4)

with the series converging in L(l∞(S)) as it is absolutely summable (see e.g. [Reed

and Simon, 1980, p. 71, Theorem III.3]).

We have the following key result (cf. [Norris, 1997, pp. 62 & 63, Theorems

2.1.1 & 2.1.2] for the case of S finite and [Grimmett and Stirzaker, 2001, p. 267,

Theorem 10] for the general case):

Theorem 1.32 (Transition semigroup). (Pt)t≥0 is a family of bounded linear oper-

ators on l∞(S) satisfying:

(i) PtPs = Pt+s, whenever {t, s} ⊂ [0,∞).

(ii) P0 = I, the identity on l∞(S).

(iii) limt↓0 Pt = I, while L = dPt
dt |t=0+ (in L(l∞(S))).

(iv) ‖Pt‖ ≤ 1 and Pt1S = 1S for all t ∈ [0,∞).

(v) If t ≥ 0, f ∈ l∞(S) and f ≥ 0, then Ptf ≥ 0.

Moreover, if we define Psu(t) = (Pt1{u})(s) (t ∈ [0,∞), {s, u} ⊂ S) then for each

t ∈ [0,∞), (Psu(t))(s,u)∈S×S is a stochastic matrix, i.e.:

(a) Psu(t) ≥ 0, whenever {s, u} ⊂ S.

(b)
∑

u∈S Psu(t) = 1 for any s ∈ S and t ≥ 0.

and the matrices satisfy the Chapman-Kolmogorov equations:

(c)
∑

w∈S Puw(t)Pwv(s) = Puv(t+ s), whenever {s, t} ⊂ [0,∞) and {u, v} ⊂ S.

Finally, letting Pt(s,A) :=
∑

u∈A Psu(t) (for t ∈ [0,∞), A ⊂ S and s ∈ S), the

latter constitute a transition function on S, to wit:
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(I) for a fixed s ∈ S and t ∈ [0,∞), (A 7→ Pt(s,A)) is a probability measure on

(S, 2S).

(II) for a fixed A ⊂ S and t ∈ [0,∞), (s 7→ Pt(s,A)) is measurable (this is trivial,

since (S, 2S) is discrete).

(III) for s ∈ S and A ⊂ S, we have P0(s,A) = δs(A) = 1A(s).

(IV)
∫
S Pt(x, dy)Ps(y,A) = Pt+s(x,A), for any x ∈ S and A ⊂ S.

Proof. (ii) is clear. Consider now (i). Let f ∈ l∞(S) and u ∈ S. Then:

Pt+sf(u) =

(
∞∑
k=0

(t+ s)k

k!
Lkf

)
(u) =

∞∑
k=0

(t+ s)k

k!
Lkf(u)

=

∞∑
k=0

k∑
n=0

1

n!(k − n)!
tnsk−nLkf(u)

=

∞∑
n=0

tn

n!

∞∑
k=n

sk−n

(k − n)!
(Ln(Lk−nf))(u)

=

(
∞∑
n=0

tn

n!

∞∑
k=n

sk−n

(k − n)!
LnLk−nf

)
(u)

=

(
∞∑
n=0

tn

n!
Ln

∞∑
k=n

sk−n

(k − n)!
Lk−nf

)
(u) = (Pt(Psf))(u),

where the interchange of the order of summation in line three is justified via Fubini

by the fact that the series is absolutely convergent, whilst the “taking out of Ln” in

the last line uses continuity and linearity of Ln.

We next establish a key version of bounded convergence;

Lemma 1.33 (Lemma on bounded convergence). We have for any t ≥ 0, f ∈ l∞(S)

and s ∈ S:

(Ptf)(s) =
∑
u∈S

f(u)(Pt1{u})(s), (1.5)

where the series on the right converges absolutely.

Proof. To see this, note that for all f ∈ l∞(S), s ∈ S,

(Lf)(s) =
∑
u1∈S

Qsu1f(u1)

and the series is absolutely convergent, since
∑

u1∈S |Qsu1f(u1)| ≤ 2q‖f‖, where

q := sup{−Qss : s ∈ S}. We claim furthermore that for each k ≥ 1, for all

f ∈ l∞(S), s ∈ S:

13



(Lkf)(s) =
∑
u1∈S

· · ·
∑
uk∈S

Qsu1 · · ·Quk−1ukf(uk) (1.6)

where the iterated series
∑

u1
· · ·
∑

uk
converges absolutely, moreover:

∑
u1∈S

· · ·
∑
uk∈S

|Qsu1 · · ·Quk−1ukf(uk)| ≤ (2q)k‖f‖. (1.7)

We prove by induction. Supposing the claim for k, we have for every f ∈ l∞(S) and

each s ∈ S:

(Lk+1f)(s) = (LLkf)(s) =
∑
u1∈S

Qsu1(Lkf)(u1)

=
∑
u1∈S

Qsu1

∑
u2∈S

· · ·
∑

uk+1∈S
Qu1u2 · · ·Qukuk+1

f(uk+1)


=

∑
u1∈S

· · ·
∑

uk+1∈S
Qsu1 · · ·Qukuk+1

f(uk+1),

where the last equality follows from
∑

u1∈S · · ·
∑

uk+1∈S |Qsu1 · · ·Qukuk+1
f(uk+1)| ≤∑

u1∈S |Qsu1 |(2q)k‖f‖ ≤ (2q)k+1‖f‖ so the iterated series
∑

u1
· · ·
∑

uk+1
is again

absolutely convergent, and thus (1.6) and (1.7) obtain at once for k+ 1, whence by

induction we are done.
Thus:

(Ptf)(s) =

∞∑
k=0

tk

k!
(Lkf)(s)

= f(s) +

∞∑
k=1

tk

k!

∑
u1∈S

· · ·
∑
uk∈S

Qsu1 · · ·Quk−1ukf(uk)


= f(s) +

∞∑
k=1

∑
u∈S

tk

k!
f(u)

∑
u1∈S

· · ·
∑

uk−1∈S

Qsu1 · · ·Quk−1u


= f(s) +

∑
u∈S

f(u)

 ∞∑
k=1

tk

k!

∑
u1∈S

· · ·
∑

uk−1∈S

Qsu1 · · ·Quk−1u


=

∑
u∈S

f(u)

δsu +

∞∑
k=1

tk

k!

∑
u1∈S

· · ·
∑

uk−1∈S

Qsu1 · · ·Quk−1u


=

∑
u∈S

f(u)(Pt1{u})(s),

where
∑

u1∈S · · ·
∑

uk−1∈S Qsu1 · · ·Quk−1u is understood to mean Qsu, when k = 1;

whereas by Fubini we were allowed to interchange the order of summation in line
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four because the series is absolutely convergent:

∞∑
k=0

∑
u1∈S

· · ·
∑
uk∈S

tk

k!
|Qsu1 · · ·Quk−1ukf(uk)| ≤ e2qt‖f‖

(the term with k = 0 being understood to mean f(s)). In particular, we see that

the last series in the evaluation of (Ptf)(s) above is absolutely convergent. Thus we

obtain (1.5).

Now, with regard to (v), fix t ≥ 0, and write for n ∈ N, Pt = (Pt/n)n =

(I + t
nL + Bn)n, where Bn :=

∑∞
k=2

(t/n)k

k! Lk and hence ‖Bn‖ ≤ t2‖L‖2
n2 e‖L‖t/n.

Now ((I + t
nL)f)(s) = f(s) +

∑
u∈S

t
nQsuf(u). Denote An := t

nL. Then, since

q := sup{−Qss : s ∈ S} <∞, for all sufficiently large n, and then for all f ∈ l∞(S),

(I +An)f ≥ 0 and hence (I +An)nf ≥ 0. Next (I +An +Bn)n = (I +An)n +Rn,

where Rn :=
∑n−1

k=0

(
n
k

)
(I + An)kBn−k

n . It follows that (for f ∈ l∞(S)): Ptf =

(I +An)nf +Rnf , where ‖Rnf‖ ≤ ‖Rn‖‖f‖ ≤ ‖f‖
∑n−1

k=0

(
n
k

)
(1 + ‖A‖)k‖Bn‖n−k =

‖f‖((1+‖An‖+‖Bn‖)n−(1+‖An‖)n). Letting a := t‖L‖ and bn := ‖Bn‖, we have,

for all sufficiently large n, Ptf ≥ −1S‖f‖
[
(1 + a

n + bn)n − (1 + a
n)n
]
→ 0 pointwise,

as n→∞.3 (a) is then a simple corollary, whereas for (b) note as follows (for t ≥ 0,

s ∈ S): ∑
u∈S

Psu(t) =
∑
u∈S

(Pt1{u})(s) = (Pt1S)(s) = 1,

by the Lemma on bounded convergence (with f = 1S) and the property that rows

of Q sum to zero (so that Lk1S = Lk−1(L1S) = 0 for all k ≥ 1, while L0
1S = 1S).

Then (iv) follows using (a), (b) and the Lemma on bounded convergence.

With regard to (c), we have (the first sum is pointwise, then use the Lemma

on bounded convergence):

Puv(t+ s) = (Pt+s1{v})(u) = (PtPs1{v})(u)

=

(
Pt

(∑
w∈S

1{w}Pwv(s)

))
(u) =

∑
w∈S

Pwv(s)(Pt1{w})(u)

3It is a standard result that for any a ∈ R and any sequence of real numbers bn with bnn → 0
as n→∞, one has (1 + a

n
+ bn)n → ea as n→∞. Indeed, let ε > 0. Then for all sufficiently large

n, |bn| ≤ ε/n, hence for all sufficiently large n:

(1 +
a− ε
n

)n ≤ (1 +
a

n
+ bn)n ≤ (1 +

a+ ε

n
)n.

Now take the limits inferior and superior as n → ∞, and let finally ε ↓ 0 to get the desired claim
(via the continuity of the exponential function).
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=
∑
w∈S

Puw(t)Pwv(s).

For (iii), simply note that ‖Pt − I‖ = ‖
∑∞

k=1
tk

k!L
k‖ ≤ t‖L‖e‖L‖t ↓ 0, while

‖t−1(Pt − I)− L‖ = ‖
∑∞

k=2
tk−1Lk

k! ‖ ≤ t
∑∞

k=2
tk−2‖L‖k

k! ≤ t‖L‖2e‖L‖t ↓ 0, as t ↓ 0.

Finally, taking all of the above into account, (I)—(IV) are immediate.

We have seen in this key result, then, that a regular Q-matrix gives rise, in

a natural way, to a transition function on S. We shall use the latter to show the

existence of our continuous-time Markov chain. Let then Q be a regular Q-matrix

on S, as above. Let δ be a distribution on S. Define for any n ≥ 0, 0 < t1 < · · · < tn

and B ⊂ Sn+1:

µδ0,t1,...,tn(B) :=

∫
δ(dx0)

∫
Pt1(x0, dx1)

∫
Pt2−t1(x1, dx2)

× · · · ×
∫
Ptn−tn−1(xn−1, dxn)1B(x0, . . . , xn). (1.8)

We obtain µδt1,...,tn by taking B = S×H, H ⊂ Sn. Thus we have defined a consistent

family of laws. Indeed, by the Chapman-Kolmogorov identity (IV) and a monotone

class argument: ∫
S
Pt(x, dy)

∫
S
Ps(y, dz)f(z) =

∫
S
Pt+s(x, dz)f(z) (1.9)

(for all f ∈ l∞(S), whenever {s, t} ⊂ [0,∞) and x ∈ S).

Hence, by the Kolmogorov extension theorem (see e.g. [Dudley, 2004, p.

441]) there exists a unique measure P δ on S[0,∞) (with the product σ-algebra)

extending this family.

Definition 1.34 (Continuous time Markov chain in law). An S-valued process

X := (Xt)t≥0 on a probability space (Ω,F , P ) is called a continuous-time Markov

chain (in law), state space S, initial distribution δ, Q-matrix Q, if its law on the

space S[0,∞) under the measure P is P δ. We shall usually drop the qualification “in

law” altogether.

Proposition 1.35. Suppose X is, as in the above definition, a continuous-time

Markov chain in law with a regular Q-matrix. It is then a time-homogeneous Markov

process with transition functions (Pt)t≥0 and for any 0 ≤ t ≤ T , u ∈ S one has, in

particular:

P(XT = u|Xt = v) = Pvu(T − t) = (e(T−t)L
1{u})(v), (1.10)
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PXt-a.s. in v ∈ S. Moreover, endowing S with the discrete topology, X is a Feller

process, if and only if the following “Feller condition” on Q is verified: (s 7→ Qss′) ∈
c0(S) for every s′ ∈ S.4

Proof. The first claim is immediate from the definition and the fact that Identity

(1.8) extends to all nonnegative functions by the usual argument; then one can apply

[Revuz and Yor, 1999, p. 81, Proposition 1.4]. For the Feller property, we have as

follows. First, if for some s′ ∈ S, (s 7→ Qss′) /∈ c0(S), then L1{s′} /∈ c0(S), while

Pt1{s′} = 1{s′} + tL1{s′} + gt, for some gt ∈ l∞(S) with ‖gt‖/t → 0 as t ↓ 0. But

then X cannot be a Feller process [Revuz and Yor, 1999, Section III.2]. Conversely,

suppose (s 7→ Qss′) ∈ c0(S) for every s′ ∈ S. We show L(c0(S)) ⊂ c0(S). Let then

f ∈ c0(S), ε > 0. Put S′ := {|f | ≥ ε/(4q)}, where q := sup{−Qss : s ∈ S}. Then

{|Lf | ≥ ε} ⊂ {s ∈ S : |
∑

s′∈S′ Qss′f(s′)| ≥ ε/2} ⊂ ∪s′∈S′{s ∈ S : |Qss′ | ≥ ε
2‖f‖|S′|}

and this is a finite set. Then we can show Pt(c0(S)) ⊂ c0(S), t ≥ 0, whence it will

be established (together with the findings of Theorem 1.32) that (Pt)t≥0 is a Feller

semigroup [Revuz and Yor, 1999, Section III.2]. Let then, for the last time, t ≥ 0,

f ∈ c0(S) and ε > 0. Note that for a sufficiently large, but finite, K ∈ N, with

PKt :=
∑K

k=0
tkLk

k! , ‖(PKt − Pt)f‖ ≤ ε/2, so that {|Ptf | ≥ ε} ⊂ {|PKtf | ≥ ε/2}.
But clearly PKt(c0(S)) ⊂ c0(S), since L(c0(S)) ⊂ c0(S), so this concludes the

argument.

Remark 1.36. In case X from Proposition 1.35 has the Feller property, it admits a

càdlàg modification [Kallenberg, 1997, p. 325, Theorem 17.15]. For such a version,

then, the number of jumps on every sample path of X is locally finite, so that the

sequence of jump times (Jj)j≥1 is increasing to, and possibly reaching, +∞.

The construction of a (non-explosive) CTMC via the Kolmogorov extension

theorem, as above, is certainly very straightforward and analytically appealing, but

also quite abstract. Probabilistically, we like to think of CTMCs in the following

terms:

Theorem 1.37. On a probability space (Ω,F ,P), let X be a sample-path right-

continuous CTMC with a regular Q-matrix Q, infinitesimal generator L, state space

S. Denote by F = (Ft)t≥0 its natural filtration, and by Ht := inf{s ≥ t : Xs 6= Xt}
the time of the first jump of X after t (t ≥ 0). Let furthermore τ be any stopping time

of F, such that P(τ < ∞) > 0. Then, under the conditional measure P(·|τ < ∞),

conditionally on Xτ ;

1. Fτ is independent of (Xτ+t)t≥0, and the law of (Xτ+t)t≥0 is PP◦X−1
τ , P(·|τ <

∞)-a.s. (strong Markov property);

4Note that f ∈ c0(S), if and only if {|f | ≥ ε} is finite for every ε > 0.

17



2. the law of Hτ − τ is Exp(−QXτXτ ), P(·|τ <∞)-a.s.; Hτ − τ is independent of

X(Hτ ) (conditionally on {−QXτXτ > 0}), whilst the probability mass function

of X(Hτ ) on S\{Xτ} is (u 7→ QXτu/(−QXτXτ )), P(·|τ < ∞,−QXτXτ > 0)-

a.s.

So (assuming −Qss > 0 for all s ∈ S), conditionally on Xτ , the history of X up to

τ , Fτ , the time to the next jump of X after τ , Hτ − τ , as well as the position of X

at the next jump after τ , X(Hτ ), are all jointly independent (under P(·|τ <∞)).

Remark 1.38. For a right-continuous CTMC (with sequence of jump times (Jj)j≥1)

it follows then that Jj < +∞ for all j ≥ 1, P-a.s., provided −Qss > 0 for all s ∈ S.

Proof. For the first part, we need only establish for A ∈ Fτ , n ∈ N0, 0 < t1 < · · · tn,

{u1, . . . , un} ⊂ S, and u0 ∈ S with P(Xτ = u0, τ <∞) > 0, that

P(A, {Xτ+t1 = u1, . . . , Xτ+tn = un}, Xτ = u0, τ <∞) =

P(A,Xτ = u0, τ <∞)(eLt11u1)(u0) · · · (eL(tn−tn−1)
1un)(un−1).

Since one can approximate τ by a nonincreasing sequence of F-stopping times

(τn)n≥1 → τ , each assuming only finitely many values and with {τn < ∞} = {τ <
∞} for all n ∈ N, and pass to the limit using the DCT and right-continuity of the

sample paths, it will be assumed without loss of generality τ assumes only denu-

merably many values. Then by additivity of probability measures, it is sufficient to

verify the above equality with τ = t in place of τ < ∞, where t is any, but fixed,

finite element of the range of τ , satisfying P(Xt = u0) > 0. But the latter is then

immediately made clear by the Markov property of X.

To establish the second part of the theorem let us show for l ∈ ∪n∈N0{ k2n :

k ∈ N0} and {u, u0} ⊂ S, satisfying P(Xτ = u0, τ < +∞, Hτ < ∞) > 0, u 6= u0,

that:

P(X(Hτ ) = u,Hτ − τ > l,Hτ <∞, Xτ = u0, τ <∞) =

P(Hτ <∞, Xτ = u0, τ <∞)eQu0u0 l
Qu0u

−Qu0u0

.

Again by approximation, we may assume, without loss of generality, that τ assumes

only denumerably many values; and further by additivity of probability measures

it is just as well if τ < ∞ in the above is replaced by τ = t, where t is any finite

element of the range of τ with P(Ht < ∞, Xt = u0, τ < ∞) > 0. Then thanks to

18



right-continuity of the sample paths and the DCT:

P(X(Ht) = u,Ht − t > l,Ht <∞, Xt = u0) =

lim
n→∞

∞∑
m=0

P(Xt = u0, Xt+1/2n = u0, . . . , Xt+l+m/2n = u0, Xt+l+(m+1)/2n = u) =

P(Xt = u0) lim
n→∞

((eL
1

2n 1u0)(u0))l/(1/2
n)
∞∑
m=0

((eL
1

2n 1u0)(u0))m(eL
1

2n 1u)(u0).

Thus, in order to establish the second part of the theorem it will be sufficient to
demonstrate that:

P(Ht − t > l,Xt = u0) = P(Xt = u0) lim
n→∞

((eL
1
2n 1u0)(u0))l/(1/2

n) = P(Xt = u0)eQu0u0 l

and

lim
n→∞

∞∑
m=0

((eL
1

2n 1u0)(u0))m(eL
1

2n 1u)(u0) =
Qu0u

−Qu0u0

,

the latter only provided −Qu0u0 > 0. But this is clear.

Lastly, we note for future reference, the result:

Theorem 1.39. Let X be a continuous-time Markov chain, state space S, initial

distribution δ, Q-matrix Q (assumed regular); d ∈ N. Then:

(a) Suppose S = Zdh and Q is spatially homogeneous, i.e. Qss′ depends only on

s− s′ ({s, s′} ⊂ S). Then so is the infinitesimal generator L (respectively the

transition semigroup (Pt)t≥0) associated to Q (meaning, (L1{s})(s
′) (respec-

tively, for every t ≥ 0, (Pt1{s})(s
′)) depends only on s− s′). Furthermore, for

t ≥ 0, {x, s} ⊂ S and any [−∞,+∞]-valued measurable function f on S, one

has: ∫
Pt(x, dy)f(y) =

∫
Pt(x+ s, dy)f(y − s), (1.11)

in the sense that the left-hand side is well-defined, precisely when the right-

hand side is so, in which case they are equal. Finally, X has stationary and

independent increments and for 0 ≤ s ≤ t, the law of Xt −Xs is Pt−s(0, ·).

(b) For any s ≥ 0, P(Xt 6= Xs) → 0, as t → s. In particular, if S is endowed

with any metric d, then X is stochastically continuous, i.e. for every ε > 0

and s ≥ 0, one has P(d(Xt, Xs) > ε)→ 0 as t→ s.

Proof. We consider first (a). That (Pt)t≥0 is spatially homogeneous, when Q is,

follows at once from the equality (Pt1{s})(s
′) =

∑∞
k=0

tk

k! (L
k
1{s})(s

′), upon noting
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(1.6), which gives spatial homogeneity of Lk for every k ≥ 0. Equation (1.11) follows
from the the spatial homogeneity of (Pt)t≥0 and a monotone class argument. Using
this relation in (1.8), from the innermost to the outermost integral, in consecutive
order, one obtains for every n ∈ N0, 0 < t1 < · · · < tn and B ⊂ Sn+1:

P(X0,Xt1 ··· ,Xtn )(B) =

∫
δ(dx0)

∫
Pt1(0, dx1) · · ·

∫
Ptn−tn−1(0, dxn)1B ◦A(x0, . . . , xn),

where A : Sn+1 → Sn+1 is given by A(x0, x1, . . . , xn) = (x0, x1 +x0, . . . , xn+xn−1 +

· · · + x0), x ∈ A. Then use “change of variables” theorem for the bijection A (see

e.g. [Dudley, 2004, p. 121, Theorem 4.1.11]) to obtain:

P(X0,Xt1 ,...,Xtn ) = (δ × Pt1(0, ·)× · · · × Ptn−tn−1(0, ·)) ◦A−1,

or, since A is a bijection,

P(X0,Xt1 ,...,Xtn ) ◦ (A−1)−1 = δ × Pt1(0, ·)× · · · × Ptn−tn−1(0, ·).

But

P(X0,Xt1 ,...,Xtn ) ◦ (A−1)−1 = P(X0,Xt1−X0,...,Xtn−Xtn−1 ),

from which the stationarity and the independence of increments follows at once.

Now consider (b). We have (assume first t > s; let S′ := {x ∈ S : P(Xs =

x) > 0}):

P(Xt 6= Xs) = 1− P(Xt = Xs) =
∑
x∈S′

P(Xs = x)(1− P(Xt = x|Xs = x))

=
∑
s∈S′

P(Xs = x)(1− Pt−s1{x})(x) =
∑
x∈S′

P(Xs = x)((I − Pt−s)1{x})(x)

≤
∑
x∈S′

P(Xs = x)‖I − Pt−s‖ = ‖I − Pt−s‖.

Then, for any t 6= s, P(Xt 6= Xs) ≤ ‖I − P|t−s|‖ → 0 as t→ s by Theorem 1.32(iii).

The final claim is an immediate corollary.

Remark 1.40. It follows that a continuous-time Markov chain having state space

Zdh, a spatially homogeneous Q-matrix, and initial position 0, a.s., is a compound

Poisson process in law [Sato, 1999, p. 135, Theorem 21.2] (once one respects the

natural inclusion Zdh ↪→ Rd).
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1.3 Structure of the remainder of the thesis

In Chapter 2 we present and analyze a weak continuous-time Markov chain approx-

imation to a Lévy process.

In Chapter 4 this approximation is applied to obtaining a general algorithm

for the calculation of the scale functions of a spectrally negative Lévy process.

A spectrally negative Lévy process is thus approximated by what is a random

walk, skip-free to the right, and embedded into continuous time as a compound

Poisson process. Hence, the setting up of the algorithm necessitates a fluctuation

theory (and, in particular, a theory of scale functions) for the latter type of Lévy

processes (called ‘upwards skip-free Lévy chains’), and this is the subject matter of

Chapter 3, Section 3.2. These results are interesting in their own right.

Moreover, together with Lévy processes which have no positive jumps (a.s.),

upwards skip-free Lévy chains exhaust the class of Lévy processes exhibiting the

property of having (conditionally on the process going above the level in question)

a.s. constant overshoots. We discuss this related finding in Chapter 3, Section 3.1.

Finally, note that the chapter abstracts (immediately following the chapter

titles) provide somewhat more exhaustive summaries of their respective contents.
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Chapter 2

A continuous-time Markov

chain approximation to Lévy

processes

We consider the convergence of a continuous-time Markov chain approx-

imation Xh, h > 0, to an Rd-valued Lévy process X. The state space

of Xh is an equidistant lattice and its Q-matrix is chosen to approxi-

mate the generator of X. In dimension one (d = 1), and then under

a general sufficient condition for the existence of transition densities of

X, we establish sharp convergence rates of the normalised probability

mass function of Xh to the probability density function of X. In higher

dimensions (d > 1), rates of convergence are obtained under a technical

condition, which is satisfied when the diffusion matrix is non-degenerate.

2.1 Introduction

Discretization schemes for stochastic processes are relevant both theoretically, as

they shed light on the nature of the underlying stochasticity, and practically, since

they lend themselves well to numerical methods. Lévy processes, in particular,

constitute a rich and fundamental class with applications in diverse areas such as

mathematical finance, risk management, insurance, queuing, storage and population

genetics etc. (see e.g. [Kyprianou, 2006]).
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2.1.1 Short statement of problem and results

We study the rate of convergence of a weak approximation of an Rd-valued (d ∈ N)

Lévy process X by a continuous-time Markov chain (CTMC). Our main aim is to

understand the rates of convergence of transition densities. These cannot be viewed

as expectations of (sufficiently well-behaved, e.g. bounded continuous) real-valued

functions against the marginals of the processes, and hence are in general hard to

study.

Since the results are easier to describe in dimension one (d = 1), we focus first

on this setting. Specifically, our main result in this case, Theorem 2.4, establishes

the precise convergence rate of the normalised probability mass function of the

approximating Markov chain to the transition density of the Lévy process for the

two proposed discretisation schemes, one in the case where X has a non-trivial

diffusion component and one when it does not. More precisely, in both cases we

approximate X by a CTMC Xh with state space Zh := hZ and Q-matrix defined

as a natural discretised version of the generator of X. This makes the CTMC Xh

into a continuous-time random walk, which is skip-free (i.e. simple) if X is without

jumps (i.e. Brownian motion with drift). The quantity:

κ(δ) :=

∫
[−1,1]\[−δ,δ]

|x|dλ(x), δ ≥ 0,

where λ is the Lévy measure of X, is related to the activity of the small jumps

of X and plays a crucial role in the rate of convergence. We assume that either

the diffusion component of X is present (σ2 > 0) or the jump activity of X is

sufficient (Orey’s condition [Orey, 1968], see also Assumption 2.3 below) to ensure

that X admits continuous transition densities pt,T (x, y) (from x at time t to y at

time T > t), which are our main object of study.

Let P ht,T (x, y) := P(Xh
T = y|Xh

t = x) denote the corresponding transition

probabilities of Xh and let

∆T−t(h) := sup
x,y∈Zh

∣∣∣∣pt,T (x, y)− 1

h
P ht,T (x, y)

∣∣∣∣ .
The following table summarizes our result (see Notation 1.5 for the usage of big O,

and, later on, little o and the symbol ∼):
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σ2 > 0 σ2 = 0

λ(R) = 0 ∆T−t(h) = O(h2) ×
0 < λ(R) <∞ ∆T−t(h) = O(h) ×
λ(R) =∞ ∆T−t(h) = O(hκ(h/2))

We also prove that the rates stated here are sharp in the sense that there exist Lévy

processes for which convergence is no better than stated.

Note that the rate of convergence depends on the Lévy measure λ, it being

best when λ = 0 (quadratic when σ2 > 0), and linear otherwise, unless the pure

jump part of X has infinite variation, in which case it depends on the quantity κ.

This is due to the nature of the discretisation of the Brownian motion with drift

(which gives a quadratic order of convergence, when σ2 > 0), and then of the Lévy

measure, which is aggregated over intervals of length h around each of the lattice

points; see also (v) of Remark 2.21. In the infinite activity case, κ(h) = o(1/h),

indeed κ is bounded, if in addition κ(0) <∞. However, the convergence of hκ(h/2)

to zero, as h ↓ 0, can be arbitrarily slow. Finally, if X is a compound Poisson process

(i.e. λ(R) ∈ (0,∞)) without a diffusion component, but possibly with a drift, there

is always an atom present in the law of X at a fixed time, which is why the finite

Lévy measure case is studied only when σ2 > 0.

By way of example, note that if λ([−1, 1]\[−h, h]) ∼ 1/h1+α for some α ∈
(0, 1), then κ(h) ∼ h−α and the convergence of the normalized probability mass

function to the transition density is by Theorem 2.4 of order h1−α, since κ(0) =∞
and Orey’s condition is satisfied. In particular, in the case of the CGMY [Carr

et al., 2002] (tempered stable) or β-stable [Sato, 1999, p. 80] processes with stability

parameter β ∈ (1, 2), we have α = β−1 and hence convergence of order h2−β. More

generally, if β := inf{p > 0 :
∫

[−1,1] |x|
pdλ(x) < ∞} is the Blumenthal-Getoor index

of X, and β ≥ 1, then for any p > β we have κ(h) = O(h1−p). Conversely, if for

some p ≥ 1, κ(h) = O(h1−p), then β ≤ p.
The proof of Theorem 2.4 is in two steps: we first establish the convergence

rate of the characteristic exponent of Xh
t to that of Xt (Subsection 2.3.2). In the

second step we apply this to the study of the convergence of transition densities

(Section 2.4) via their spectral representations (established in Subsection 2.3.1).

Note that in general the rates of convergence of the characteristic functions do not

carry over directly to the distribution functions. We are able to follow through

the above programme by exploiting the special structure of the infinitely divisible

distributions in what amounts to a detailed comparison of the transition kernels

pt,T (x, y) and P ht,T (x, y).

This gives the overall picture in dimension one. In dimensions higher than
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one (d > 1), and then under a straightforward extension of the discretization de-

scribed above, essentially the same rates of convergence are obtained as in the uni-

variate case; this time under a technical condition (cf. Assumption 2.6), which is

satisfied when the diffusion-matrix is non-degenerate. Our main result in this case

is Theorem 2.8.

2.1.2 Literature overview

In general, there has been a plethora of publications devoted to the subject of dis-

cretization schemes for stochastic processes, see e.g. [Kloeden and Platen, 1992],

and with regard to the pricing of financial derivatives [Glasserman, 2003] and the

references therein. In particular, there exists a wealth of literature concerning ap-

proximations of Lévy processes in one form or another and a brief overview of

simulation techniques is given by [Rosiński, 2008].

In continuous time, for example, [Kiessling and Tempone, 2011] approxi-

mates by replacing the small jumps part with a diffusion, and discusses also rates of

convergence for E[g ◦ XT ], where g is real-valued and satisfies certain integrability

conditions, T is a fixed time and X the process under approximation; [Crosby et al.,

2010] approximates by a combination of Brownian motion and sums of compound

Poisson processes with two-sided exponential densities. In discrete time, Markov

chains have been used to approximate the much larger class of Feller processes and

[Böttcher and Schilling, 2009] proves convergence in law of such an approximation

in the Skorokhod space of càdlàg paths, but does not discuss rates of convergence;

[Szimayer and Maller, 2007] has a finite state space path approximation and applies

this to option pricing together with a discussion of the rates of convergence for the

prices. With respect to Lévy-process-driven SDEs, [Kohatsu-Higa et al., to appear]

(respectively [Tanaka and Kohatsu-Higa, 2009]) approximates solutions Y thereto

using a combination of a compound Poisson process and a high order scheme for

the Brownian component (respectively discrete-time Markov chains and an operator

approach) — rates of convergence are then discussed for expectations of sufficiently

regular real-valued functions against the marginals of the solutions.

We remark that approximation/simulation of Lévy processes in dimensions

higher than one is in general more difficult than in the univariate case, see, e.g. the

discussion on this in [Cohen and Rosiński, 2007] (which has a Gaussian approxima-

tion and establishes convergence in the Skorokhod space [Cohen and Rosiński, 2007,

p. 197, Theorem 2.2]). Observe also that in terms of pricing theory, the probability

density function of a process can be viewed as the Arrow-Debreu state price, i.e.

the current value of an option whose payoff equals the Dirac delta function. The
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singular nature of this payoff makes it hard, particularly in the presence of jumps, to

study the convergence of the prices under the discretised process to their continuous

counterparts.

Indeed, Theorem 2.8 can be viewed as a generalisation of such convergence re-

sults for the well-known discretisation of the multi-dimensional Black-Scholes model

(see e.g. [Mijatović, 2007] for the case of Brownian motion with drift in dimension

one). In addition, existing literature, as specific to approximations of densities of

Lévy processes (or generalizations thereof), includes [Figueroa-López, 2010] (polyno-

mial expansion for a bounded variation driftless pure-jump process) and [Filipovic

et al., 2013] (density expansions for multivariate affine jump-diffusion processes).

[Knopova and Schilling, 2012; Sztonyk, 2011] study upper estimates for the densi-

ties. On the other hand [Bally and Talay, 2009] has a result similar in spirit to

ours, but for solutions to SDEs: for the case of the Euler approximation scheme,

the authors there also study the rate of convergence of the transition densities.

Further, from the point of view of partial integro-differential equations (PI-

DEs), the density p : (0,∞) × Rd → [0,∞) of the Lévy process X is the classical

fundamental solution of the Cauchy problem (in u ∈ C1,2
0 ((0,∞),Rd)) ∂u

∂t = Lu, L

being the infinitesimal generator of X [Cont and Tankov, 2004, Chapter 12] [Garroni

and Menaldi, 1992, Chapter IV]. Note that Assumption 2.3 in dimension one (re-

spectively Assumption 2.6 in the multivariate case) guarantees p ∈ C1,∞
0 . There are

numerous numerical methods in dealing with such PIDEs (and PIDEs in general):

fast Fourier transform, trees and discrete-time Markov chains, viscosity solutions,

Galerkin methods, see, e.g. [Cont and Voltchkova, 2005, Subsection 1.1] [Cont and

Tankov, 2004, Subsections 12.3-12.7] and the references therein. In particular, we

mention the finite-difference method, which is in some sense the counterpart of the

present article in the numerical analysis literature, discretising both in space and

time, whereas we do so only in space. In general, this literature often restricts to

finite activity processes, and either avoids a rigorous analysis of (the rates of) con-

vergence, or, when it does, it does so for initial conditions h = u(0, ·), which exclude

the singular δ-distribution. For example, [Cont and Voltchkova, 2005, p. 1616, As-

sumption 6.1] requires h continuous, piecewise C∞ with bounded derivatives of all

orders; compare also Propositions 2.29 and 2.32 concerning convergence of expecta-

tions in our setting. Moreover, unlike in our case where the discretisation is made

outright, the approximation in [Cont and Voltchkova, 2005] is sequential, as is typ-

ical of the literature: beyond the restriction to a bounded domain (with boundary

conditions), there is a truncation of the integral term in L, and then a reduction to

the finite activity case, at which point our results are in agreement with what one
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would expect from the linear order of convergence of [Cont and Voltchkova, 2005,

p. 1616, Theorem 6.7].

The rest of the chapter is organised as follows. Section 2.2 introduces the setting

by specifying the Markov generator of Xh and precisely states the main results.

Then Section 2.3 provides integral expressions for the transition kernels by applying

spectral theory to the generator of the approximating chain and studies the con-

vergence of the characteristic exponents. In Section 2.4 this allows us to establish

convergence rates for the transition densities. While Sections 2.3 and 2.4 restrict

this analysis to the univariate case, explicit comments are made in both on how to

extend the results to the multivariate setting (this extension being, for the most

part, direct and trivial). Finally, Section 2.5 derives some results regarding conver-

gence of expectations E[f ◦Xh
t ]→ E[f ◦Xt] for suitable test functions f ; presents a

numerical algorithm, under which computations are eventually done; discusses the

corresponding truncation/localization error and gives some numerical experiments.

2.2 Definitions, notation and statement of results

2.2.1 Setting

Fix a dimension d ∈ N and let (ej)
d
j=1 be the standard orthonormal basis of Rd.

Further, let X be an Rd-valued Lévy process with characteristic exponent (cf. (1.1)-

(1.2)):

Ψ(p) = −1

2
〈p,Σp〉+ i〈µ, p〉+

∫
Rd

(
ei〈p,x〉 − i〈p, x〉1[−V,V ]d(x)− 1

)
dλ(x) (2.1)

(p ∈ Rd). Here (Σ, λ, µ)c̃ is the characteristic triplet relative to the cut-off function

c̃ = 1[−V,V ]d ; V is 1 or 0, the latter only if
∫

[−1,1]d |x|dλ(x) <∞. Recall thatX is then

a Markov process with transition function Pt,T (x,B) := P(XT−t ∈ B−x) (0 ≤ t ≤ T ,

x ∈ Rd and B ∈ B(Rd)) and (for t ≥ 0, p ∈ Rd) φXt(p) := E[ei〈p,Xt〉] = exp{tΨ(p)}.
Since Σ ∈ Rd×d is symmetric, nonnegative definite, it is assumed without loss

of generality that Σ = diag(σ2
1, . . . , σ

2
d) with σ2

1 ≥ · · · ≥ σ2
d. We let l := max{k ∈

{1, . . . , d} : σ2
k > 0} (max ∅ := 0). In the univariate case, d = 1, Σ reduces to the

scalar σ2 := σ2
1.

Now fix h > 0. Consider a CTMC Xh = (Xh
t )t≥0, approximating our Lévy

process X (in law). We describe (see Subsection 1.2.3 for terminology and relevant

results on CTMCs) Xh as having state space Zdh (recall Notation 1.1(1)), initial state

Xh
0 = 0, a.s., and an infinitesimal generator Lh given by a spatially homogeneous
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Q-matrix Qh (i.e. Qhss′ depends only on s − s′, for {s, s′} ⊂ Zdh). Thus Lh is a

mapping defined on the set l∞(Zdh) of bounded functions f on Zdh, and Lhf(s) =∑
s′∈Zdh

Qhss′f(s′).

It remains to specify Qh. To this end we discretise on Zdh the infinitesimal
generator L of the Lévy process X, thus obtaining Lh. Recall that [Sato, 1999, p.
208, Theorem 31.5]:

Lf(x) =

d∑
j=1

(
σ2
j

2
∂jjf(x) + µj∂jf(x)

)
+

∫
Rd

(
f(x+ y)− f(x)−

d∑
j=1

yj∂jf(x)1[−V,V ]d(y)

)
dλ(y)

(f ∈ C2
0 (Rd), x ∈ Rd). We specify Lh separately in the univariate, d = 1, and in the

general, multivariate, setting.

Univariate case

In the case when d = 1, we introduce two schemes. Referred to as discretization

scheme 1 (respectively 2), and given by (2.2) (respectively (2.4)) below, they differ

in the discretization of the first derivative, as follows.
Under discretisation scheme 1, for s ∈ Zh and f : Zh → R vanishing at

infinity (i.e. f ∈ c0(Zh)):

Lhf(s) =
1

2

(
σ2 + ch0

) f(s+ h) + f(s− h)− 2f(s)

h2
+
(
µ− µh

) f(s+ h)− f(s− h)

2h
+∑

s′∈Zh\{0}

[
f(s+ s′)− f(s)

]
chs′ (2.2)

where the following notation has been introduced:

• for s ∈ Zh:

Ahs :=


[s− h/2, s+ h/2), if s < 0

[−h/2, h/2], if s = 0

(s− h/2, s+ h/2], if s > 0

;

• for s ∈ Zh\{0}: chs := λ(Ahs );

• and finally:

ch0 :=

∫
Ah0

y2
1[−V,V ](y)dλ(y) and µh :=

∑
s∈Zh\{0}

s

∫
Ahs

1[−V,V ](y)dλ(y).

Note that Qh has nonnegative off-diagonal entries for all h for which:

σ2 + ch0
2h2

+
µ− µh

2h
+ chh ≥ 0 and

σ2 + ch0
2h2

− µ− µh

2h
+ ch−h ≥ 0 (2.3)
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and in that case Qh is a genuine Q-matrix. Moreover, due to spatial homogeneity,

its entries are then also uniformly bounded in absolute value.

Further, when σ2 > 0, it will be shown that (2.3) always holds, at least for

all sufficiently small h (see Proposition 2.18). However, in general, (2.3) may fail.

It is for this reason that we introduce scheme 2, under which the condition on the

nonnegativity of off-diagonal entries of Qh holds vacuously.
To wit, we use in discretization scheme 2 the one-sided, rather than the

two-sided discretisation of the first derivative, so that (2.2) reads:

Lhf(s) =
1

2

(
σ2 + ch0

) f(s+ h) + f(s− h)− 2f(s)

h2
+

∑
s′∈Zh\{0}

[f(s+ s′)− f(s)]chs′ +

(µ− µh)

(
f(s+ h)− f(s)

h
1[0,∞)(µ− µh) +

f(s)− f(s− h)

h
1(−∞,0](µ− µh)

)
(2.4)

Importantly, while scheme 2 is always well-defined, scheme 1 is not; and yet the

two-sided discretization of the first derivative exhibits better convergence properties

than the one-sided one (cf. Proposition 2.20). We therefore retain the treatment of

both these schemes in the sequel.

For ease of reference we also summarize here the following notation which

will be used from Subsection 2.3.2 onwards:

c := λ(R), b := κ(0), d := λ(R\[−1, 1])

and for δ ∈ (0, 1]:

ζ(δ) := δ

∫
[−1,1]\[−δ,δ]

|x|dλ(x) and γ(δ) := δ2

∫
[−1,1]\[−δ,δ]

dλ(x).

Multivariate case

For the sake of simplicity we introduce only one discretisation scheme in this general
setting. If necessary, and to avoid confusion, we shall refer to it as the multivariate
scheme. We choose V = 0 or V = 1, according as to whether λ(Rd) is finite or
infinite. Lh is then given by:

Lhf(s) =
1

2

d∑
j=1

(
σ2
j + ch0j

) f(s+ hej) + f(s− hej)− 2f(s)

h2
+

l∑
j=1

(µj − µhj )
f(s+ hej)− f(s− hej)

2h

+

d∑
j=l+1

(µj − µhj )

(
f(s+ hej)− f(s)

h
1[0,∞)(µj − µhj ) +

f(s)− f(s− hej)
h

1(−∞,0](µj − µhj )

)
+

∑
s′∈Zd

h

(
f(s+ s′)− f(s)

)
chs′

(f ∈ c0(Zdh), s ∈ Zdh; and we agree
∑
∅ := 0). Here the following notation has been

introduced:
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• for s ∈ Zdh: Ahs :=
∏d
j=1 I

h
sj , where for s ∈ Zh:

Ihs :=


[s− h/2, s+ h/2), if s < 0

[−h/2, h/2], if s = 0

(s− h/2, s+ h/2], if s > 0

so that {Ahs : s ∈ Zdh} constitutes a partition of Rd;

• for s ∈ Zdh\{0}: chs := λ(Ahs );

• and finally for j ∈ {1, . . . , d}:

ch0j :=

∫
Ah0

x2
j1[−V,V ]d(x)dλ(x) and µhj :=

∑
s∈Zd

h
\{0}

sj

∫
Ahs

1[−V,V ]d(y)dλ(y).

Notice that when d = 1, this scheme reduces to scheme 1 or scheme 2, according

as to whether σ2 > 0 or σ2 = 0. Indeed, statements pertaining to the multivariate

scheme will always be understood to include also the univariate case d = 1.

Remark 2.1. The complete analogue of ch0 from the univariate case would be the

matrix ch0 , entries (ch0)ij :=
∫
Ah0
xixj1[−V,V ]d(x)dλ(x), {i, j} ⊂ {1, . . . , d}. However,

as h varies, so could ch0 , and thus no diagonalization of ch0 +Σ is possible (in general),

simultaneously in all (small enough) positive h. Thus, retaining ch0 in its totality, we

should have to discretize mixed second partial derivatives, which would introduce

(further) nonpositive entries in the corresponding Q-matrix Qh of Xh. It is not clear

whether these would necessarily be counterbalanced in a way that would ensure

nonnegative off-diagonal entries. Retaining the diagonal terms of ch0 , however, is of

no material consequence in this respect.

It is verified just as in the univariate case, component by component, that

there is some h? ∈ (0,+∞] such that for all h ∈ (0, h?), L
h is indeed the infinitesimal

generator of some CTMC (i.e. the off-diagonal entries of Qh are nonnegative). Qh is

then a regular (as spatially homogeneous) Q-matrix, and Xh is a compound Poisson

process (in law, see Remark 1.40), whose Lévy measure we denote λh.

2.2.2 Summary of results

We have (see Remark 2.21(iii) pursuant to Proposition 2.20 for proof):

Remark 2.2 (Convergence in distribution). Xh converges to X weakly in finite-

dimensional distributions (hence with respect to the Skorokhod topology on the

space of càdlàg paths1 [Jacod and Shiryaev, 2003, p. 415, Corollary 3.9]) as h ↓ 0.

1Upon the choice of such versions.
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Next, in order to formulate the rates of convergence, recall that P ht,T (x, y)
(respectively pt,T (x, y)) denote the transition probabilities (respectively continuous
transition densities, when they exist) of Xh (respectively X) from x at time t to y
at time T , {x, y} ⊂ Zdh, 0 ≤ t < T . Further, for 0 ≤ t < T define:

∆T−t(h) := sup
{x,y}⊂Zd

h

Dh
t,T (x, y), where Dh

t,T (x, y) :=

∣∣∣∣pt,T (x, y)− 1

hd
Pht,T (x, y)

∣∣∣∣ . (2.5)

We now summarize the results first in the univariate, and then in the multi-

variate setting (Remark 2.2 holding true of both).

Univariate case

The assumption alluded to in the Introduction (Section 2.1) is the following (we

state it explicitly when it is being used):

Assumption 2.3. Either σ2 > 0 or Orey’s condition [Orey, 1968] holds:

∃ε ∈ (0, 2) such that lim inf
r↓0

1

r2−ε

∫
[−r,r]

u2dλ(u) > 0.

The usage of the two schemes and the specification of V is as summarized in

Table 2.1. In short we use scheme 1 or scheme 2, according as to whether σ2 > 0 or

σ2 = 0, and we use V = 0 or V = 1, according as to whether λ(R) <∞ or λ(R) =∞.

By contrast to Assumption 2.3 we presuppose the provisions of Table 2.1 throughout

this paragraph.

Lévy measure/diffusion part σ2 > 0 σ2 = 0

λ(R) <∞ scheme 1, V = 0 scheme 2, V = 0

λ(R) =∞ scheme 1, V = 1 scheme 2, V = 1

Table 2.1: Usage of the two schemes and of V depending on the nature of σ2 and λ.

Under Assumption 2.3 for every t > 0, φXt ∈ L1(m) where m is Lebesgue

measure and (for 0 ≤ t < T , y ∈ R, PXt-a.s. in x ∈ R):

pt,T (x, y) =
1

2π

∫
R

exp {ip(x− y)} exp {Ψ(p)(T − t)} dp (2.6)

(see Remark 2.10). Choose pt,T (x, y) for which (2.6) obtains for each x ∈ R.

Similarly, with Ψh denoting the characteristic exponent of the compound

Poisson process (in law) Xh (for 0 ≤ t < T , y ∈ Zh, PXh
t
-a.s. in x ∈ Zh):

1

h
P ht,T (x, y) =

1

2π

∫ π
h

−π
h

exp{ip(x− y)} exp{Ψh(p)(T − t)}dp (2.7)
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(see Proposition 2.14). Note that the right-hand side is defined even if P(Xh
t = x) =

0 and we let the left-hand side take this value when this is so.

The main result can now be stated.

Theorem 2.4 (Convergence of transition kernels). Under Assumption 2.3, when-

ever s > 0, the convergence of ∆s(h) is summarized in the following table. In general

convergence is no better than stipulated.

λ(R) = 0 0 < λ(R) <∞ κ(0) <∞ = λ(R) κ(0) =∞
σ2 > 0 ∆s(h) = O(h2) ∆s(h) = O(h)

∆s(h) = O(h) ∆s(h) = O(hκ(h/2))
σ2 = 0 × ×

More exhaustive statements, of which this theorem is a summary, are to be

found in Propositions 2.26 and 2.27, and will be proved in Section 2.4. The proof

of Theorem 2.4 itself can be found at the end of Section 2.4.

Remark 2.5. Assumption 2.3 implies that Xt, for any t > 0, has a smooth den-

sity [Sato, 1999, p. 190, Proposition 28.3]. It hence appears to be unlikely that

this assumption constitutes a necessary condition for the convergence rates of The-

orem 2.4 to hold. In particular, Assumption 2.6 with d = 1, stipulating a certain

exponential decay of the characteristic exponents, is implied by Assumption 2.3 (see

Remark 2.10 and Proposition 2.22) but sufficient for the validity of the convergence

rates in Theorem 2.4 (see Theorem 2.8).

Multivariate case

The relevant technical condition here is:

Assumption 2.6. There are {P,C, ε} ⊂ (0,∞) and an h0 ∈ (0, h?], such that for

all h ∈ (0, h0), s > 0 and p ∈ [−π/h, π/h]d\(−P, P )d:

|φXh
s
(p)| ≤ exp{−Cs|p|ε} (2.8)

whereas for p ∈ Rd\(−P, P )d:

|φXs(p)| ≤ exp{−Cs|p|ε}. (2.9)

Again we shall state it explicitly when it is being used.

Remark 2.7. It is shown, just as in the univariate case, that Assumption 2.6 holds

if l = d, i.e. if Σ is non-degenerate. Moreover, then we may take P = 0, C =
1
2

(
2
π

)2 (∧dj=1σ
2
j

)
, ε = 2 and h0 = h?.
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It would be natural to expect that the same could be verified for the multi-

variate analogue of Orey’s condition, which we suggest as being:

lim inf
r↓0

inf
e∈S(0,1)

∫
B(0,r)

|〈e, x〉|2dλ(x)/r2−ε > 0

for some ε ∈ (0, 2) (see Notation 1.2 for closed balls and spheres). Specifically, under

this condition, it is easy to see that (2.9) of Assumption 2.6 still holds. However,

we are unable to show the validity of (2.8).

Under Assumption 2.6, Fourier inversion yields the integral representation of

the continuous transition densities for X (for 0 ≤ t < T , {x, y} ⊂ Rd):

pt,T (x, y) =
1

(2π)d

∫
Rd
ei〈p,x−y〉e(T−t)Ψ(p)dp.

On the other hand, L2([−π/h, π/h]d) Hilbert space techniques yield for the nor-

malized transition probabilities of Xh (for 0 ≤ t < T , y ∈ Zdh and PXh
t
-a.s. in

x ∈ Zdh):
1

hd
Pt,T (x, y) =

1

(2π)d

∫
[−π/h,π/h]d

ei〈p,x−y〉e(T−t)Ψh(p)dp,

where Ψh is the characteristic exponent of Xh.

Finally, we state the result with the help of the following notation:

• for δ ∈ [0,∞): κ(δ) :=
∫

[−1,1]d\[−δ,δ]d |x|dλ(x), ζ(δ) := δκ(δ) and χ(δ) :=∑
1≤i<j≤d

∫
[−δ,δ]d |xixj |dλ(x).

• σ̂2 := ∧dj=1σ
2
j and σ2 :=

∑d
j=1 σ

2
j .

Note that by the Dominated Convergence Theorem, (ζ + χ)(δ)→ 0 as δ ↓ 0 (this is

seen as in the univariate case, cf. Lemma 2.17).

Theorem 2.8 (Convergence — multivariate case). Let d ∈ N and suppose Assump-

tion 2.6 holds. Then for any s > 0, ∆s(h) = O(h ∨ (ζ + χ)(h/2)). Moreover, if

σ̂2 > 0, then there exists a universal constant Dd ∈ (0,∞), such that for any s > 0:

1. If λ(Rd) = 0,

lim sup
h↓0

∆s(h)

h2
≤ Dd

[
σ2

σ̂2

1√
sσ̂2

+
|µ|
σ̂2

]
1

(sσ̂2)
d+1

2

.

2. If 0 < λ(Rd) <∞,

lim sup
h↓0

∆s(h)

h
≤ Dd

λ(Rd)s
(sσ̂2)

d+1
2

.
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3. If κ(0) <∞ = λ(Rd),

lim sup
h↓0

∆s(h)

h
≤ Dd

[
λ(Rd\[−1, 1]d)s+

κ(0)s√
sσ̂2

]
1

(sσ̂2)
d+1

2

.

4. If κ(0) =∞,

lim sup
h↓0

∆s(h)

(ζ + χ)(h/2)
≤ Dd

s

(sσ̂2)
d+2

2

.

Remark 2.9. Notice that in the univariate case ζ + χ reduces to ζ. The presence of

χ is a consequence of the omission of non-diagonal entries of ch0 in the multivariate

approximation scheme (cf. Remark 2.1).

The proof of Theorem 2.8 is an easy extension of the arguments behind

Theorem 2.4 and can be found immediately following the proof of Proposition 2.23.

2.3 Transition kernels and convergence of characteristic

exponents

In the interests of space, simplicity of notation and ease of exposition, the analysis

in this and in Section 2.4 is restricted to dimension d = 1. Proofs in the multivariate

setting are, for the most part, a direct and trivial extension of those in the univariate

case. However, when this is not so, necessary and explicit comments will be provided

in the sequel, as appropriate.

2.3.1 Integral representations

First we note the following result (its proof is essentially by the standard inversion

theorem; see also [Sato, 1999, p. 190, Proposition 28.3]).

Remark 2.10. Under Assumption 2.3, for some {P,C, ε} ⊂ (0,∞) depending only on

{λ, σ2} and then all p ∈ R\(−P, P ) and t ≥ 0: |φXt(p)| ≤ exp{−Ct|p|ε}. Moreover,

when σ2 > 0, one may take P = 0, C = 1
2σ

2 and ε = 2, whereas otherwise ε may

take the value from Orey’s condition in Assumption 2.3. Consequently, Xt (t > 0)

admits the continuous density fXt(y) = 1
2π

∫
R e
−ipyφXt(p)dp (y ∈ R). In particular,

the law Pt,T (x, ·) is given by (2.6).

Second, to obtain (2.7), we apply some classical theory of Hilbert spaces, see

e.g. [Dudley, 2004].

Definition 2.11. For s ∈ Zh let gs : [−π
h ,

π
h ] → C be given by gs(p) :=

√
h
2πe
−isp.

The (gs)s∈Zh constitute an orthonormal basis of the Hilbert space L2([−π
h ,

π
h ]).
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Let A ∈ l2(Zh). We define: FhA :=
∑

s∈Zh A(s)gs, so that Fh : l2(Zh) →
L2([−π/h, π/h]) is a bounded linear mapping. The inverse of this transform F−1

h :

L2([−π
h ,

π
h ])→ l2(Zh) is given by:

(F−1
h φ)(s) = 〈φ, gs〉 :=

∫
[−π

h
,π
h

]
φ(u)gs(u)du,

for φ ∈ L2([−π
h ,

π
h ]) and s ∈ Zh. It is again a bounded linear mapping.

Definition 2.12. For a bounded linear operator A : l2(Zh) → l2(Zh), we say FA :

[−π/h, π/h]→ R is its diagonalization, if FhAF−1
h φ = FAφ for all φ ∈ L2([−π

h ,
π
h ]).

We now diagonalize Lh, which allows us to establish (2.7). The straightfor-

ward proof is left to the reader.

Proposition 2.13. Fix C ∈ l1(Zh). The following introduces a number of bounded

linear operators A : l2(Zh) → l2(Zh) and gives their diagonalization. With f ∈
l2(Zh), s ∈ Zh, p ∈ [−π

h ,
π
h ]:

(i) ∆hf(s) := f(s+h)+f(s−h)−2f(s)
h2 . F∆h

(p) = 2 cos(hp)−1
h2 .

(ii) ∇hf(s) := f(s+h)−f(s−h)
2h . F∇h(p) = i sin(hp)

h . Under scheme 2 we let ∇+
h f(s) :=

f(s+h)−f(s)
h (respectively ∇−h f(s) := f(s)−f(s−h)

h ) and then F∇+
h

(p) = eihp−1
h

(respectively F∇−h
(p) = 1−e−ihp

h ).

(iii) LCf(s) :=
∑

s′∈Zh(f(s+ s′)− f(s))C(s′). FLC (p) =
∑

s∈Zh C(s)(eisp − 1).

As λ is finite outside any neighborhood of 0, Lh|l2(Zh) (as in (2.2), respectively

(2.4)) is a bounded linear mapping. We denote this restriction by Lh also. Its

diagonalization is then given by Ψh := FLh , where, under scheme 1,

Ψh(p) = i(µ− µh)
sin(hp)

h
+ (σ2 + ch0)

(cos(hp)− 1)

h2
+

∑
s∈Zh\{0}

chs
(
eisp − 1

)
(2.10)

and under scheme 2,

Ψh(p) = (µ− µh)

(
eihp − 1

h
1[0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)

)
+ (σ2 + ch0)

(cos(hp)− 1)

h2
+

∑
s∈Zh\{0}

chs
(
eisp − 1

)
(2.11)

(with p ∈ [−π
h ,

π
h ], but we can and will view Ψh as defined for all real p by the

formulae above). Under either scheme, Ψh is bounded and continuous as the final

sum converges absolutely and uniformly.
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Proposition 2.14. For scheme 1 under (2.3), and always for scheme 2, for every

0 ≤ t < T , y ∈ Zh and PXh
t

-a.s. in x ∈ Zh (2.7) holds, i.e.:

P(Xh
T = y|Xh

t = x) =
h

2π

∫ π
h

−π
h

exp{ip(x− y)} exp{Ψh(p)(T − t)}dp.

Proof. (Condition (2.3) ensures scheme 1 is well-defined (Qh needs to have nonneg-

ative off-diagonal entries).) Note that: P(Xh
T = y|Xh

t = x) = (e(T−t)Lh
1{y})(x).

Thus (2.7) follows directly from the relation FhLhF−1
h = Ψh· (where Ψh· is the

operator that multiplies functions pointwise by Ψh), since:

(e(T−t)Lh
1{y})(x) = (F−1

h eFh(T−T )LhF−1
h Fh1{y})(x)

=

√
h

2π

∫
[−π

h
,π
h

]
eipx(e(T−t)FhLhF−1

h gy)(p)dp

=

√
h

2π

∫
[−π

h
,π
h

]
eipx

( ∞∑
k=0

(T − t)kF k
Lh

k!
gy

)
(p)dp

=
h

2π

∫ π
h

−π
h

exp{ip(x− y)} exp{Ψh(p)(T − t)}dp,

where on the right hand side of the third equality, the sum is in principle in

L2([−π
h ,

π
h ]), but since the sum converges pointwise boundedly, it can be taken as

such (by the very definition of convergence in L2, and by bounded convergence).

In what follows we study the convergence of (2.7) to (2.6) as h ↓ 0. These

expressions are particularly suited to such an analysis, not least because the spatial

and temporal components are factorized.

Note also that, by Proposition 2.14, for every t ≥ 0 and Lebesgue-a.e. p ∈
[−π/h, π/h], φXh

t
(p) = E[eipX

h
t ] = Fh(F−1

h (etΨ
h
))(p) = exp{tΨh(p)}. Then, via

continuity and periodicity:

φXh
t
(p) = exp{tΨh(p)},

everywhere in p ∈ R. Further, note that Xh is a compound Poisson processes

(possibly only in law, see Remark 1.40; but we may always choose a càdlàg version

if required/convenient, cf. Remark 1.36) and Ψh is its characteristic exponent [Sato,

1999, p. 33, Lemma 7.6].

In the multivariate scheme, by considering the Hilbert space L2([−π/h, π/h]d)

instead, Xh is again seen to be compound Poisson with characteristic exponent given
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by (for p ∈ Rd):

Ψh(p) =

d∑
j=1

(σ2
j + ch0j)

cos(hpj)− 1

h2
+ i

l∑
j=1

(µj − µhj )
sin(hpj)

h
+

d∑
j=l+1

(µj − µhj )

(
eihpj − 1

h
1[0,∞)(µj − µhj ) +

1− e−ihpj
h

1(−∞,0](µj − µhj )

)
+

∑
s∈Zdh\{0}

(
ei〈p,s〉 − 1

)
chs . (2.12)

In the sequel, we shall let λh denote the Lévy measure of Xh.

2.3.2 Convergence of characteristic exponents

We introduce for p ∈ R:

fh(p) :=
cos(hp)− 1

h2
+
p2

2

and, under scheme 1:

gh(p) := i

(
sin(hp)

h
− p
)

lh(p) := ch0
cos(hp)− 1

h2
− µhisin(hp)

h
+∑

s∈Zh\{0}

chs
(
eisp − 1

)
−
∫
R

(
eipu − 1− ipu1[−V,V ](u)

)
dλ(u),

respectively, under scheme 2:

gh(p) :=
eihp − 1

h
1(0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)− ip;

lh(p) := ch0
cos(hp)− 1

h2
− µh

[
eihp − 1

h
1(0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)

]
+∑

s∈Zh\{0}

chs

(
eisp − 1

)
−
∫
R

(
eipu − 1− ipu1[−V,V ](u)

)
dλ(u).

Thus:

Ψh −Ψ = σ2fh + µgh + lh.

Next, we give three elementary but key lemmas. The first concerns some

elementary trigonometric inequalities as well as the Lipschitz difference for the re-

mainder of the exponential series fl(x) :=
∑∞

k=l+1
(ix)k

k! (x ∈ R, l ∈ {0, 1, 2}): these

estimates will be used again and again in what follows. The second is only used

in the estimates pertaining to the multivariate scheme. Finally, the third lemma
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establishes key convergence properties relating to λ.

Lemma 2.15. For all real x: 0 ≤ cos(x) − 1 + x2

2 ≤
x4

4! , 0 ≤ sgn(x)(x − sin(x)) ≤
sgn(x)x

3

3! and 0 ≤ x2 + 2(1 − cos(x)) − 2x sin(x) ≤ x4/4. Whenever {x, y} ⊂ R we

have (with δ := y − x):

1. |eix − 1− (eiy − 1)|2 ≤ δ2.

2. |eix − 1− ix− (eiy − 1− iy)|2 ≤ δ4/4 + δ2x2 + |δ|3|x|.

3. |eix− 1− ix+x2/2− (eiy− 1− iy+ y2/2)|2 ≤ δ6/36 + |δ|5|x|/6 + (5/12)δ4x2 +

|δ|3|x|3/2 + δ2x4/4.

Proof. The first set of inequalities may be proved by comparison of derivatives.
Then, (1) follows from |ei(x−y) − 1|2 = 2(1− cos(x− y)) and |eiy| = 1; (2) from

|eix− ix− eiy + iy|2 =
(
δ2 + 2(1− cos(δ))− 2δ sin(δ)

)
− 2δ(cos(x)− 1) sin(δ) + 2δ sin(x)(1− cos(δ))

and finally (3) from the decomposition of |eix − ix + x2/2 − eiy + iy − y2/2|2 into

the following terms:

1. 2(1− cos(δ)) + δ2 + δ4/4− 2δ sin(δ)− (1− cos(δ))δ2 ≤ δ6/36 for any real δ.

2. δ3x − sin(x) sin(δ)δ2 = δ2(δ(x − sin(x)) + sin(x)(δ − sin(δ))) ≤ |δ|3|x|3/6 +

|δ|5|x|/6.

3. −2(1− cos(δ))δx+ 2δx(1− cos(x))(1− cos(δ)) + 2δ(1− cos(δ)) sin(x) = 2δ(1−
cos(δ))(x(1 − cos(x)) + sin(x) − x) ≤ |δ|3|x|3/3, since for all real x one has

| sin(x)− x cos(x)| ≤ |x|3/3.

4. −(cos(x)− 1)(1− cos(δ))δ2 ≤ x2δ4/4.

5. δ2x2−2δx sin(x) sin(δ)−2δ sin(δ)(cos(x)−1) = x2δ(δ− sin(δ)) + 2δ sin(δ)(1−
cos(x) − x sin(x) + x2/2) ≤ δ4x2/6 + δ2x4/4, since for all real x, one has

0 ≤ 1− cos(x)− x sin(x) + x2/2 ≤ x4/8.

The latter inequalities are again seen to be true by comparing derivatives.

Lemma 2.16. Let {p, x, y} ⊂ Rd. Then:

1. |(ei〈p,x〉 − 1)− (ei〈p,y〉 − 1)| ≤ |p||x− y|.

2. |(ei〈p,x〉 − i〈p, x〉 − 1)− (ei〈p,y〉 − i〈p, y〉 − 1)| ≤ 2|p|2(|x|+ |y|)|x− y|.
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Proof. This is an elementary consequence of the complex Mean Value Theorem

[Evard and Jafari, 1992, p. 859, Theorem 2.2] and the Cauchy-Schwartz inequality.

Lemma 2.17. For any Lévy measure λ on R, one has for the two functions (given

for 1 ≥ δ > 0): M0(δ) := δ2
∫

[−1,1]\(−δ,δ) dλ(x) and M1(δ) := δ
∫

[−1,1]\(−δ,δ) |x|dλ(x)

that M0(δ) → 0 and M1(δ) → 0 as δ ↓ 0. If, moreover,
∫

[−1,1] |x|dλ(x) < ∞, then

δ
∫

[−1,1]\(−δ,δ) dλ(x)→ 0 as δ ↓ 0.

Proof. Indeed let µ be the finite measure on ([−1, 1],B([−1, 1])) given by µ(A) :=∫
A x

2dλ(x) (A a Borel subset of [−1, 1]) and let f0
δ (x) :=

(
δ
x

)2
1[−1,1]\(−δ,δ)(x) and

f1
δ (x) := δ

|x|1[−1,1]\(−δ,δ)(x) be functions on [−1, 1]. Clearly 0 ≤ f0
δ , f

1
δ ≤ 1 and

f0
δ , f

1
δ → 0 pointwise as δ ↓ 0. Hence by Lebesgue’s Dominated Convergence

Theorem (DCT), we have M0(δ) =
∫
f0
δ dµ and M1(δ) =

∫
f1(δ)dµ converging to∫

0dµ = 0 as δ ↓ 0. The “finite first absolute moment” case is similar.

Proposition 2.18. Under scheme 1, with σ2 > 0, (2.3) holds for all sufficiently

small h.

Definition 2.19. Pursuant to Proposition 2.18, under either of the two schemes,

we let h? ∈ (0,+∞] be such that Qh has non-negative off-diagonal entries for all

h ∈ (0, h?).

Proof. If V = 0 this is immediate. If V = 1, then (via a triangle inequality):

h|µh| ≤ h

∣∣∣∣∣∣
∑

s∈Zh\{0}

s

∫
Ahs

1[−1,1](y)dλ(y)

∣∣∣∣∣∣ ≤ h
∑

s∈Zh\{0}

∫
Ahs

|s− u+ u|1[−1,1](y)dλ(y)

≤ h

(
h

2
λ([−1, 1]\[−h/2, h/2]) +

∫
[−1,1]\[h/2,h/2]

|u|dλ(u)

)
→ 0

as h ↓ 0 by Lemma 2.17. Eventually the expression is smaller than σ2 > 0 and the

claim follows.

Furthermore, we have the following inequalities, which together imply an

estimate for |Ψh − Ψ|. In the following, recall the notation (δ ≥ 0): ζ(δ) :=

δ
∫

[−1,1]\[−δ,δ] |x|dλ(x), γ(δ) := δ2
∫

[−1,1]\[−δ,δ] dλ(x), c := λ(R), b := κ(0), d :=

λ(R\[−1, 1]). Recall also the definition of the sets Ahs following (2.2).

Proposition 2.20 (Convergence of characteristic exponents). For all p ∈ R: 0 ≤
fh(p) ≤ p4h2/4! and 0 ≤ isgn(p)gh(p) ≤ h2|p|3/3! (respectively, under scheme 2,

|gh(p)| ≤ hp2/2!). Moreover:
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(i) when c <∞; with V = 0: |lh(p)| ≤ c|p|h/2.

(ii) when b <∞ = c; with V = 1; for all h ≤ 2:

|lh(p)| ≤ h

2

(
|p|d+ p2b

)
+ (p2 + |p|3 + p4)o(h)

(respectively under scheme 2,

|lh(p)| ≤ h

2

(
|p|d+ 2p2b

)
+ (p2 + |p|3 + p4)o(h)

) where o(h) depends only on λ.2

(iii) when b =∞; with V = 1; for all h ≤ 2:

|lh(p)| ≤ p2

(
ζ(h/2) +

1

2
γ(h/2)

)
+ (|p|+ |p|3 + p4)O(h)

(respectively under scheme 2,

|lh(p)| ≤ p2

[
2ζ(h/2) +

1

2
γ(h/2)

]
+ (|p|+ p2 + |p|3 + p4)O(h)

) where again O(h) depends only on λ. Note here that we always have γ ≤ ζ

and that ζ decays strictly slower than h, as h ↓ 0.

Remark 2.21.

(i) We may briefly summarize the essential findings of Proposition 2.20 in Ta-

ble 2.2, by noting that the following will have been proved for p ∈ R and

h ∈ (0, h? ∧ 2):

|Ψh(p)−Ψ(p)| ≤ f(h)R(|p|) + o(f(h))Q(|p|) (2.13)

where R and Q are polynomials of respective degrees α and β and f : (0, h? ∧
2)→ (0,∞).

(ii) An analogue of (2.13) is got in the multivariate case simply by examining

directly the difference of (2.12) and (2.1). One does so either component by

component (when it comes to the drift and diffusion terms), the estimates

2The above notation, incorporating the symbol o(h), is a slight abuse. Nevertheless, it is one
to which we shall gratefully adhere in the sequel: thus o(h) stands for a function of h, defined on
some right neighborhood of 0, which is o(h) in the sense of Notation 1.5.
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(f(h), α, β) σ2 > 0 (scheme 1) σ2 = 0 (scheme 2)

λ(R) = 0 (V = 0) (h2, 4,−∞) (h, 2,−∞)

λ(R) <∞ (V = 0) (h, 1, 4) (h, 2,−∞)

κ(0) <∞ = λ(R) (V = 1) (h, 2, 4)

κ(0) =∞ (V = 1) (ζ(h/2), 2, 4)

Table 2.2: Summary of Proposition 2.20 via the triplet (f(h), α, β) introduced in (i)
of Remark 2.21. We agree deg 0 = −∞, where 0 is the zero polynomial.

being then the same as in the univariate case; or else one employs, in addi-

tion, Lemma 2.16 (for the part corresponding to the integral against the Lévy

measure). In particular, (2.13) (with p ∈ Rd) follows for suitable choices of R,

Q and f , and Table 2.2 remains unaffected, apart from its last entry, wherein

ζ should be replaced by ζ + χ (one must also replace “σ2 = 0” (respectively

“σ2 > 0”) by “Σ (respectively non-) degenerate” (amalgamating scheme 1 &

2 into the multivariate one) and λ(R) by λ(Rd)).

(iii) The above entails, in particular, convergence of Ψh(p) to Ψ(p) as h ↓ 0 point-

wise in p ∈ R. Lévy’s continuity theorem [Dudley, 2004, p. 326] and station-

arity and independence of increments yield at once Remark 2.2.

(iv) Note that we use V = 1 rather than V = 0 when b <∞ = c, because this choice

yields linear convergence (locally uniformly) of Ψh → Ψ. By contrast, retaining

V = 0, would have meant that the decay of Ψh−Ψ would be governed, modulo

terms which are O(h), by the quantity Q(h) :=
∑

s∈Zh
∫
Ahs∩[−1,1](s − u)dλ(u)

(as will become clear from the estimates in the proof of Proposition 2.20 be-

low). But the latter can decay slower than h. In particular, consider the family

of Lévy measures, indexed by ε ∈ [0, 1): λε =
∑∞

n=1wnδ−xn , with hn = 1/3n,

xn = 3hn/2, wn = 1/xεn, n ≥ 1. For all these measures b < ∞ = c. Further-

more, it is straightforward to verify that lim infn→∞Q(hn)/K(hn) > 0, where

K(h) is h1−ε or h log(1/h), according as to whether ε ∈ (0, 1) or ε = 0.

(v) It is seen from Table 2.2 that the order of convergence goes from quadratic (at

least when σ2 > 0) to linear, to sublinear, according as to whether the Lévy

measure is zero, λ(R) > 0 & κ(0) <∞, or κ becomes more and more singular

at the origin. Let us attempt to offer some intuition in this respect. First,

the quadratic order of convergence is due to the convergence properties of the

discrete second and symmetric first derivative. Further, as soon as the Lévy

measure is non-zero, the latter is aggregated over the intervals (Ahs )s∈Zh\{0},

length h, which (at least in the worst case scenario) commit respective errors
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of order λ(Ahs )h or
∫
Ahs

(|x| ∧ 1)dλ(x)h (s ∈ Zh\{0}) each, according as to

whether V = 0 or V = 1. Hence, the more singular the κ, the bigger the

overall error. Figure 2.1 depicts this progressive worsening of the convergence

rate for the case of α-stable Lévy processes.
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Figure 2.1: Comparison of the convergence of characteristic exponents for α-stable
Lévy processes, α ∈ {1/2, 1, 4/3, 5/3}; σ2 = 0, µ = 0 and λ(dx) = dx/|x|1+α (scheme
2, V = 1). Each plot is of Ψ and of Ψh (h ∈ {1, 1/2, 1/4, 1/8}) on the interval
[0, π]. Note that (i) κ(0) = ∞, precisely when α ≥ 1 and (ii) the characteristic
exponents are real-valued for the examples shown. The plots are indeed suggestive
of a progressive worsening of the rate of convergence as α ↑.

Proof of Proposition 2.20. The first two assertions are transparent by Lemma 2.15

— with the exception of the estimate under scheme 2, where (with δ := hp):

|gh(p)| = 1

h

√
δ2 − 2δ sin(δ) + 2(1− cos(δ)) ≤ 1

h

δ2

2
= hp2/2!.
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Further, if c <∞ (under V = 0):∣∣∣∣∣∣
∑

s∈Zh\{0}

chs (eisp − 1)−
∫
R\[−h

2
,h
2

]

(eipu − 1)dλ(u)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

s∈Zh\{0}

chs e
isp −

∫
R\[−h

2
,−h

2
]

eipudλ(u)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑

s∈Zh\{0}

∫
Ahs

(
eisp − eipu

)
dλ(u)

∣∣∣∣∣∣ ≤
∑

s∈Zh\{0}

∫
Ahs

∣∣∣1− eip(u−s)∣∣∣ dλ(u) ≤ |p|hλ
(
R\
[
−h

2
,
h

2

])
/2,

where in the second inequality we apply (1) of Lemma 2.15 and the first follows from

the triangle inequalities. Finally, |
∫

[−h/2,h/2](e
ipu−1)dλ(u)| ≤ λ([−h/2, h/2])|p|h/2,

again by (1) of Lemma 2.15, and the claim follows.

For the remaining two claims, in addition to recalling the general results of

Lemma 2.15, we prepare the following specific estimates. Whenever {x, y} ⊂ R,

with δ := y − x, 0 6= |x| ≥ |δ|, we have:

• using the inequality
√

1 + z ≤ 1 + z/2 (z ≥ 0) and (2) of Lemma 2.15:

|eix − ix− eiy + iy| ≤ |δx|
(

1 +
1

2

∣∣∣∣ δx
∣∣∣∣+

1

8

δ2

x2

)
= |δx|+ 1

2
δ2 +

1

8

∣∣∣∣δ3

x

∣∣∣∣ ≤ |δx|+ 5

8
δ2. (2.14)

• using (3) of Lemma 2.15:

|eix−ix−eiy+iy| ≤ |eix−eiy−ix+iy+x2/2−y2/2|+ 1

2
|x2−y2| ≤ 7

6
|δ|x2+|δ||x|+ 1

2
δ2. (2.15)

Now, when c =∞ (under V = 1; for all h ≤ 2), denoting ξ(δ) :=
∫

[−δ,δ] x
2dλ(x), we

have, under scheme 1, as follows:∣∣∣∣ch0 (cos(hp)− 1

h2
+
p2

2

)∣∣∣∣ ≤ p4h2ξ(h/2)/4!. (2.16)

∣∣∣∣∣
∫

[−h
2
,h
2

]
u2

(
−p

2

2

)
dλ(u)−

∫
[−h

2
,h
2

]

(
eipu − 1− ipu

)
dλ(u)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[−h
2
,h
2

]

(
cos(pu)− 1 +

p2u2

2!

)
dλ(u)

∣∣∣∣∣+

∣∣∣∣∣
∫

[−h
2
,h
2

]
(sin(pu)− pu) dλ(u)

∣∣∣∣∣
≤ p4(h/2)2ξ(h/2)/4! + |p|3(h/2)ξ(h/2)/3!. (2.17)

| − µhgh(p)| =
∣∣∣∣−iµh(sin(hp)

h
− p
)∣∣∣∣ ≤ 1

3!
h2|p|3 (ζ(h/2) + κ(h/2)) . (2.18)
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∣∣∣∣∣∣
∑

s∈Zh\{0}

chs (eisp − 1)− ipµh −
∫
R\[−h

2
,h
2

]

(eipu − 1− ipu1[−1,1](u))dλ(u)

∣∣∣∣∣∣
≤

∑
s∈Zh\{0}

∫
Ahs

∣∣∣eipu − eips − ipu1[−1,1](u) + ips1[−1,1](u)
∣∣∣ dλ(u)

≤
∑

s∈Zh\{0}

[∫
Ahs∩(R\[−1,1])

+

∫
Ahs∩[−1,1]

] ∣∣∣eipu − eips − ipu1[−1,1](u) + ips1[−1,1](u)
∣∣∣ dλ(u)

≤ h

2
|p|
∫
R\[−1,1]

dλ(u) + p2 h

2

∫
[−1,1]\[−h

2
,h
2

]

|u|dλ(u) + p2 5

8

(
h

2

)2

λ([−1, 1]\[−h/2, h/2]),(2.19)

where, in particular, we have applied (2.14) to x = ps, y = pu. If in addition b =∞,
we opt rather to use (2.15), again with x = ps and y = pu, and obtain instead:∣∣∣∣∣∣

∑
s∈Zh\{0}

chs (eisp − 1)− ipµh −
∫
R\[−h

2
,h
2

]

(eipu − 1− ipu1[−1,1](u))dλ(u)

∣∣∣∣∣∣
≤ h

2
|p|
∫
R\[−1,1]

dλ(u) + p2 h

2

∫
[−1,1]\[−h

2
,h
2

]

|u|dλ(u) + p2 1

2

(
h

2

)2

λ([−1, 1]\[−h/2, h/2]) +

+
7

6
|p|3 h

2

∫
[−1,1]

x2dλ(x). (2.20)

Under scheme 2, (2.16), (2.17) and (2.19)/(2.20) remain unchanged, whereas (2.18)

reads: ∣∣∣µhgh(p)
∣∣∣ ≤ h

2
p2 (ζ(h/2) + κ(h/2)) . (2.21)

Now, combining (2.16), (2.17), (2.18) and (2.19) under scheme 1 (respectively (2.16),

(2.17), (2.21) and (2.19) under scheme 2), yields the desired inequalities when b <∞.

If b =∞ use (2.20) in place of (2.19).

2.4 Rates of convergence for transition kernels

Finally let us incorporate the estimates of Proposition 2.20 into an estimate of

Dh
t,T (x, y) (recall the notation in (2.5)). Assumption 2.3 and Table 2.1 are under-

stood as being in effect throughout this section from this point onwards. Recall

that |Ψh − Ψ| ≤ σ2|fh| + µ|gh| + |lh| and that the approximation is considered for

h ∈ (0, h?) (cf. Definition 2.19).

First, the following observation, which is a consequence of the h-uniform

growth of −<Ψh(p) as |p| → ∞, will be crucial to our endeavour (compare Re-

mark 2.10).

Proposition 2.22. For some {P,C, ε} ⊂ (0,∞) and h0 ∈ (0, h?], depending only

on {λ, σ2}, and then all h ∈ (0, h0), p ∈ [−π/h, π/h]\(−P, P ) and t ≥ 0: |φhXt(p)| ≤
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exp{−Ct|p|ε}. Moreover, when σ2 > 0, we may take ε = 2, P = 0, C = 1
2

(
2
π

)2
and

h0 = h?, whereas otherwise ε may take the same value as in Orey’s condition (cf.

Assumption 2.3).

Proof. Assume first σ2 > 0, so that we are working under scheme 1. It is then clear

from (2.10) that:

−<Ψh(p) ≥ σ2 1− cos(hp)

h2
≥ 1

2

(
2

π

)2

σ2p2,

since 1 − cos(x) = 2 sin2(x/2) ≥ 2
(
x
π

)2
for all x ∈ [−π, π]. On the other hand, if

σ2 = 0, we work under scheme 2 and necessarily V = 1. In that case it follows from

(2.11) for h ≤ 2 and p ∈ [−π/h, π/h]\{0}, that:

−<Ψh(p) ≥

ch0 1− cos(hp)

h2
+

∑
s∈Zh\{0}

chs (1− cos(sp))


≥ 2

π2
p2

∫
Ah0

u2dλ(u) +
∑

s∈Zh\{0},|s|≤ π
|p|

s2chs


≥ 2

π2
p2

∫
Ah0

u2dλ(u) +
4

9

∑
s∈Zh\{0},|s|≤ π

|p|

∫
Ahs

u2dλ(u)


≥ 2

π2
p2

(∫
Ah0

u2dλ(u) +
4

9

∫
[−
(
π
|p|−

h
2

)
, π|p|−

h
2

]\Ah0
u2dλ(u)

)

≥ 8

9

1

π2
p2

∫
[
−
((

π
|p|−

h
2

)
∨h

2

)
,
((

π
|p|−

h
2

)
∨h

2

)] u2dλ(u)

≥ 8

9

1

π2
p2

∫
[− 1

2
π
|p| ,

1
2
π
|p| ]

u2dλ(u).

Now invoke Assumption 2.3. There are some {r0, A0} ∈ (0,+∞) such that for all r ∈
(0, r0]:

∫
[−r,r] u

2dλ(u) ≥ A0r
2−ε. Thus for P = π/(2r0) and then all p ∈ R\(−P, P ),

we obtain: ∫
[− 1

2
π
|p| ,

1
2
π
|p| ]

u2dλ(u) ≥ A0

(
1

2

π

|p|

)2−ε
,

from which the desired conclusion follows at once. Remark that, possibly, r0 may

be taken as +∞, in which case P may be taken as zero.

Second, we have the following general observation which concerns the transfer

of the rate of convergence from the characteristic exponents to the transition kernels.
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Its validity is in fact independent of Assumption 2.3.

Proposition 2.23. Suppose there are {P,C, ε} ⊂ (0,∞), a real-valued polynomial

R, an h0 ∈ (0, h?], and a function f : (0, h0)→ (0,∞), decaying to 0 no faster than

some power law, such that for all h ∈ (0, h0):

1. for all p ∈ [−π/h, π/h]: |Ψh(p)−Ψ(p)| ≤ f(h)R(|p|).

2. for all s > 0 and p ∈ [−π/h, π/h]\(−P, P ): |φXh
s
(p)| ≤ exp{−Cs|p|ε}; whereas

for p ∈ R\(−P, P ): |φXs(p)| ≤ exp{−Cs|p|ε}.

Then for any s > 0, ∆s(h) = O(f(h)).

Before proceeding to the proof of this proposition, we note explicitly the

following elementary, but key lemma:

Lemma 2.24. For {z, v} ⊂ C: |ez − ev| ≤ (|ez| ∨ |ev|)|z − v|.

Proof. This follows from the inequality |ez−1| ≤ |z| for <z ≤ 0, whose validity may

be seen by direct estimation. Indeed, (writing z = γ0 + is0, {γ0, s0} ⊂ R), we have:

|ez − 1|2 = (eγ0 − 1)2 + 2eγ0(1− cos s0).

Then, since γ0 ≤ 0, eγ0 ≤ 1 and 1− eγ0 ≤ −γ0 (by comparing derivatives). Finally,

use 1− cos s0 ≤ s2
0/2.

Proof of Proposition 2.23. From (2.6) and (2.7) we have for the quantity ∆s(h) from

(2.5):

∆s(h) ≤
∫
R\(−π/h,π/h)

| exp{Ψ(p)s}|dp+

∫
[−π/h,π/h]

| exp{Ψh(p)s} − exp{Ψ(p)s}|dp.

Then the first term decays faster than any power law in h by (2) and L’Hôpital’s

rule, say, while in the second term we use the estimate of Lemma 2.24. Since

exp{−Ct|p|ε}dp integrates every polynomial in |p| absolutely, by (1) and (2) inte-

gration in the second term can then be extended to the whole of R and the claim

follows.

Proposition 2.23 allows us to transfer the rates of convergence directly from

those of the characteristic exponents to the transition kernels. In particular, we

have, immediately, the following proof of the multivariate result (which we state

before the univariate case is dealt with in full detail):
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Proof of Theorem 2.8. The conclusions of Theorem 2.8 follow from a straightfor-

ward extension (of the proof) of Proposition 2.23 to the multivariate setting, (ii) of

Remark 2.21, Assumption 2.6 and Remark 2.7.

Returning to the univariate case, analogous conclusions could be got from

Remark 2.10, Proposition 2.22 (themselves both consequences of Assumption 2.3)

and Proposition 2.20. In the sequel, however, in the case when σ2 > 0, we shall be

interested in a more precise estimate of the constant in front of the leading order

term (D1 in the statement of Theorem 2.6). Moreover, we shall want to show our

estimates are tight in an appropriate precise sense.

To this end we assume given a function K with the properties that:

(F) 0 ≤ K(h)→∞ as h ↓ 0 and K(h) ≤ π
h for all sufficiently small h;

(E) the quantity

A(h) :=

[∫ −K(h)

−∞
+

∫ ∞
K(h)

]
|exp{Ψ(p)s}| dp+

[∫ −K(h)

−π
h

+

∫ π
h

K(h)

] ∣∣∣exp{Ψh(p)s}
∣∣∣ dp

decays faster than the leading order term in the estimate of Dh
t,T (x, y) (for

which see, e.g., Table 2.2);

(C) sup[−K(h),K(h)] |Ψh −Ψ| ≤ 1 for all small enough h

(suitable choices of K will be identified later, cf. Table 2.3 on p. 48). We now

comment on the reasons behind these choices.

First, the constants {C,P, ε} are taken so as to satisfy simultaneously the

conditions of Remark 2.10 and Proposition 2.22. In particular, if σ2 > 0, we take

ε = 2, P = 0, C = 1
2σ

2, and if σ2 = 0, we may take ε from Orey’s condition (cf.

Assumption 2.3).
Next, we divide the integration regions in (2.6) and (2.7) into five parts

(cf. property (F)): (−∞,−π
h ], (−π

h ,−K(h)), [−K(h),K(h)], (K(h), πh ), [πh ,∞).
Then we separate (via a triangle inequality) the integrals in the difference Dh

t,T (x, y)
accordingly and use the triangle inequality in the second and fourth region, thus
(with s := T − t > 0):

2πDh
t,T (x, y) ≤

[∫ −π/h
−∞

+

∫ ∞
π/h

]
|exp{Ψ(p)s}| dp+[∫ −K(h)

−π
h

+

∫ π
h

K(h)

](∣∣∣exp{Ψh(p)s}
∣∣∣+ |exp{Ψ(p)s}|

)
dp+

∫ K(h)

−K(h)

∣∣∣exp{Ψ(p)s} − exp{Ψh(p)s}
∣∣∣ dp.
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Finally, we gather the terms with |exp{Ψ(p)s}| in the integrand and use |ez − 1| ≤
e|z| − 1 (z ∈ C) to estimate the integral over [−K(h),K(h)], so as to arrive at:

2πDh
t,T (x, y) ≤ A(h) +

∫ K(h)

−K(h)
| exp{Ψ(p)s}|

(
exp

{
s
∣∣∣Ψh(p)−Ψ(p)

∣∣∣}− 1
)
dp.

(2.22)

Now, the rate of decay of A(h) can be controlled by choosing K(h) converging to

+∞ fast enough, viz. property (E). On the other hand, in order to control the second

term on the right-hand side of the inequality in (2.22), we choose K(h) converging

to +∞ slowly enough so as to guarantee (C). Table 2.3 lists suitable choices of K(h).

It is easily checked from Table 2.2 (respectively using L’Hôpital’s rule coupled with

Remark 2.10 and Proposition 2.22), that these choices of K(h) do indeed satisfy (C)

(respectively (E)) above. Property (F) is straightforward to verify.

σ2 > 0 (scheme 1) σ2 = 0 (scheme 2)

λ(R) = 0 (V = 0) K(h) =
√

2
Cs

log 1
h
→ A(h) = o(h2) ×

λ(R) <∞ (V = 0) K(h) =
√

1
Cs

log 1
h
→ A(h) = o(h) ×

κ(0) <∞ = λ(R) (V = 1) K(h) =
√

1
Cs

log 1
h
→ A(h) = o(h) K(h) = ε

√
2
Cs

log 1
h
→ A(h) = o(h)

κ(0) =∞ (V = 1) K(h) =
(

1
ζ(h/2)

)1/4

→ A(h) = o(ζ(h/2))

Table 2.3: Suitable choices of K(h). For example, the σ2 > 0 and λ(R) = 0 entry

indicates that we choose K(h) =
√

2
Cs log 1

h and then A(h) is of order o(h2).

Further, owing to (C), for all sufficiently small h, everywhere on [−K(h),K(h)]:

es|Ψ
h−Ψ| − 1 = s|Ψh −Ψ|+

∞∑
k=2

(s|Ψh −Ψ|)k

k!

≤ s|Ψh −Ψ|+ (s|Ψh −Ψ|)2es|Ψ
h−Ψ| ≤ s|Ψh −Ψ|+ e(s|Ψh −Ψ|)2.

Manifestly the second term will always decay strictly faster than the first (so long

as they are not 0). Moreover, since exp{−Cs|p|ε}dp integrates every polynomial in

|p| (cf. the findings of Proposition 2.20) absolutely, it will therefore be sufficient in

the sequel to estimate (cf. (2.22)):

s

2π

∫
R

exp{−Cs|p|ε}
∣∣∣Ψh(p)−Ψ(p)

∣∣∣ dp. (2.23)

On the other hand, for the purposes of establishing sharpness of the rates for

the quantity Dh
t,T (x, y), we make the following:
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Remark 2.25 (RD). Suppose we seek to prove that f ≥ 0 converges to 0 no faster

than g > 0, i.e. that lim suph↓0 f(h)/g(h) ≥ C > 0 for some C. If one can show

f(h) ≥ A(h) − B(h) and B = o(g), then to show lim suph↓0 f(h)/g(h) ≥ C, it is

sufficient to establish lim suph↓0A(h)/g(h) ≥ C. We refer to this extremely useful

principle as reduction by domination (henceforth RD).

In particular, it follows from our discussion above, that it will be sufficient

to consider (we shall always choose x = y = 0):

s

2π

∫ K(h)

−K(h)
esΨ(p)

(
Ψh(p)−Ψ(p)

)
dp, (2.24)

i.e. in Remark 2.25 this is A, and the difference from Dt,T (0, 0) represents B.

Moreover, we can further replace Ψh(p) − Ψ(p) in the integrand of (2.24) by any

expression whose difference from Ψh(p)−Ψ(p) decays, upon integration, faster than

the leading order term. For the latter reductions we (shall) refer to the proof of

Proposition 2.20.

We have now brought the general discussion as far as we can. The rest of the

analysis must inevitably deal with each of the particular instances separately and

we do so in the following two propositions.

Proposition 2.26 (Convergence of transition kernels — σ2 > 0). Suppose σ2 > 0.

Then for any s = T − t > 0:

1. If λ(R) = 0:

∆s(h) ≤ h2

[
1

3π

|µ|
σ4s

+
1

8
√

2π

1

(sσ2)3/2

]
+ o(h2).

Moreover, with σ2s = 1 and µ = 0 we have that lim suph↓0D
h
t,T (0, 0)/h2 ≥

1/(8
√

2π), thus proving that in general the convergence rate is no better than

quadratic.

2. If 0 < λ(R) <∞:

∆s(h) ≤ h 1

2π

c

σ2
+ o(h).

Moreover, with σ2 = s = 1, µ = 0 and λ = 1
2(δ1/2 + δ−1/2) one has that

lim suph↓0D
h
t,T (0, 0)/h > 0, showing that convergence in general is indeed no

better than linear.
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3. If κ(0) <∞ = λ(R):

∆s(h) ≤ h
[

1

2π

d

σ2
+

1

2
√

2π

bs

(σ2s)3/2

]
+ o(h).

Moreover, with σ2 = s = 1, µ = 0 and λ = 1
2(δ3/2 + δ−3/2) + 1

2

∑∞
k=1(δ1/3k +

δ−1/3k), one has lim suph↓0D
h
t,T (0, 0)/h > 0.

4. If κ(0) =∞:

∆s(h) ≤ 1√
2π

s

(σ2s)3/2

(
ζ(h/2) +

1

2
γ(h/2)

)
+ o(ζ(h/2)).

Moreover, with σ2 = s = 1, µ = 0, and λ =
∑∞

k=1wk(δxk + δ−xk), where

xn = 3
2

1
3n and wn = 1/xn (n ∈ N), one has lim suph↓0D

h
t,T (0, 0)/ζ(h/2) > 0.

Proof. Estimates of ∆s(h) follow at once from (2.23) and Proposition 2.20, simply

by integration. As regards establishing sharpness of the estimates, however, we have

as follows (recall that we always take x = y = 0):

1. λ(R) = 0. Using (2.24) it is sufficient to consider:

A(h) :=
1

2π

∣∣∣∣∣
∫ K(h)

−K(h)
exp

{
−1

2
p2

}
fh(p)dp

∣∣∣∣∣ .
By DCT, we have A(h)/h2 → 1

2π

∫∞
−∞ exp{−1

2p
2}p4/4!dp and the claim follows.

2. 0 < λ(R) < ∞. Using (2.24) and further RD (recall Remark 2.25) via the

estimates in the proof of Proposition 2.20, we conclude that it is sufficient to observe

for the sequence (hn = 1
3n )n≥1 ↓ 0 that:

lim sup
n→∞

1

2πhn

∣∣∣∣∣
∫ K(hn)

−K(hn)
exp

{
−1

2
p2 − 1 + cos(p/2)

}
lhn(p)dp

∣∣∣∣∣ > 0.

It is also clear that we may express:

lhn(p) = 2
1

2
<
(
eip(1/2−hn/2) − eip/2

)
= cos(p/2)(cos(phn/2)− 1) + sin(p/2) sin(phn/2).

Therefore, by further RD, it will be sufficient to consider:

lim sup
n→∞

1

2πhn

∣∣∣∣∣
∫ K(hn)

−K(hn)
exp

{
−1

2
p2 − 1 + cos(p/2)

}
sin(phn/2) sin(p/2)dp

∣∣∣∣∣ .
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By DCT it is equal to:

I :=
1

2π

∫ ∞
0

p sin(p/2) exp{−1

2
p2 − 1 + cos(p/2)}dp.

The numerical value of this integral is (to one decimal place in units of 1/(2π))

0.4/(2π), but we can show that I > 0 analytically. Note the integrand is positive

on [0, 6]. Hence we have 2πeI ≥ sin(1/2)ecos(3/2)
∫ 3

1 pe
−p2/2dp − e

∫∞
6 pe−p

2/2dp =

sin(1/2)ecos(3/2)[e−1/2−e−9/2]−e−17. Now use sin(1/2) ≥ (1/2)·(2/π) (which follows

from the concavity of sin on [0, π/2]), so that, very crudely: 2πeI ≥ (1/π)e−1/2(1−
e−4)− e−17 ≥ (1/π)e−1/2(1/2)− e−17 ≥ (1/e2)e−1/2(1/e)− e−17 ≥ e−4 − e−17 > 0.

3. κ(0) <∞ = λ(R). Let hn = 1/3n, n ≥ 1. Because the second term in λ lives on
∪n∈NZhn , it is seen quickly (via RD) that one need only consider (to within non-zero
multiplicative constants):

lim sup
n→∞

∫ K(hn)

−K(hn)

1

hn
sin(phn/2) sin(3p/2) exp

{
−1

2
p2 + (cos(3p/2)− 1) +

∞∑
k=1

(cos(p/3k)− 1)

}
dp.

By DCT it is sufficient to observe that:∫ 2π/3

0

sin(3p/2)p exp

{
−1

2
p2 + (cos(3p/2)− 1)− p2

2

∞∑
k=1

1

9k

}
dp−

∫ ∞
2π/3

p exp

{
−1

2
p2

}
dp > 0.

To see the latter, note that the second integral is immediate and equal to: e−(2π/3)2/2.

As for the first one, make the change of variables u = 3p/2. Thus we need to establish

that:

A := (4/(9e))

∫ π

0
sin(u)u exp{−u2/4 + cos(u)}du− e−(2π/3)2/2 > 0.

Next note that −u2/4 + cos(u) is decreasing on [0, π] and the integrand in A is

positive. It follows that:

A ≥ 4

9e

∫ π/3

0
u sin(u) exp

{
−1

4

(π
3

)2
+ cos

(π
3

)}
du+

4

9e

∫ π/2

π/3
u sin(u) exp

{
−1

4

(π
2

)2
+ cos

(π
2

)}
du− e−2π2/9 =

4

9e

[
e−

π2

36
+ 1

2

[√
3

2
− π

6

]
+ e−

π2

16

[
1−
√

3

2
+
π

6

]]
− e−2π2/9

Using series formulae/rational lower and upper bounds for π and π2, and the series

expansion of the exponential function, say, it is now an elementary exercise to verify

that this explicit expression can be estimated from below by a positive quantity, so
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that A > 0.

4. κ(0) =∞. Let again hn = 1/3n, n ≥ 1. Notice that:

σ1 :=

∫
[−1,1]\[−hn/2,hn/2]

u2dλ(u) = 2
n∑
k=1

x2
kwk,

while

σ2 :=
∑

s∈Zhn\{0}

chns s2 = 2
n∑
k=1

(
xk −

hn
2

)2

wk,

so that ∆ := σ1 − σ2 = 2ζ(hn/2) − γ(hn/2) ≥ ζ(hn/2). Using (3) of Lemma 2.15

in the estimates of Proposition 2.20, it is then not too difficult to see that it is

sufficient to show
∫K(hn)
−K(hn) p

2 exp{Ψ(p)}dp converges to a strictly positive value as

n→∞, which is transparent (since Ψ is real valued).

Proposition 2.27 (Convergence of transition kernels — σ2 = 0). Suppose σ2 = 0.

For any s = T − t > 0:

1. If Orey’s condition is satisfied and κ(0) < ∞ = λ(R), then ∆s(h) = O(h).

Moreover, with σ2 = 0, s = 1, µ = 0 and λ = 1
2

∑∞
k=1wk(δxk + δ−xk), where

xn = 3
2

1
3n and wn = 1/

√
xn (n ∈ N), Orey’s condition holds with ε = 1/2 and

one has lim suph↓0D
h
t,T (0, 0)/h > 0.

2. If Orey’s condition is satisfied and κ(0) =∞, then ∆s(h) = O(ζ(h/2)). More-

over, with σ2 = 0, s = 1, µ = 0, and λ =
∑∞

k=1wk(δxk + δ−xk), where

xn = 3
2

1
3n and wn = 1/xn (n ∈ N), Orey’s condition holds with ε = 1 and one

has lim suph↓0D
h
t,T (0, 0)/ζ(h/2) > 0.

Proof. Again the rates of convergence for ∆s(h) follow at once from (2.23) and

Proposition 2.20 (or, indeed, from Proposition 2.23). As regards sharpness of these

rates, we have (recall that we take x = y = 0):

1. κ(0) < ∞ = λ(R). Let hn = 1/3n, n ≥ 1. By checking Orey’s condition on the
decreasing sequence (hn)n≥1, Assumption 2.3 is satisfied with ε = 1/2 and we have
b <∞ = c. µh = 0 by symmetry. Moreover by (2.24), and by further going through
the estimates of Proposition 2.20 using RD, it suffices to show:

lim sup
n→∞

1

hn

∣∣∣∣∣∣
∫ K(hn)

−K(hn)

exp{Ψ(p)}

 ∑
s∈Zhn\{0}

∫
A
hn
s

(cos(ps)− cos(pu)) dλ(u)

 dp

∣∣∣∣∣∣ > 0.
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Now, one can write for s ∈ Zhn\{0} and u ∈ Ahns ,

cos(sp)− cos(pu) = cos(pu)(cos((s− u)p)− 1)− sin(pu)(sin((s− u)p)− (s− u)p)− sin(pu)(s− u)p

and via RD get rid of the first two terms (i.e. they contribute to B rather than A

in Remark 2.25). It follows that it is sufficient to observe:

lim sup
n→∞

1

hn

∣∣∣∣∣
∫ K(hn)

−K(hn)
exp

{ ∞∑
k=1

(cos(pxk)− 1)wk

}(
n∑
k=1

wk sin(pxk)

)
hnpdp

∣∣∣∣∣ > 0.

Finally, via DCT and evenness of the integrand, we need only have:

∫ ∞
0

( ∞∑
k=1

wk sin(pxk)

)
p exp

{ ∞∑
k=1

(cos(pxk)− 1)wk

}
dp 6= 0.

One can in fact check that the integrand is strictly positive, as Lemma 2.28 shows,

and thus the proof is complete.

2. κ(0) = ∞. The example here works for the same reasons as it did in (4) of the

proof of Proposition 2.26 (but here benefiting explicitly also from µh = 0). We only

remark that Orey’s condition is of course fulfilled with ε = 1, by checking it on the

decreasing sequence (hn)n≥1.

Lemma 2.28. Let ψ(p) :=
∑∞

k=1 3k/2 sin(3
2p/3

k), p ∈ (0,∞). Then ψ is strictly

positive.

Proof. We observe that, (i) ψ|(0,π
2

] > 0 and (ii) for p ∈ (π/2, 3π/2] we have: ψ(p) >√
3/(
√

3− 1) =: A0. Indeed, (i) is trivial since for p ∈ (0, π/2], ψ(p) is defined as a

sum of strictly positive terms. We verify (ii) by observing that (ii.1) ψ(π/2) > A0

and (ii.2) ψ is nondecreasing on [π/2, 3π/2]. Both these claims are tedious but

elementary to verify by hand. Indeed, with respect to (ii.1), summing three terms of

the series defining ψ(π/2) is sufficient. Specifically we have ψ(π/2) >
√

3 sin(π/4) +

3 sin(π/12) + 3
√

3 sin(π/36) and we estimate sin(π/36) ≥ π
36 sin(π/3)/(π/3). With

respect to (ii.2) we may differentiate under the summation sign, and then ψ′(p) ≥√
3

2 cos(3π/4) + 1
2 cos(π/4) +

√
3

6 cos(π/12). The final details of the calculations are

left to the reader.

Finally, we claim that if for some B > 0 we have ψ|(0,B] > 0 and ψ|(B,3B] >

A0, then ψ|(0,3B] > 0 and ψ|(3B,9B] > A0, and hence the assertion of the lemma

will follow at once (by applying the latter first to B = π/2, then B = 3π/2 and so

53



on). So let 3p ∈ (3B, 9B], i.e. p ∈ (B, 3B]. Then ψ(3p) =
√

3(sin(3p/2) + ψ(p)) >√
3(−1 +A0) = A0, as required.

Finally, note that:

Proof of Theorem 2.4. The conclusions of Theorem 2.4 follow from Propositions 2.26

and 2.27.

2.5 Convergence of expectations and algorithm

2.5.1 Convergence of expectations

For the sake of generality we state the results in the multivariate setting, but only

do so when this is not too burdensome on the brevity of exposition. For d = 1,

either the multivariate or the univariate schemes may be considered.

Let f : Rd → R be bounded Borel measurable and define for t ≥ 0 and

h ∈ (0, h?): pt := p0,t and P ht := P h0,t, whereas for x ∈ Zdh, we let pt(x) := pt(0, x)

and P ht (x) = P ht (0, x) (assuming the continuous transition densities exist). Note

that for t ≥ 0, and then for x ∈ Rd (by spatial homogeneity):

Ex[f ◦Xt] =

∫
R
f(y)pt(x, y)dy, (2.25)

whereas for x ∈ Zdh and h ∈ (0, h?):

Ex[f ◦Xh
t ] =

∑
y∈Zdh

f(y)P ht (x, y) (2.26)

(where, as usual, under Px (which induces Ex), X0 = x and Xh
0 = x, a.s.). Moreover,

if f is continuous, we know that, as h ↓ 0, Ex[f ◦Xh
t ]→ Ex[f ◦Xt], since Xh

t → Xt

in distribution. Next, under additional assumptions on the function f , we are able

to establish the rate of this convergence and how it relates to the convergence rate

of the transition kernels, to wit:

Proposition 2.29. Assume (2.9) of Assumption 2.6. Let h0 ∈ (0,∞), g : (0, h0)→
(0,∞) and t > 0 be such that ∆t = O(g) (recall notation (2.5)). Suppose furthermore

that the following two conditions on f are satisfied:

(i) f is (piecewise3, if d = 1) Lipschitz continuous.

(ii) suph∈(0,h0) h
d
∑

x∈Zdh
|f(x)| <∞.

3In the sense that there exists some natural n, and then disjoint open intervals (Ii)
n
i=1, whose

union is cofinite in R, and such that f |Ii is Lipschitz for each i ∈ {1, . . . , n}.
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Then:

sup
x∈Zdh

|Ex[f ◦Xt]− Ex[f ◦Xh
t ]| = O(h ∨ g(h)).

Remark 2.30.

(1) Condition (ii) is satisfied in the univariate case d = 1, if, e.g.: f ∈ L1(R),

with respect to the Lebesgue measure, f is locally bounded and for some

K ∈ [0,∞), |f ||(−∞,−K] (restriction of |f | to (−∞,−K]) is nondecreasing,

whereas |f ||[K,∞) is nonincreasing.

(2) The rate of convergence of the expectations is thus got by combining the above

proposition with the findings of Theorems 2.4 and 2.8.

(3) Note also that the convergence rate in Proposition 2.29 is never established as

better than linear, albeit the transition kernels may converge faster, e.g. at a

quadratic rate in the case of Brownian motion with drift. This is so because we

are not only approximating the density with the normalized probability mass

function, but also the integral is substituted by a sum (cf. (2.25) and (2.26)).

One thus has to estimate f(y)−f(z) for z ∈ Ahy , y ∈ Zdh. Excluding the trivial

case of a constant f , however, this estimate can be at best linear in |y − z|
(Hölder continuous functions on Rd with Hölder exponent α > 1 being, in

fact, constant). Moreover, it appears that this problem could not be avoided

using Fourier inversion techniques (as opposed to the direct estimate given

in the proof below). Indeed, one would then need to estimate, in particular,

the difference of the Fourier transforms
∫
R e
−ipyf(y)dy − h

∑
y∈Zdh

f(y)e−ipy,

wherein again an integral is substituted by a discrete sum and a similar issue

arises.

Proof. Decomposing the difference Ex[f ◦Xt]− Ex[f ◦Xh
t ] via (2.25) and (2.26), we

have:

Ex[f ◦Xt]− Ex[f ◦Xh
t ] =

∑
y∈Zdh

∫
Ahy

(f(z)− f(y)) pt(x, z)dz + (2.27)

+
∑
y∈Zdh

∫
Ahy

f(y) (pt(x, z)− pt(x, y)) dz + (2.28)

+
∑
y∈Zdh

f(y)hd
[
pt(x, y)− 1

hd
P ht (x, y)

]
. (2.29)

Now, (2.29) is of order O(g(h)), by condition (ii) and since ∆t = O(g). Further,

(2.27) is of order O(h) on account of condition (i), and since
∫
pt(x, z)dz = 1 for any
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x ∈ Rd (to see how the function f being piecewise Lipschitz continuous is sufficient

in dimension one (d = 1), simply observe sup{x,y}⊂R pt(x, y) is finite, as follows

immediately from the integral representation of pt). Finally, note that pt(x, ·) is

also Lipschitz continuous (uniformly in x ∈ Rd), as follows again at once from the

integral representation of the transition densities. Thus, (2.28) is also of order O(h),

where again we benefit from condition (ii) on the function f .

In order to be able to relax condition (ii) of Proposition 2.29, we first establish

the following Proposition 2.31, which concerns finiteness of moments of Xt.
In preparation thereof, recall the definition of submultiplicativity of a func-

tion g : Rd → [0,∞):

g is submultiplicative⇔ ∃a ∈ (0,∞) such that g(x+ y) ≤ ag(x)g(y), whenever {x, y} ⊂ Rd

(2.30)

and we refer to [Sato, 1999, p. 159, Proposition 25.4] for examples of such func-

tions. Any submultiplicative locally bounded function g is necessarily bounded in

exponential growth [Sato, 1999, p. 160, Lemma 25.5], to wit:

∃{b, c} ⊂ (0,∞) such that g(x) ≤ bec|x| for x ∈ Rd. (2.31)

Proposition 2.31. Let g : Rd → [0,∞) be measurable, submultiplicative and locally

bounded, and suppose
∫
Rd\[−1,1]d gdλ <∞. Then for any t > 0, E[g ◦Xt] <∞ and,

moreover, there is an h0 ∈ (0, h?) such that

sup
h∈(0,h0)

E[g ◦Xh
t ] <∞.

Conversely, if
∫
Rd\[−1,1]d gdλ =∞, then for all t > 0, E[g ◦Xt] =∞.

Proof. The argument below follows the exposition given in [Sato, 1999, pp. 159-

162], modifying the latter to the extent that uniform boundedness of E[g ◦Xh
t ] over

h ∈ (0, h0) may be obtained. In particular, we refer to [Sato, 1999, p. 159, Theorem

25.3] for the claim that E[g ◦Xt] < ∞, if and only if
∫
Rd\[−1,1]d gdλ < ∞. We take

{a, b, c} ⊂ (0,∞) satisfying (2.30) and (2.31) above. Recall also that λh is the Lévy

measure of the process Xh, h ∈ (0, h?).

Now, decompose X = X1 +X2 and Xh = Xh1 +Xh2, h ∈ (0, h?) as indepen-

dent sums, where X1 is compound Poisson, with Lévy measure λ1 := 1Rd\[−1,1]d · λ,

and Xh1 are also compound Poisson, with Lévy measures λh1 := 1Rd\[−1,1]d · λh,

h ∈ (0, h?). ConsequentlyX2 is a Lévy process with characteristic triplet (Σ,1[−1,1]d ·
λ, µ)c̃ and Xh2 are compound Poisson, with Lévy measures 1[−1,1]d · λh, h ∈ (0, h?).
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Moreover, for h ∈ (0, h?), by submultiplicativity and independence:

E[g ◦Xh
t ] = E[g ◦ (Xh1

t +Xh2
t )] ≤ aE[g ◦Xh1

t ]E[g ◦Xh2
t ].

We first estimate E[g◦Xh1
t ]. Let (Jn)n≥1 (respectively Nt) be the sequence of

jumps (respectively number of jumps by time t) associated to (respectively of) the

compound Poisson processXh1. ThenXh1
t =

∑Nt
j=1 Jj and so by submultiplicativity:

E[g ◦Xh1
t ] ≤ E

g(0)1{Nt=0} + aNt−1
Nt∏
j=1

g(Jj)1{Nt>0}


= g(0)e−tλ

h
1 (Rd) +

∞∑
n=1

tnan−1

n!
e−tλ

h
1 (Rd)

(∫
gdλh1

)n
.

We also have for all h ∈ (0, 1 ∧ h?):∫
gdλh1 =

∑
s∈Zdh\[−1,1]d

∫
Ahs

g(s)dλ =
∑

s∈Zdh\[−1,1]d

∫
Ahs

g(u+ (s− u))dλ(u)

≤ a

(
sup
k∈A0

h

g(k)

) ∑
s∈Zdh\[−1,1]d

∫
Ahs

gdλ,by submultiplicativity

≤ a

(
sup
k∈A0

1

g(k)

)∫
Rd\[−1/2,1/2]d

gdλ.

Now, since g is locally bounded, λ is finite outside neighborhoods of 0, and since by

assumption
∫
Rd\[−1,1]d gdλ <∞, we obtain: suph∈(0,1∧h?) E[g ◦Xh1

t ] <∞.

Second, we consider E[g ◦Xh2
t ]. First, by boundedness in exponential growth

and the triangle inequality:

E[g ◦Xh2
t ] ≤ bE[ec|X

h2
t |] ≤ bE[ec

∑d
j=1 |Xh2

tj |] = bE

 d∏
j=1

ec|X
h2
tj |

 .
It is further seen by a repeated application of the Cauchy-Schwartz inequality that

it will be sufficient to show, for each j ∈ {1, . . . , d}, that for some h0 ∈ (0, h?]:

sup
h∈(0,h0)

E
[
e2d−1c|Xh2

tj |
]
<∞.

Here Xh2
t = (Xh2

t1 , . . . , X
h2
td ) and likewise for X2

t . Fix j ∈ {1, . . . , d}.
The characteristic exponent ofXh2

j , denoted Ψh
2 , extends to an entire function
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on C. Likewise for the characteristic exponent of X2
j , denoted Ψ2 [Sato, 1999, p.

160, Lemma 25.6]. Moreover, since, by expansion into power series, one has, locally

uniformly in β ∈ C, as h ↓ 0:

• eβh+e−βh−2
2h2 → 1

2β
2;

• eβh−e−βh
2h → β;

• eβh−1
h → β and 1−e−βh

h → β;

since furthermore:

•
(

(β, u) 7→ eβu−βu−1
u2

)
: R\{0} × C → C is bounded on bounded subsets of its

domain;

and since finally by the complex Mean Value Theorem [Evard and Jafari, 1992, p.

859, Theorem 2.2]:

• as applied to the function (x 7→ eβx) : C→ C; |eβx − eβy| ≤ |x− y||β|(|eβz1 |+
|eβz2 |) for some {z1, z2} ⊂ conv({x, y}), for all {x, y} ⊂ R;

• as applied to the function (x 7→ eβx − βx) : C → C; |eβx − βx − (eβy −
βy)| ≤ |x − y||β|

(
|eβz1 − 1|+ |eβz2 − 1|

)
for some {z1, z2} ∈ conv({x, y}), for

all {x, y} ⊂ R;

then the usual decomposition of the difference Ψh
2−Ψ2 (see proof of Proposition 2.20)

shows that Ψh
2 → Ψ2 locally uniformly in C as h ↓ 0. Next let φh2 and φ2 be the

characteristic functions of Xh2
tj and X2

tj , respectively, h ∈ (0, h?); themselves entire

functions on C. Using the estimate of Lemma 2.24, we then see, by way of corollary,

that also φh2 → φ2 locally uniformly in C as h ↓ 0.

Now, since φh2 is an entire function, for n ∈ N∪{0}, inE[(Xh2
tj )n] = (φh2)(n)(0)

and it is Cauchy’s estimate [Stewart and Tall, 1983, p. 184, Lemma 10.5] that, for

a fixed r > 2d−1c,
∣∣(φh2)(n)(0)

∣∣ ≤ n!
rnM

h, where Mh := sup{z∈C:|z|=r} |φh2 |. Observe

also that for some h0 ∈ (0, h?], suph∈(0,h0)M
h <∞, since φh2 → φ2 locally uniformly

as h ↓ 0 and φ2 is continuous (hence locally bounded).

Further to this E[|Xh2
tj |2k+1] ≤ 1 + E[(Xh2

tj )2k+2] (for k ∈ N ∪ {0}) and

E
[
e2d−1c|Xh2

tj |
]

=
∑∞

n=0
1
n!E[|Xh2

tj |n](c2d−1)n. From this the desired conclusion finally

follows.

The following result can now be established in dimension d = 1:

Proposition 2.32. Let d = 1 and t > 0. Let furthermore:
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(i) g : R→ [0,∞), measurable, satisfy E[g ◦Xt] <∞, g locally bounded, submul-

tiplicative, g 6= 0.

(ii) f : R → C, measurable, be locally bounded,
∫
R |f | ∈ (0,∞], |f | ultimately

monotone (i.e. |f ||[K,∞) and |f ||(−∞,−K] monotone for some K ∈ [0,∞)),

|f |/|g| ultimately nonincreasing (i.e. (|f |/|g|)|[K,∞) and (−|f |/|g|)|(−∞,−K]

nonincreasing for some K ∈ [0,∞)), and with the following Lipschitz property

holding for some {a,A} ∈ (0,∞): f |[−A,A] is piecewise Lipschitz, whereas

|f(z)− f(y)| ≤ a|z − y|(g(z) + g(y)), whenever {z, y} ⊂ R\(−A,A).

(iii) K : (0,∞)→ [0,∞), with lim0+K = +∞.

Then |E[f ◦Xt]− E[f ◦Xh
t ]| is of order:

O

((∫
[−K(h),K(h)]
|f(x)|dx

)
(h ∨∆t(h)) +

(
|f |
|g|
∨ |f |
|g|
◦ (−idR)

)
(K(h)− 3h/2)

)
, (2.32)

where ∆t(h) is defined in (2.5).

Remark 2.33.

(1) In (2.32) there is a balance of two terms, viz. the choice of the function K.

Thus, the slower (respectively faster) that K increases to +∞ at 0+, the better

the convergence of the first (respectively second) term, provided f /∈ L1(R)

(respectively |f |/|g| is ultimately converging to 0, rather than it just being

nonincreasing). In particular, when so, then the second term can be made to

decay arbitrarily fast, whereas the first term will always have a convergence

which is strictly worse than h ∨ ∆t(h). But this convergence can be made

arbitrarily close to h ∨∆t(h) by choosing K increasing more and more slowly

(this since f is locally bounded). In general the choice of K would be guided

by balancing the rate of decay of the two terms.

(2) Since, in the interest of relative generality, (further properties of) f and λ are

not specified, g cannot be made explicit. Confronted with a specific f and

Lévy process X, we should like to choose g approaching infinity (at ±∞) as

fast as possible, while still ensuring E[g ◦Xt] <∞ (cf. Proposition 2.31). This

makes, ceteris paribus, the second term in (2.32) decay as fast as possible.

(3) We exemplify this approach by considering two examples. Suppose for sim-

plicity ∆t(h) = O(h).
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(a) Let first |f | be bounded by (x 7→ A|x|n) for some A ∈ (0,∞) and n ∈ N,

and assume that for some m ∈ (n,∞), the function g = (x 7→ |x|m ∨ 1)

satisfies E[g ◦Xt] <∞ (so that (i) holds). Suppose furthermore condition

(ii) is satisfied as well (as it is for, e.g., f = (x 7→ xn)). It is then clear

that the first term of (2.32) will behave as ∼ K(h)n+1h, and the second as

∼ K(h)−(m−n), so we choose K(h) ∼ 1/h1/(1+m) for a rate of convergence

which is of order O(h
m−n
m+1 ).

(b) Let now |f | be bounded by (x 7→ Aeα|x|) for some {A,α} ⊂ (0,∞), and

assume that for some β ∈ (α,∞), the function g = (x 7→ eβ|x|) indeed

satisfies E[g ◦Xt] <∞ (so that (i) holds). Suppose furthermore condition

(ii) is satisfied as well (as it is for, e.g., f = (x 7→ (eαx − k)+), where

k ∈ [0,∞) — use Lemma 2.24). It is then clear that the first term of

(2.32) will behave as ∼ eαK(h)h, and the second as ∼ e−(β−α)K(h), so we

choose, up to a bounded additive function of h, K(h) = log(1/h1/β) for

a rate of convergence which is of order O(h
1−α

β ).

(4) Finally, note that Proposition 2.32 can, in particular, be applied to f , which

is the mapping (x 7→ eipx), p ∈ R, once suitable functions g and K have been

identified. This, however, would give weaker results than what can be inferred

regarding the rate of the convergence of the characteristic functions φXh
t
(p)→

φXt(p) from Remark 2.21(i) (using Lemma 2.24, say). This is so, because the

characteristic exponents admit the Lévy-Khintchine representation (allowing

for a very detailed analysis of the convergence), a property that is lost for a

general function f (cf. Remark 2.30(3)).

Proof of Proposition 2.32. This is a simple matter of estimation; for all sufficiently
small h > 0:

|E[f ◦Xt]− E[f ◦Xh
t ]| =

∣∣∣∣∣∣
∫
R
f(z)pt(z)dz −

∑
y∈Zh

f(y)Pht (y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

y∈[−K(h),K(h)]∩Zh

(∫
Ahy

f(z)pt(z)dz − f(y)Pht (y)

)∣∣∣∣∣∣+
∑

y∈Zh\[−K(h),K(h)]

|f(y)|Pht (y) +

∫
R\[−(K(h)−h/2),K(h)−h/2]

|f(z)| pt(z)dz

≤

∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

∫
Ahy

(f(z)− f(y)) pt(z)dz

∣∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

∫
Ahy

f(y) (pt(z)− pt(y)) dz

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

+
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∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

f(y)h

[
pt(y)− 1

h
Pht (y)

]∣∣∣∣∣∣︸ ︷︷ ︸
(C)

+

(
|f |
|g| ∨

|f |
|g| ◦ (−idR)

)
(K(h))E[g ◦Xh

t ]︸ ︷︷ ︸
(D)

+

(
|f |
|g| ∨

|f |
|g| ◦ (−idR)

)
(K(h)− h/2)E[g ◦Xt]︸ ︷︷ ︸

(E)

.

Thanks to Proposition 2.31, and the fact that |f |/|g| is ultimately nonincreasing,

(D) & (E) are bounded (modulo a multiplicative constant) by |f |
|g| (K(h) − h/2) ∨

|f |
|g| (−(K(h)−h/2)). From the Lipschitz property of f , submultiplicativity and local

boundedness of g, and the fact that E[g ◦Xt] <∞, we obtain (A) is of order O(h).

By the local boundedness and eventual monotonicity of |f |, the Lipschitz nature of

pt and the fact that
∫
|f | > 0, (B) is bounded (modulo a multiplicative constant) by

h
∫

[−(K(h)+h),K(h)+h] |f |. Finally, a similar remark pertains to (C), but with ∆t(h)

in place of h. Combining these, using once again
∫
|f | > 0, yields the desired result,

since we may finally replace K(h) by (K(h)− h) ∨ 0.

2.5.2 Algorithm

From a numerical perspective we must ultimately consider the processes Xh on

a finite state space, which we take to be ShM := {x ∈ Zdh : |x| ≤ M} (M > 0,

h ∈ (0, h?)). We let Q̂h denote the sub-Markov generator got from Qh by restriction

to ShM , and X̂h be the corresponding Markov chain got by killing Xh at the time

T hM := inf{t ≥ 0 : |Xh
t | > M}, sending it to the coffin state ∂ thereafter [Syski,

1992].

Then the basis for the numerical evaluations is the observation that for

a (finite state space) Markov chain Y with generator matrix Q, the probability

Py(Yt = z) (respectively the expectation Ey[f ◦Y ], when defined) is given by (etQ)yz

(respectively (etQf)(y)). With this in mind we propose the:
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Sketch algorithm

(i) Choose {h,M} ⊂ (0,∞).

(ii) Calculate, for the truncated sub-Markov generator Q̂h, the

matrix exponential exp{tQ̂h} or action exp{tQ̂h}f thereof

(where f is a suitable vector).

(iii) Adjust truncation parameter M , if needed, and discretization

parameter h, until sufficient precision has been established.

Two questions now deserve attention: (1) what is the truncation error and (2) what

is the expected cost of this algorithm. We address both in turn.

First, with a view to the localization/truncation error, we shall find use of

the following:

Proposition 2.34. Let g : [0,∞) → [0,∞) be nondecreasing, continuous and sub-

multiplicative, with lim+∞ g = +∞. Let t > 0 and denote by

X?
t = sup

s∈[0,t]
|Xs|, Xh?

t = sup
s∈[0,t]

|Xh
s |,

the running suprema of |X| and of |Xh|, h ∈ (0, h?), respectively. Suppose further-

more E[g ◦ |Xt|] <∞. Then E[g ◦X?
t ] <∞ and, moreover, there is some h0 ∈ (0, h?]

such that

sup
h∈(0,h0)

E[g ◦Xh?
t ] <∞.

Remark 2.35. The function g◦|·| : Rd → [0,∞) is measurable, submultiplicative and

locally bounded, so for a condition on the Lévy measure equivalent to E[g◦|Xt|] <∞
see Proposition 2.31.

We prove Proposition 2.34 below, but first let us show its relation to the

truncation error. For a function f : Zdh → R, we extend its domain to Zdh ∪ {∂}, by

stipulating that f(∂) = 0. The following (very crude) estimates may then be made:

Corollary 2.36. Fix t > 0. Assume the setting of Proposition 2.34. There is some

h0 ∈ (0, h?] and then C := suph∈(0,h0) E[g ◦Xh?
t ] < ∞, such that the following two

claims hold:
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(i) For all h ∈ (0, h0):∑
x∈Zdh

|P(Xh
t = x)− P(X̂h

t = x)| = P(T hM < t) ≤ C/g(M).

(ii) Let f : Zdh → R and suppose |f | ≤ f̃◦|·|, with f̃ : [0,∞)→ [0,∞) nondecreasing

and such that f̃/g is (respectively ultimately) nonincreasing. Then for all

(respectively sufficiently large) M > 0 and h ∈ (0, h0):

|E[f ◦Xh
t ]− E[f ◦ X̂h

t ]| ≤ C

(
f̃

g

)
(M).

Remark 2.37.

1. With regard to (i), note that M may be taken fixed (i.e. independent of h) and

chosen so as to satisfy a prescribed level of precision. In that case such a choice

may be verified explicitly at least retrospectively: the sub-Markov generator

Q̂h gives rise to the sub-Markov transition matrix P̂ ht := etQ̂
h
; its deficit (in

the row corresponding to state 0) is precisely the probability P(T hM < t).

2. But, with respect to (ii), M may also be made to depend on h, and then

made to increase to +∞ as h ↓ 0, in which case it is natural to balance the

rate of decay of |E[f ◦Xh
t ]− E[f ◦ X̂h

t ]| against that of |E[f ◦Xt]− E[f ◦Xh
t ]|

(cf. Proposition 2.32). In particular, since E[g ◦ |Xt|] < ∞ ⇔ E[g ◦ X?
t ] ⇔∫

Rd\[−1,1]d g ◦ | · |dλ <∞ [Sato, 1999, p. 159, Theorem 25.3 & p. 166, Theorem

25.18], this problem is essentially analogous to the one in Proposition 2.32. In

particular, Remark 2.33 extends in a straightforward way to account for the

truncation error, with M in place of K(h)− 3h/2.

Proof. (i) follows from the estimate
∑

x∈Zdh
|P(Xh

t = x) − P(X̂h
t = x)| = P(T hM <

t) = P(Xh?
t > M) ≤ E[g◦Xh?

t ]
g(M) , which is an application of Markov’s inequality. When

it comes to (ii), we have for all (respectively sufficiently large) M > 0:

|E[f ◦Xh
t ]− E[f ◦ X̂h

t ]| ≤ E
[(
|f | ◦Xh

t

)
1(T hM < t)

]
≤ E

[(
f̃ ◦ |Xh

t |
)
1(T hM < t)

]
≤ E

[(
f̃ ◦Xh?

t

)
1(T hM < t)

]
= E

[((
f̃

g

)
◦Xh?

t

)(
g ◦Xh?

t

)
1(Xh?

t > M)

]

≤

(
f̃

g

)
(M)E[g ◦Xh?

t ],
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whence the desired conclusion follows.

Proof of Proposition 2.34. We refer to [Sato, 1999, p. 166, Theorem 25.18] for

the proof that E[g ◦ X?
t ] < ∞. Next, by right continuity of the sample paths of

X, we may choose b > 0, such that P(X∗t ≤ b/2) > 0 and we may also insist

on b/2 being a continuity point of the distribution function of X?
t (there being

only denumerably many points of discontinuity thereof). Now, Xh → X as h ↓ 0

with respect to the Skorokhod topology on the space of càdlàg paths. Moreover,

by [Jacod and Shiryaev, 2003, p. 339, Proposition 2.4], the mapping Φ := (α 7→
sups∈[0,t] |α(s)|) : D([0,∞),Rd) → R is continuous at every point α in the space of

càdlàg paths D([0,∞),Rd), which is continuous at t. In particular, Φ is continuous,

a.s. with respect to the law of the process X on the Skorokhod space [Sato, 1999,

p. 59, Theorem 11.1]. By the Portmanteau Theorem and since weak convergence is

preserved under continuous mappings, it follows that there is some h0 ∈ (0, h?] such

that infh∈(0,h0) P(Xh?
t ≤ b/2) > 0.

Moreover, from the proof of [Sato, 1999, p. 166, Theorem 25.18], by letting

g̃ : [0,∞) → [0,∞) be nondecreasing, continuous, vanishing at zero and agreeing

with g on restriction to [1,∞), we may then show for each h ∈ (0, h?) that:

E[g̃ ◦ (Xh?
t − b);Xh?

t > b] ≤ E[g̃ ◦ |Xh
t |]/P(Xh?

t ≤ b/2).

Now, since E[g ◦ |Xt|] < ∞, by Proposition 2.31 (cf. Remark 2.35), there is some

h0 ∈ (0, h?] such that suph∈(0,h0) E[g ◦ |Xh
t |] <∞, and thus suph∈(0,h0) E[g̃ ◦ |Xh

t |] <
∞.

Combining the above, it follows that for some h0 ∈ (0, h?], suph∈(0,h0) E[g̃ ◦
(Xh?

t −b);X
h?
t > b] <∞ and thus suph∈(0,h0) E[g◦(Xh?

t −b);X
h?
t > b] <∞. Finally,

an application of submultiplicativity of g allows us to conclude.

Having thus dealt with the truncation error, let us briefly discuss the cost of

our algorithm.

The latter is clearly governed by the calculation of the matrix exponential,

or, respectively, of its action on some vector. Indeed, if we consider as fixed the

generator matrix Q̂h, and, in particular, its dimension n ∼ (M/h)d, then this may

typically require O(n3) [Moler and Loan, 2003; Higham, 2005], respectively O(n2)

[Al-Mohy and Higham, 2011], floating point operations. Note, however, that this is

a notional complexity analysis of the algorithm. A more detailed argument would

ultimately have to specify precisely the particular method used to determine the

(respectively action of a) matrix exponential, and, moreover, take into account how

Q̂h (and, possibly, the truncation parameter M , cf. Remark 2.37) behave as h ↓ 0.
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Further analysis in this respect goes beyond the desired scope of this thesis.

We finish off by giving some numerical experiments in the univariate case.

To compute the action of Q̂h on a vector we use the MATLAB function expmv.m [Al-

Mohy and Higham, 2011], unless Q̂h is sparse, in which case we use the MATLAB

function expv.m from [Sidje, 1998].

We begin with transition densities. To shorten notation, fix the time t = 1

and allow p := p1(0, ·) and ph := 1
h P̂

h
1 (0, ·) (P̂ h being the analogue of P h for the

process X̂h). Note that to evaluate the latter, it is sufficient to compute (eQ̂
ht)0· =

(e(Q̂h)′t
1{0})

′, where (Q̂h)′ denotes transposition.

Example 2.38. Consider first Brownian motion with drift, σ2 = 1, µ = 1, λ = 0

(scheme 1, V = 0). We compare the density p with the approximation ph (h ∈
{1/2n : n ∈ {0, 1, 2, 3}}) on the interval [0, 2] (see Figure 2.2 on p. 65), choosing

M = 5. The vector of deficit probabilities (P(T
1/2n

M < t))3
n=0 corresponding to using

this truncation was (5.9 ·10−4, 1.5 ·10−4, 5.8 ·10−5, 4.4 ·10−5). In this case the matrix

Q̂h is sparse.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.25

0.3

0.35

0.4

 

 p

p1

p1/2

p1/4

p1/8

Figure 2.2: Convergence of ph to p (as h ↓ 0) on the interval [0, 2] for Brownian
motion with drift (σ2 = µ = 1, λ = 0, scheme 1, V = 0). See Example 2.38 for
details.

Example 2.39. Consider now α-stable Lévy processes, σ2 = 0, µ = 0, λ(dx) =

dx/|x|1+α (scheme 2, V = 1). We compare the density p with ph on the interval
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[0, 1] (see Figure 2.3 on p. 67). Computations are made for the vector of alphas

given by (αk)
4
k=1 := (1/2, 1, 4/3, 5/3) with corresponding truncation parameters

(Mk)
4
k=1 = (500, 100, 30, 20) resulting in the deficit probabilities (uniformly over

the h considered) of (P(T hMk
< t))4

k=1 = (1.7 · 10−1, 2.0 · 10−2, (from 1.7 to 1.8) ·
10−2, (from 0.94 to 1.01) · 10−2). The heavy tails of the Lévy density necessitate a

relatively high value of M . Nevertheless, excluding the case α = 5/3, a reduction

of M by a factor of 5 resulted in an absolute change of the approximating densi-

ties, which was at most of the order of magnitude of the discretization error itself.

Conversely, for α = 1/2, when the deficit probability is highest and appreciable, in-

creasing M by a factor of 2, resulted in an absolute change of the calculated densities

of the order 10−6 (uniformly over h ∈ {1, 1/2, 1/4}). Finally, note that α = 1 gives

rise to the Cauchy distribution, whereas otherwise we use the MATLAB function

stblpdf.m to get a benchmark density against which a comparison can be made.

Example 2.40. A particular VG model [Carr et al., 2002; Madan et al., 1998] has

σ2 = 0, µ = 0, λ(dx) = e−|x|

|x| 1R\{0}(x)dx (scheme 2, V = 1). Again we compare p

with ph (h ∈ {1/2n : n ∈ {0, 1, 2, 3}}) on the interval [0, 1] (see Figure 2.4 on p. 68),

choosing M = 5. The vector of deficit probabilities (P(T
1/2n

M < t))3
n=0 corresponding

to using this truncation was (5.2 · 10−3, 6.4 · 10−3, 7.2 · 10−3, 7.6 · 10−3). The density

p is given explicitly by (x 7→ e−|x|/2).

Finally, to illustrate convergence of expectations, we consider a particular

option pricing problem.

Example 2.41. Suppose that, under the pricing measure, the stock price process

S = (St)t≥0 is given by St = S0e
rt+Xt , t ≥ 0, where S0 is the initial price, r is the

interest rate, and X is a tempered stable process with Lévy measure given by:

λ(dx) = c

(
e−λ+x

x1+α
1(0,∞)(x) +

e−λ−|x|

|x|1+α
1(−∞,0)(x)

)
dx.

To satisfy the martingale condition, we must have E[eXt ] ≡ 1, which in turn uniquely

determines the drift µ (we have, of course, σ2 = 0). The price of the European put

option with maturity T and strike K at time zero is then given by:

P (T,K) = e−rTE[(K − ST )+].

We choose the same value for the parameters as [Poirot and Tankov, 2006], namely

S0 = 100, r = 4%, α = 1/2, c = 1/2, λ+ = 3.5, λ− = 2 and T = 0.25, so that we

may quote the reference values P (T,K) from there.
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Figure 2.3: Convergence of ph to p (as h ↓ 0) on the interval [0, 1] for α-
stable Lévy processes (σ2 = 0, µ = 0, λ(dx) = dx/|x|1+α, scheme 2, V = 1),
α ∈ {1/2, 1, 4/3, 5/3}. See Example 2.39 for details. Note that convergence be-
comes progressively worse as α ↑, which is precisely consistent with Figure 2.1 and
the theoretical order of convergence, this being O(h(2−α)∧1) (up to a slowly vary-
ing factor log(1/h), when α = 1; and noting that Orey’s condition is satisfied with
ε = α). For example, when α = 5/3 each successive approximation should be closer

to the limit by a factor of
(

1
2

)1/3 .
= 0.8, as it is.

Now, in the present case, X is a process of finite variation, i.e. κ(0) < ∞,

hence convergence of densities is of order O(h), since Orey’s condition holds with

ε = 1/2 (scheme 2, V = 1). Moreover, 1R\[−1,1] ·λ integrates (x 7→ e2|x|), whereas the

function (x 7→ (K − ert+x)+) is bounded. Pursuant to (2) of Remark 2.37 we thus

choose M = M(h) :=
(

1
2 log(1/h)

)
∨1, which by Corollary 2.36 and Proposition 2.32

(with K(h) = M(h)) (cf. also ((3)b) of Remark 2.33) ensures that:

|P̂ h(T,K)− P (T,K)| = O(h log(1/h)),

where P̂ h(T,K) := e−rTE[(K − S0e
rT+X̂h

T )+]. Table 2.4 on p. 69 summarizes this
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Figure 2.4: Convergence of ph to p (as h ↓ 0) on the interval [0, 1] for the VG model

(σ2 = 0, µ = 0, λ(dx) = e−|x|

|x| 1R\{0}(x)dx, scheme 2, V = 1). Note that in this case

Orey’s condition fails, but (at least as evidenced numerically) linear convergence
does not. See Example 2.40 for details.

convergence on the decreasing sequence hn := 1/2n, n ≥ 1.

In particular, we wish to emphasize that the computations were all (reason-

ably) fast. For example, to compute the vector (P̂ hn(T,K))9
n=1 with K = 80, the

times (in seconds; entry-by-entry) (0.0106, 0.0038, 0.0044, 0.0078, 0.0457, 0.0367,

0.0925, 0.4504, 2.4219) were required on an Intel 2.53 GHz processor (times ob-

tained using MATLAB’s tic-toc facility). This is much better than, e.g., the Monte

Carlo method of [Poirot and Tankov, 2006] and comparable with the finite difference

method of [Cont and Voltchkova, 2005] (VG2 model in [Cont and Voltchkova, 2005,

p. 1617, Section 7]).

In conclusion, the above numerical experiments serve to indicate that our

method behaves robustly when the Blumenthal-Getoor index of the Lévy measure

is not too close to 2 (in particular, if the pure-jump part has finite variation). It

does less well if this is not the case, since then the discretisation parameter h must

be chosen small, which is expensive in terms of numerics (viz. the size of Q̂h).
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K → 80 85 90 95 100 105 110 115 120

P (T,K)→ 1.7444 2.3926 3.2835 4.5366 6.3711 9.1430 12.7631 16.8429 21.1855

n P̂ hn(T,K)− P (T,K)

1 0.6411 0.5422 0.2006 -0.5033 -1.7885 -0.8227 0.0970 0.5570 0.7542

2 -0.1089 0.2816 0.4295 0.2151 -0.5806 0.0975 0.5341 0.5109 0.2250

3 -0.2271 -0.1596 -0.1928 0.0920 -0.2046 0.1405 0.0348 -0.4356 -0.3937

4 -0.0904 -0.0753 -0.0517 -0.0442 0.0652 0.1487 0.0057 -0.1511 -0.1838

5 -0.0411 -0.0338 -0.0193 -0.0053 0.0679 0.0569 -0.0073 -0.0616 -0.0833

6 -0.0184 -0.0163 -0.0081 0.0022 0.0347 0.0314 -0.0033 -0.0244 -0.0384

7 -0.0079 -0.0069 -0.0040 0.0019 0.0152 0.0109 -0.0034 -0.0108 -0.0164

8 -0.0034 -0.0029 -0.0016 0.0011 0.0072 0.0053 -0.0012 -0.0048 -0.0070

9 -0.0014 -0.0012 -0.0007 0.0006 0.0033 0.0026 -0.0004 -0.0020 -0.0030

Table 2.4: Convergence of the put option price for a CGMY model (scheme 2, V = 1). See Example 2.41 for details.
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Chapter 3

Some fluctuation results in the

theory of Lévy processes

The class of Lévy processes for which overshoots are almost surely con-

stant quantities is precisely characterized. A fluctuation theory and, in

particular, a theory of scale functions is developed for upwards skip-free

Lévy chains, i.e. for right-continuous random walks embedded into con-

tinuous time as compound Poisson processes. This is done by analogy

to the spectrally negative class of Lévy processes.

Throughout this chapter we work on a filtered probability space (Ω,F ,F =

(Ft)t≥0,P), which satisfies the standard assumptions (see Definition 1.16). We let

X = (Xt)t≥0 be a Lévy process on this space (X is assumed to be F-adapted and

to have independent increments relative to F) with characteristic triplet (σ2, λ, µ)c̃

relative to some cut-off function c̃. Recall the notation regarding the supremum and

infimum processes X and X, as well as the first passage times Tx, T̂x and T−x , x ∈ R
for the process X (see Definitions 1.20 and 1.22).

3.1 Non-random overshoots

3.1.1 Introduction

Fluctuation theory represents one of the most important areas within the study of

Lévy processes, with applications in finance, insurance, dam theory etc. [Kyprianou,

2006] A key result, then, is the Wiener-Hopf factorization, particularly explicit in

the spectrally negative case, when there are no positive jumps, a.s. [Sato, 1999,

Section 9.46] [Bertoin, 1996, Chapter VII].
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What makes the analysis so much easier in the latter instance, is the fact

that the overshoots (Rx)x≥0 [Sato, 1999, p. 369] over a given level are known a

priori to be constant and equal to zero. As we shall see, this is also the only class

of Lévy processes for which this is true (see Lemma 3.8). But it is not so much

the exact values of the overshoots that matter, as does the fact that these values

are non-random (and known). It is therefore natural to ask if there are any other

Lévy processes having constant overshoots (a.s.) and, moreover, what precisely is

the class having this property.

Of course, in the existing literature one finds expressions regarding the dis-

tribution of the overshoots. For example, [Sato, 1999, p. 369, Theorem 49.1] gives

the double Laplace transform
∫

(0,∞) e
−uxE[e−qRx ]dx ({u, q} ⊂ (0,∞)) in terms of

the Wiener-Hopf factors. Similarly, in [Doney and Kyprianou, 2006] we find an ex-

pression for the law of the overshoot in terms of the Lévy measure, but only after it

has been integrated against the bivariate renewal functions. Unfortunately, neither

of these seem immediately useful in answering the question posed above.

Further to this, the asymptotic study of quantities at first passage above a

given level has been undertaken in [Doney and Kyprianou, 2006; Kyprianou et al.,

2010] and behaviour just prior to first passage has also been investigated, see, e.g.

[Sato, 1999, p. 378, Remark 49.9] and [Kyprianou, 2006, Chapter 7]. On the other

hand it appears that the (natural) question, outlined above, has not yet received

due attention.

The answer to it, presented in this section, is as follows: for the overshoots

of a Lévy process to be almost surely constant (conditionally on the process going

above the level in question), it is both necessary and sufficient that either the process

has no positive jumps (a.s.) or for some h > 0, it is compound Poisson, living on

the lattice Zh = hZ, and can only jump up by h.

A more exhaustive statement of this result, which derives the same conclu-

sion from substantially weakened hypotheses, is contained in Theorem 3.3 of Sub-

section 3.1.2, which also introduces the relevant notions. Subsection 3.1.3 supplies

the proof. Finally, Appendix A contains a result concerning conditional expectation,

Proposition A.2, which is used in the proof, but is also interesting in its own right.

3.1.2 Statement of result

First we introduce the continuous-time analogue (modulo a spatial scaling) of a

right-continuous integer-valued random walk (for which see, e.g., [Brown et al.,

2010]):
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Definition 3.1 (Upwards skip-free Lévy chain). X is said to be an upwards skip-free

Lévy chain, if it is a compound Poisson process, and for some h > 0, supp(λ) ⊂ Zh
and supp(λ|B((0,∞))) = {h}.

Second, the following notion, which is a rephrasing of “being almost surely

constant conditionally on a given event”, will prove useful:

Definition 3.2 (P-triviality). Let S 6= ∅ be any measurable space, whose σ-algebra

S contains the singletons. An S-valued random element R is said to be P-trivial on

an event A ∈ F if there exists r ∈ S such that R = r P-a.s. on A (i.e. P({R =

r} ∩ A) = P(A); equivalently, the push-forward measure (B 7→ P(A ∩ R−1(B))),

defined on S, is carried by {r}, not excluding the case when P(A) = 0). The

random element R may only be defined on some set B ⊃ A (in which case R should

be measurable with respect to the trace σ-algebra {B ∩G : G ∈ F} on B).

Thanks to Definitions 3.1 and 3.2, we can now state succinctly the main

result of this section:

Theorem 3.3 (Non-random position at first passage time). The following are equiv-

alent:

(a) For some x > 0, X(Tx) is P-trivial on {Tx <∞}.

(b) For all x ∈ R, X(Tx) is P-trivial on {Tx <∞}.

(c) For some x ≥ 0, X(T̂x) is P-trivial on {T̂x < ∞} and P-a.s. strictly positive

thereon.

(d) For all x ∈ R, X(T̂x) is P-trivial on {T̂x <∞}.

(e) Either λ((0,∞)) = 0 or X is an upwards skip-free Lévy chain.

If so, then the exceptional sets in (b) and (d) can actually be chosen not to depend

on x; i.e. outside a P-negligible set, for each x ∈ R, X(Tx) (respectively X(T̂x)) is

constant on {Tx <∞} (respectively {T̂x <∞}).

Remark 3.4. In (c), if x > 0, then X(T̂x) is automatically P-a.s. strictly positive on

{T̂x <∞}.
Finally, it will at times be convenient to work with the canonical space D :=

{ω ∈ R[0,∞) : ω is càdlàg} of càdlàg paths, mapping [0,∞) into R. Then H will

denote the σ-field generated by all the evaluation maps, whereas for ω ∈ D, ω will

be the supremum process of ω (i.e. ω(t) := sup{ω(s) : s ∈ [0, t]}, t ≥ 0), and further

for a ∈ R, Ta(ω) := inf{t ≥ 0 : ω(t) ≥ a} will be the first entrance time of ω into the

set [a,∞). Context shall make it clear when Ta will be seen as the latter mapping,

Ta : D→ [0,∞], and when as the first entrance time of X into [a,∞), as per above.
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3.1.3 Proof of theorem

Remark 3.5. We note that P(Tx = 0 for all x ∈ R−) = 1. Moreover, P(Tx <

∞ for all x ∈ R) = 1, whenever X either drifts to +∞ or oscillates. If not, then

either X is the zero process, or else X drifts to −∞ [Sato, 1999, p. 255, Proposition

37.10] and on the event {Tx = ∞} one has limt→Tx X(t) = −∞ for each x ∈ R,

P-a.s.

For the most part we find it more convenient to work with the collection

(Tx)x∈R, rather than (T̂x)x∈R, even though this makes certain measurability issues

more involved.

Remark 3.6. Note that whenever 0 is regular for (0,∞) (i.e. P(T̂0 = 0) = 1), then

for each x ∈ R, Tx = T̂x P-a.s. (apply the strong Markov property at the time

Tx). For conditions equivalent to this, see [Kyprianou, 2006, p. 142, Theorem 6.5].

Conversely, if 0 is irregular for (0,∞), then by Blumenthal’s 0− 1 law [Sato, 1999,

p. 275, Proposition 40.4], P-a.s., T̂0 > 0 = T0.

We now give two lemmas. The second concerns continuity of the supremum

process X. Since its formulation requires the relevant subsets of the sample space

to be measurable, the first lemma establishes this.

Notation-wise, in the following lemma, for a process Y = (Yt)t≥0, we agree

Y0− := Y0 and Yt− = lims↑t Ys (t > 0), whenever these limits exist.

Lemma 3.7. Let (Ω′,G,G = (Gt)t≥0,Q) be a filtered probability space. Suppose

Y is a G-adapted process. Then, with Ω0 being the set on which Y is càdlàg, for

each ε > 0 and t ≥ 0, Aε := ∪s∈[0,t]{Ys − Ys− > ε} ∩ Ω0 ∈ Gt|Ω0, the trace σ-field.

As a consequence of this, if Y is either (i) càdlàg or (ii), with (G,Q) complete,

Q-a.s. càdlàg, then the sets {Y is continuous} = {Yt− = Yt for all t ≥ 0} and

{Y has no positive jumps} = {Yt− ≥ Yt for all t ≥ 0} belong to G.

Proof. Define in addition Bε := ∪s∈[0,t]{Ys − Ys− ≥ ε} ∩ Ω0 (ε > 0). Then, on the

one hand, by the càdlàg property:

Aε ⊂ ∪n∈NFn, (3.1)

where Fn := Ω0 ∩
(
∩N∈N ∪{s,r}⊂(Q∩[0,t])∪{t},s<r,r−s<1/N {Yr − Ys > ε+ 1/n}

)
. On

the other hand, again by the càdlàg property, for each n ∈ N:

Fn ⊂ Bε+1/n. (3.2)

Indeed, if ω ∈ Fn, then for each N ∈ N we may choose a pair of real numbers

(sN , rN ), 0 ≤ sN < rN ≤ t, rN − sN < 1/N , with YrN (ω)−YsN (ω) > ε+ 1/n. Since
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[0, t] is compact, there is some accumulation point s? for the sequence (sN )N≥1,

and, by passing to a subsequence, we may assume without loss of generality that

sN → s? as N → ∞. Moreover, by right-continuity, it is necessary that there is

some natural M , with sN < s? for all N ≥M ; whereas by the existence of left-hand

limits, it will also be necessary that there is some natural M , with s? < rN for all

N ≥M . Then, by passing to the limit, it follows that Ys?(ω)− Ys?−(ω) ≥ ε+ 1/n.

From (3.2), we conclude that:

∪n∈N Fn ⊂ ∪n∈NBε+1/n = Aε. (3.3)

Combining (3.1) and (3.3) we obtain Aε ∈ Gt|Ω0 .

The final assertion of the lemma follows at once.

Lemma 3.8 (Continuity of the running supremum). The supremum process X is

continuous (P-a.s.), if and only if X has no positive jumps (P-a.s). In particular,

if X(Tx) = x P-a.s. on {Tx <∞} for each x > 0, then X is continuous and hence

X has no positive jumps, P-a.s.

Proof. We first show the validity of the equivalence. Indeed, sufficiency of the

“no positive jumps” condition is immediate. We prove necessity by contradiction:

suppose then, that X had positive jumps with a positive probability and (per absur-

dum) its supremum process was P-a.s. continuous. Then, for some a > 0, X would

have a jump exceeding a with a positive probability and necessarily we would have

λ((a,∞)) > 0. Moreover, by the Lévy-Itô decomposition, one may write, P-a.s.,

X = X1 + X2 as an independent sum, where X2 is a compound Poisson process

of the positive jumps of X exceeding (i.e. of height >) a and X1 := X − X2 is

whatever remains (see e.g. [Applebaum, 2009, p. 126, Theorem 2.4.16] and the

results leading thereto, in particular [Applebaum, 2009, p. 116, Theorem 2.4.6]).

Next, let S be the supremum process of |X1| and T be the first jump time

of X2. By right-continuity of the sample paths, for some t > 0, P({St < a/2}) > 0.

Further, by independence, and the fact that T ∼ Exp(λ((a,∞))) [Applebaum, 2009,

p. 101, Theorem 2.3.5(1)], one has P({St < a/2} ∩ {T < t}) > 0. Hence, with a

positive probability, X will attain a new supremum (on [0, t]) by a jump in X, which

is a contradiction.

Finally, suppose X(Tx) = x P-a.s. on {Tx < ∞} for each x > 0. Then the

supremum process X is a.s. continuous. Indeed, suppose not. Then with a positive

probability X would have a jump, and therefore, for some pair of rationals r1, r2 with

0 < r1 < r2, there would be a jump of X over (r1, r2) with a positive probability.

Then, on this event X(T(r1+r2)/2) ≥ r2 > (r1 + r2)/2, a contradiction.
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Having established this lemma, the first main step towards the proof of The-

orem 3.3 is the following:

Proposition 3.9 (P-triviality of X(Tx)). The random variable X(Tx) (defined on

{Tx <∞}) is P-trivial on {Tx <∞} for each x > 0, if and only if:

either

(a) X has no positive jumps (P-a.s.) (equivalently: λ((0,∞)) = 0)

or

(b) X is compound Poisson and for some h > 0, we have supp(λ) ⊂ Zh, while

supp(λ|B((0,∞))) = {h}

(conditions (a) and (b) being mutually exclusive). If so, then X(Tx) = x on {Tx <
∞} for each x ≥ 0 (P -a.s.) under (a) and X(Tx) = hdx/he on {Tx <∞} for each

x ≥ 0 (P-a.s.) under (b).

Remark 3.10. Note that, under (b), P({Xt ∈ Zh for all t ≥ 0}) = 1. This follows by

[Sato, 1999, p. 149, Corollary 24.6] and sample path right-continuity.

The main idea behind the proof of Proposition 3.9 is to appeal first to

Lemma 3.8 for the case when, for all x > 0, X(Tx) = x P-a.s. on {Tx < ∞}.
This gives (a). Then we treat separately the compound Poisson case; in all other

instances the Lévy-Itô decomposition and the well-established path properties of

Lévy processes yield the claim. Intuitively, for a Lévy process to cross over every

level in a non-random fashion, either it does so necessarily continuously when there

are no positive jumps (cf. also [Kolokoltsov, 2011, p. 274, Proposition 6.1.2]), or, if

there are, then it must be forced to live on the lattice Zh for some h > 0 and only

jump up by h. Formally:

Proof. Assume, without loss of generality, that X is càdlàg with certainty (rather

than just P-a.s.). Clearly conditions (a) and (b) are mutually exclusive, sufficiency

of the conditions and the final remark of Proposition 3.9 obtain by sample path

right-continuity. With regard to the equivalence noted parenthetically in (a) see

[Sato, 1999, p. 346, Remark 46.1].

Necessity of the conditions from Proposition 3.9 is shown as follows. Let

X(Tx) be P-trivial on {Tx <∞} for each x > 0.

Suppose first that for each x > 0, X(Tx) = x (P-a.s.) on {Tx < ∞}. Then

by Lemma 3.8, (a) must hold.

There remains the case when, for some x > 0, P(Tx < ∞) > 0 and there is

a non-random f(x) with f(x) = X(Tx) > x P-a.s. on {Tx < ∞}. In particular, X
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must have positive jumps, and for some a > 0, β := λ((a,∞)) > 0. Use again the

Lévy-Itô decomposition as in the proof of Lemma 3.8 with S denoting the supremum

process of |X1| and T the first jump time of X2 (note that T ∼ Exp(β)). We will

consider the following two cases separately:

(Case 1) X is not compound Poisson, i.e. either λ has infinite mass or σ2 > 0,

or if this fails (with c̃ = 0 as the cut-off function) µ 6= 0.

(Case 2) X is compound Poisson, i.e. the diffusion coefficient vanishes, σ2 = 0,

λ is finite and (with c̃ = 0 as the cut-off function) the drift µ = 0.

Consider first Case 1. By right-continuity of the sample paths, there is a t > 0 with

P({St < a/4}) > 0.

We next argue that, on the event:

C := {T < t} ∩ {St < a/4},

which has positive probability, X1(T ) is not P-trivial. We prove this by contradic-

tion. More precisely, we shall find that assuming the converse will contradict the

following observation regarding the sample paths of X1: the set of jump times of X1

is dense, a.s., by [Sato, 1999, p. 136, Theorem 21.3] when λ has infinite mass; the

sample paths of X1 have locally infinite variation, a.s., by [Sato, 1999, p. 140, Theo-

rem 21.9(ii)] when σ2 > 0; finally, X1 has no non-degenerate intervals of constancy,

a.s., when σ2 = 0, λ(R) <∞ but the drift is non-zero.

Indeed, suppose that X1(T ) were to be P-trivial on the event C, so that

there would be a (necessarily unique) b ∈ (−a/4, a/4) with X1(T ) = b P-a.s. on C,

i.e. P({X1(T ) = b} ∩ C) = P(C). We next condition on G := σ(T ) by applying

Proposition A.1 from Appendix A. Specifically, we take, discarding, without loss of

generality, the P-negligible set {T =∞}, Y := T (so that Y : (Ω,F)→ (R+,B(R+))

and, of course, σ(Y ) ⊂ G) and Z := X1 (so that σ(Z) ⊥ G and Z : (Ω,F)→ (D,H)

— recall from the end of Subsection 3.1.2 notation pertaining to the space (D,H)).

Finally, f : R+ × D→ R is given by:

f(s, ω) := 1{b}(ω(s))1[0,t)(s)1[0,a/4)(max{ω(t),−ω(t)}), (s, ω) ∈ R+ × D.

Note that the latter is bounded and B(R) ⊗H/B(R)-measurable by [Karatzas and

Shreve, 1988, p. 5, Remark 1.14] and since, owing to sample path right-continuity,

(ω 7→ ω(t)) is H/B(R+)-measurable. Proposition A.1 thus yields:

E[f ◦ (Y,Z)|G] = g ◦ Y,
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where g := (y 7→ E[f ◦ (y, Z)]), g : R+ → R, is Borel measurable. Now, on the one
hand:

E[g ◦ Y ] =

∫
gdPT =

∫ ∞
0

dsβe−βsE[f ◦ (s, Z)] =

∫ t

0

dsβe−βsP({X1(s) = b} ∩ {St < a/4}).

On the other hand:

E[E[f ◦ (Y,Z)|G]] = E[f ◦ (Y,Z)] = P({X1(T ) = b} ∩ C) = P(C)

= P(T < t)P(St < a/4) =

∫ t

0
dsβe−βsP(St < a/4).

In summary, it follows that:∫ t

0
dsβe−βsP({X1(s) = b} ∩ {St < a/4}) =

∫ t

0
dsβe−βsP({St < a/4}).

Hence, Lebesgue-a.e. in s ∈ (0, t), a.s. on {St < a/4}, X1(s) = b. Now we can

find for each rational r ∈ (0, t) and n ∈ N an xrn ∈ B(r, 1/n) for which a.s. on

{St < a/4}, X1(xrn) = b. So a.s. on {St < a/4}, on a dense countable subset of

(0, t), X1 = b. Thus by sample path right-continuity a.s. on {St < a/4}, X1 = b

everywhere on [0, t). Hence, on an event of positive probability, there are no jump

times on the whole of the non-degenerate interval [0, t), the path has zero variation

over [0, t) and is, moreover, constant thereon, a contradiction.

We have thus established that X1(T ) is not P-trivial on the event C.

Observe now that X2(T ) is independent of T , both being jointly independent

of X1. Then X2(T ) ⊥ σ(1C , X
1(T )), so that (for Borel subsets A and B of R):

P(C∩{X1(T ) ∈ A}∩{X2(T ) ∈ B})P(C) = P(C∩{X1(T ) ∈ A})P(C∩{X2(T ) ∈ B}).

We conclude that the first jump of X2, X2(T ), is independent of X1(T ), condition-

ally on C. The support of their sum X(T ) = X1(T ) +X2(T ) on C, is therefore the

closure of the sum of their respective supports [Sato, 1999, p. 148, Lemma 24.1]

and as such contains at least two points. It follows that, on the stipulated event

of positive probability, which is contained in {Ta/2 < ∞} and on which Ta/2 = T ,

X(Ta/2) = X(T ) is not P-trivial, a contradiction.

Consider now Case 2. Suppose furthermore that the support of λ|B((0,∞))

were to contain at least two points b < c, say. Choose δ < b/2 small enough such

that B(b, δ) ∩ B(c, δ) = ∅. The measure λ must charge both these open balls, and

hence the first jump can be in either one, each with a positive probability. Thus

X(Tb/2) would not be P-trivial on the event {Tb/2 < ∞}, a contradiction. Plainly,
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then, the support of λ|B((0,∞)) is {h} for some h > 0.

It only remains to show that λ is supported by Zh. To see this, suppose

it were not. Then there would be an x < 0 and a δ > 0, with B(x, δ) having a

non-empty intersection with the support of λ and an empty intersection with Zh.

With a positive probability X would jump for the first time into B(x, δ) and then

have a sequence of jumps of size h upwards going above h for the first time at a

level distinct from h. With a positive probability, X also goes above h by making

its first jump to h, a contradiction.

The proof is complete.

The second (and last) main step towards the proof of Theorem 3.3 consists

in taking advantage of the temporal and spatial homogeneity of Lévy processes.

Thus the condition in Proposition 3.9 is relaxed to one in which the P-triviality of

the position at first passage is required for one x > 0, rather than all. To shorten

notation let us introduce:

Definition 3.11. For x ∈ R, let Qx : B(R)→ [0,P(Tx <∞)],

Qx(B) := P({X(Tx) ∈ B} ∩ {Tx <∞}), B ∈ B(R),

be the (possibly subprobability) law of X(Tx) on {Tx < ∞} under P on the space

(R,B(R)). We also introduce the set:

A := {x ∈ R : Qx, which may have zero mass, is carried by a singleton}.

Remark 3.12. Clearly (−∞, 0] ⊂ A and for each a ∈ A, there exists an (unique, if

P(Ta <∞) > 0) f(a) such that:

Qa = P(Ta <∞)δf(a).

With this at our disposal, we can formulate our claim as:

Proposition 3.13. Suppose A ∩ R+ 6= ∅. Then A = R.

The proof of Proposition 3.13 will proceed in several steps, but the essence

of it consists in establishing the intuitively appealing identity

Qb(A) =

∫
dQc(xc)Q

b−xc(A− xc)

for Borel sets A and c ∈ (0, b), see Lemma 3.14 below. This identity puts a constraint

on the family of measures (Qa)a∈R. In particular, it allows to demonstrate (under

78



the hypothesis A ∩ R+ 6= ∅) that A is dense in the reals. Then we can appeal to

quasi left-continuity to conclude the proof. The main argument is thus fairly short,

and a substantial amount of time is spent on measurability issues.

Lemma 3.14. Let b ∈ R+, c ∈ (0, b) and A ∈ B(R). Then:

Qb(A) =

∫
dQc(xc)Q

b−xc(A− xc). (3.4)

Proof. If P(Tc < ∞) = 0, then P(Tb < ∞) = 0, Qb = Qc = 0, and the claim is

trivial. So assume, without loss of generality, that P(Tc < ∞) > 0 and that X is

càdlàg with certainty (rather than just P-a.s.).

Let (on {Tc <∞}):
4
X := (X(Tc+ t)−X(Tc))t≥0 and

4
T y := inf{t ≥ 0 :

4
Xt ≥

y} (y ∈ R), while F ′Tc := {B ∩ {Tc <∞} : B ∈ FTc} is FTc lowered onto {Tc <∞}.

By the strong Markov property,
4
X is independent of F ′Tc under P(·|{Tc < ∞}).

Then:

Qb(A) = E[1A ◦X(Tb)1{Tb<∞}], by the definition of Qb,

= E[1
{
4
X(
4
T b−X(Tc)

)+X(Tc)∈A}
1
{
4
T b−X(Tc)

<∞}
1{Tc<∞}], since Tb = Tc +

4
T b−X(Tc),

= P(Tc <∞)×EP(·|{Tc<∞})

[
EP(·|{Tc<∞})

[
1
{
4
X(
4
T b−X(Tc)

)+X(Tc)∈A}
1
{
4
T b−X(Tc)

<∞}
|F ′Tc

]]
,

by the tower property and the definition of the conditional measure P(·|{Tc <∞}),

=

∫
dQc(xc)Q

b−xc(A− xc),

by the strong Markov property & Proposition A.2 (see below).

We now specify precisely how the strong Markov property and Proposition A.2 from

Appendix A are applied here, this not being completely trivial. Recall again from

the end of Subsection 3.1.2 the notation pertaining to the space (D,H).

The probability space we will be working on is ({Tc <∞},F{Tc<∞},P(·|{Tc <
∞})), where F{Tc<∞} := {B∩{Tc <∞} : B ∈ F}, and it is complete, since (Ω,F ,P)

is. Further, define (on {Tc <∞}) Y := X(Tc); Z :=
4
X and f : R× D→ R by:

f(x, ω) = 1A(x+ ω(Tb−x(ω)))1[0,∞)(Tb−x(ω)), (x, ω) ∈ R× D,

where we let ω(∞) = ω(0) for definiteness.1

Now, the random element Z : ({Tc <∞},F{Tc<∞})→ (D,H) is independent

of G := F ′Tc , whereas the random element Y : ({Tc <∞},F{Tc<∞})→ (R,B(R)) is

1The reader is cautioned not to confuse the mapping f , which is introduced here solely for the
purposes of establishing how Proposition A.2 is applied in obtaining (3.4), with the notation from
Remark 3.12. Indeed, the context will always make it clear which f we are referring to.
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measurable with respect to F ′Tc . Measurability of Y is a consequence of [Karatzas

and Shreve, 1988, p. 5, Proposition 1.13 & p. 9, Proposition 2.18] and the Début

Theorem [Kallenberg, 1997, p. 101, Theorem 6.7] and measurability of Z follows

similarly.

We next show that f is (B(R)⊗H)?/B(R)-measurable. First note that:

1. (x, ω) 7→ ω+ x is B(R)⊗H/H-measurable (in fact continuous, see [Jacod and

Shiryaev, 2003, p. 328, Proposition 1.17 & p. 329, Proposition 1.23]), hence

(B(R)⊗H)?/H?-measurable, by [Meyer, 1966, (2) on p. 23].

2. By the Début Theorem, for every b ∈ R, Tb is a stopping time of the augmented

(with respect to any probability measure) right-continuous modification of the

canonical filtration H = (Ht)t≥0 on D /whereHt is generated by the evaluation

maps up to, and including, time t, t ≥ 0/. Hence (ω 7→ Tb(ω)) is H?/B([0,∞])-

measurable.

It follows that (x, ω) 7→ Tb(ω + x) = Tb−x(ω) is (B(R) ⊗H)?/B([0,∞])-measurable

(as a composition). Next:

1. (x, ω) 7→ (ω,1[0,∞)(Tb−x(ω))Tb−x(ω)) is (B(R)⊗H)?/H⊗B(R+)-measurable.

2. (ω, t) 7→ ω(t) is H ⊗ B(R+)/B(R)-measurable (indeed, if X is the coordinate

process on D, then this is the mapping (ω, t) 7→ X(ω, t), which is measurable

by [Karatzas and Shreve, 1988, p. 5, Remark 1.14]).

Therefore (x, ω) 7→ ω(Tb−x(ω)) is (B(R)⊗H)?/B(R)-measurable (as a composition,

with the above convention for ω(∞)). The required measurability of f now follows

from measurability of addition and multiplication.
We are now in a position to apply Proposition A.2. We have:

P(Tc <∞)EP(·|{Tc<∞})[EP(·|{Tc<∞})[f ◦ (Y,Z)|F ′Tc ]] =

= P(Tc <∞)EP(·|{Tc<∞})[(y 7→ EP(·|{Tc<∞})[f ◦ (y, Z)]) ◦X(Tc)], by Proposition A.2,

=

∫
dQc(y)EP(·|{Tc<∞})[f ◦ (y, Z)], by the Image Measure Theorem

[Dudley, 2004, p. 121, Theorem 4.1.11], since Qc coincides with the (subprobability)

law of X(Tc) on
(
R,B(R)

Qc
)
.

Note here that we need to work with the (subprobability) law of X(Tc) on the

space (R,B(R)
Qc

) /rather than (R,B(R))/, since we only know the integrand to be

measurable with respect to B(R)
Qc

.

Now, by the strong Markov property, Z is also identical in law under the

measure P(·|{Tc < ∞}) to X under the measure P on the space (D,H) and hence
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on the space (D,H?) /the extension of a law to the universal completion being

unique [Meyer, 1966, (1) on p. 23]/. Moreover, for any real d and Borel set D ⊂ R,

the mapping gd,D : D→ R given by (ω 7→ 1D(ω(Td(ω)))1[0,∞)(Td(ω))) is H?/B(R)-

measurable, by the same reasoning as above. Hence:

EP(·|{Tc<∞})[f ◦ (y, Z)] = EP(·|{Tc<∞})[1A−y ◦
4
X(
4
T b−y)1[0,∞) ◦

4
T b−y]

= EP(·|{Tc<∞})[gb−y,A−y ◦ Z]

= EP[gb−y,A−y ◦X] = Qb−y(A− y),

as required.

Proof of Proposition 3.13. Given A∩R+ 6= ∅, we wish to show the inclusion R+ ⊂ A.

Assume, again without loss of generality, that X is càdlàg with certainty (rather

than just P-a.s.).

(i) First observe that P(Tx = ∞) = 1 for some x > 0, precisely when P(Tx =

∞) = 1 for all x > 0. This follows either by the strong Markov property of

Lévy processes and mathematical induction or, alternatively, one can appeal

directly to [Sato, 1999, p. 155, Proposition 24.14(i)]. Therefore it is sufficient

to consider the case when P(Tx <∞) > 0 for all x ∈ R.

(ii) Claim:

(\) If b ∈ A, then for every c ∈ (0, b): either c ∈ A or (0, b− c] ∩ A 6= ∅.

To show this, let b ∈ A, c ∈ (0, b) and take any A ∈ B(R). By Lemma 3.14:

Qb(A) =

∫
dQc(xc)Q

b−xc(A− xc). (3.5)

On the other hand, since b ∈ A:

Qb(A) = P(Tb <∞)δf(b)(A). (3.6)

Combining (3.5) and (3.6), we have:∫
dQc(xc)Q

b−xc(A− xc) = P(Tb <∞)δf(b)(A),

from which we conclude that Qc-a.e. in xc ∈ R, Qb−xc assigns all its mass

to {f(b) − xc}. (Suppose not, then with Qc-positive measure in xc ∈ R,
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Qb−xc(R\{f(b)− xc}) > 0, and hence Qb(R\{f(b)}) > 0, a contradiction.)

Next, if b′ ∈ A and c′ ∈ (0, b′]:

(*) Qc
′

assigns all its mass to [c′, b′) ∪ {f(b′)}.

Therefore c ∈ A, or Qc cannot ascribe all its mass to {f(b)} and hence

Qc([c, b)) > 0. In the latter case, for some xc ∈ [c, b), Qb−xc is carried by

{f(b)− xc}, whence b− xc ∈ A ∩ (0, b− c].

(iii) Let x0 := inf A ∩ R+. Then x0 = 0. Indeed, if not, then (\) of (ii), applied

to some [x0,∞) ∩ A 3 b < 3x0/2 and c = 3x0/4 (say), yields a contradiction.

Therefore there exists a decreasing sequence (xn)n∈N in A∩R+ converging to

0.

(iv) Claim: A is dense in R. If f(xn)→ 0 as n→∞, this is obvious, since,

(**) with any x ∈ A, ∪n∈N0 [x+ nf(x), (n+ 1)f(x)] ⊂ A,

by the strong Markov property and mathematical induction. Suppose the

nonincreasing sequence (f(xn))n∈N0 does not converge to 0. Then there is an

ε > 0 and a natural N , such that f(xn) ≥ ε and xn < ε for all n ≥ N . In

particular, by (*), f(xn) = f(xN ) for all n ≥ N . Therefore [xn, f(xN )] ⊂ A
for all n ≥ N by (**). Therefore [0, f(xN )] ⊂ A and upon exceeding any

positive level less than or equal to f(xN ) we land at f(xN ) a.s. Hence, by the

strong Markov property and mathematical induction, A = R.

(v) So we may assume A is dense. Now we use quasi left-continuity of Lévy

processes [Bertoin, 1996, p. 21, Proposition 7] as follows. Take any x ∈ R+

and a sequence A ∩ (0, x) ⊃ (xn)n≥1 ↑ x. Introduce the F-stopping time

S := inf{t ≥ 0 : Xt ≥ x}. We then have Txn ↑ S (as n → ∞). By quasi

left-continuity, it follows that limn→∞X(Txn) = X(S) P-a.s. on {S < ∞}.
Therefore, in fact, S = Tx P-a.s. on {S < ∞} (and hence on {Tx < ∞}),
and, moreover, X(Tx) = limn→∞ f(xn) P-a.s. on {Tx <∞}. But this means,

precisely, that x ∈ A.

The proof is complete.

Finally we can combine the above into a proof of Theorem 3.3.

Proof of Theorem 3.3. The statement is essentially contained in Propositions 3.9

and 3.13. We only have to worry about (c) and (d), since so far we have only

considered the stopping times Tx.
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Now, (c) implies for some f(x) > 0, X(T̂x) = f(x) P-a.s. on {T̂x < ∞},
therefore X(Tf(x)) = f(x) P-a.s. on {Tf(x) < ∞} and hence (a). Conversely, (e)

implies (d) by sample path right-continuity.

Remark 3.15. Theorem 3.3 characterizes the class of Lévy processes for which over-

shoots are known a priori and are non-random. Moreover, the original motivation

for this investigation is validated by the fact that upwards skip-free Lévy chains

admit a fluctuation theory, which is just as explicit, almost (but not entirely) anal-

ogous to the spectrally negative case and which embeds (existing) results for right-

continuous random walks into continuous time. We expound on this in the next

section.

3.2 Fluctuation theory for upwards skip-free Lévy chains

3.2.1 Introduction

We have seen in Section 3.1 that precisely two types of Lévy processes exhibit the

property of non-random overshoots: those with no positive jumps a.s., and upwards

skip-free Lévy chains (see Definition 3.1). We have also remarked that this common

property which the two classes share results in a more explicit fluctuation theory

(including the Wiener-Hopf factorization) than for a general Lévy process, this being

rarely the case (cf. [Kyprianou, 2006, p. 172, Subsection 6.5.4]).

Now, with reference to existing literature on fluctuation theory, the spectrally

negative case (when there are no positive jumps, a.s.) is dealt with in detail in

[Bertoin, 1996, Chapter VII] [Sato, 1999, Section 9.46] and especially [Kyprianou,

2006, Chapter 8]. On the other hand no equally exhaustive treatment of the right-

continuous random walk seems to have been presented thus far, but see [Quine,

2004; Brown et al., 2010; Marchal, 2001] [Doney and Picard, 2007, p. 99, Section

9.3] [Spitzer, 2001, passim]. In particular, no such exposition appears present for

the continuous-time analogue of such random walks, wherein the connection and

analogy to the spectrally negative class of Lévy processes becomes most transparent

and direct.

In the present section we proceed to do just that, i.e. we develop, by analogy

to the spectrally negative case, a complete fluctuation theory (including theory of

scale functions) for upwards skip-free Lévy chains. Indeed, the transposition of the

results from the spectrally negative to the skip-free setting is essentially straightfor-

ward. Over and above this, however, and beyond what is purely analogous to the ex-

position of the spectrally negative case, further specifics of the reflected process (see

Theorem 3.16(i)) and of the excursions from the supremum (see Theorem 3.16(iii))
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are identified, and a linear recursion is presented which allows us to directly compute

the families of scale functions (see (3.25), (3.26) and Proposition 3.35).

The organisation of the rest of this section is as follows. Subsection 3.2.2

specifies the setting. Then Subsection 3.2.3 develops the relevant fluctuation theory,

in particular details of the Wiener-Hopf factorization. Finally, Subsection 3.2.4 deals

with the two-sided exit problem and the accompanying families of scale functions.

3.2.2 Setting

For the remainder of this section, X will be assumed throughout an upwards skip-

free Lévy chain, with λ({h}) > 0 (h > 0) and characteristic exponent Ψ(p) =∫
(eipx − 1)λ(dx) (p ∈ R). In general, we insist on every sample path of X being

càdlàg (i.e. right-continuous, admitting left limits). We shall, however, sometimes

and then only provisionally, relax the assumption on the filtered probability space

satisfying the standard assumptions, by transferring X as the coordinate process

onto the canonical space Dh := {ω ∈ Z[0,∞)
h : ω is càdlàg} of càdlàg paths, mapping

[0,∞) → Zh, equipping Dh with the σ-algebra and natural filtration of evaluation

maps; this, however, will always be made explicit. We allow X ⊥ e1 ∼ Exp(1); then

define ep := e1/p (p ∈ (0,∞)\{1}).

3.2.3 Fluctuation theory

In the following, to fully appreciate the similarity (and eventual differences) with

the spectrally negative case, the reader is invited to directly compare the exposition

of this subsection with that of [Bertoin, 1996, Section VII.1] and [Kyprianou, 2006,

Section 8.1].

Laplace exponent, the reflected process, local times and excursions from

the supremum, supremum process and long-term behaviour, exponential

change of measure

Since the Poisson process admits exponential moments of all orders, it follows that

E[eβXt ] <∞ and, in particular, E[eβXt ] <∞ for all {β, t} ⊂ [0,∞). Indeed, it may

be seen by a direct computation that for β ∈ C→, t ≥ 0, E[eβXt ] = exp{tψ(β)},
where ψ(β) :=

∫
R(eβx − 1)λ(dx) is the Laplace exponent of X. Moreover, ψ is

continuous (by the DCT) on C→ and analytic in C→ (use the theorems of Cauchy

[Rudin, 1970, p. 206, 10.13 Cauchy’s theorem for triangle], Morera [Rudin, 1970, p.

209, 10.17 Morera’s theorem] and Fubini).
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Next, note that ψ(β) tends to +∞ as β → ∞ over the reals, due to the

presence of the atom of λ at h. Upon restriction to [0,∞), ψ is strictly convex, as

follows first on (0,∞) by using differentiation under the integral sign and noting that

the second derivative is strictly positive, and then extends to [0,∞) by continuity.

Denote then by Φ(0) the largest root of ψ|[0,∞). Indeed, 0 is always a root,

and due to strict convexity, if Φ(0) > 0, then 0 and Φ(0) are the only two roots. The

two cases occur, according as to whether ψ′(0+) ≥ 0 or ψ′(0+) < 0, which is clear.

It is less obvious, but nevertheless true, that this right derivative at 0 actually exists,

indeed ψ′(0+) =
∫
R xλ(dx) ∈ [−∞,∞). This follows from the fact that (eβx − 1)/β

is nonincreasing as β ↓ 0 for x ∈ R− and hence monotone convergence applies.

Continuing from this, and with a similar justification, one also gets the equality

ψ′′(0+) =
∫
x2λ(dx) ∈ (0,+∞] (where we agree ψ′′(0+) = +∞ if ψ′(0+) = −∞).

In any case, ψ : [Φ(0),∞) → [0,∞) is continuous and increasing, it is a bijection

and we let Φ : [0,∞)→ [Φ(0),∞) be the inverse bijection, so that ψ ◦ Φ = idR+ .

With these preliminaries having been established, our first theorem identifies

characteristics of the reflected process, the local time of X at the maximum, as well

as the expected length of excursions and the probability of an infinite excursion

therefrom (for definitions of these terms see Subsection 1.2.2 and e.g. [Kyprianou,

2006, pp. 140-147]; we agree that an excursion (from the maximum) starts imme-

diately X leaves its running maximum and ends immediately it returns to it; by its

length we mean the amount of time between these two time points).

Theorem 3.16 (Reflected process; (inverse) local time; excursions).

(i) The generator matrix Q̃ of the Markov process Y := X −X on Z+
h is given by

(with {s, s′} ⊂ Z+
h ): Q̃ss′ = λ({s− s′})− δss′λ(R), unless s = s′ = 0, in which

case we have Q̃ss′ = −λ((−∞, 0)).

(ii) For the reflected process Y , 0 is a holding point. The actual time spent at 0

by Y is a local time at the maximum. Its inverse S is then a (possibly killed)

compound Poisson subordinator with unit positive drift.

(iii) Assuming that λ((−∞, 0)) > 0 to avoid the trivial case, the expected length of

an excursion away from the supremum is equal to λ({h})h−ψ′(0+)
(ψ′(0+)∨0)λ((−∞,0)) ; whereas

the probability of such an excursion being infinite is λ({h})
λ((−∞,0))(eΦ(0)h − 1).

Proof. (i) is clear, since, e.g. Y transitions away from 0 at the rate at which X

makes a negative jump, and from s ∈ Z+
h \{0} to 0 at the rate at which X jumps up

by s or more etc.; however see Appendix B for the technical details.

85



(ii) is standard [Kyprianou, 2006, p. 141, Example 6.3 & p. 149, Theo-

rem 6.10].

Finally, we establish (iii). Denote qn := λ({−nh})/λ(R) for n ∈ N and

p := λ({h})/λ(R); β provisionally denoting the expected excursion length. Further,

let the discrete-time Markov chain W (on the state space N0) be endowed with the

initial distribution wj :=
qj

1−p for j ∈ N, w0 := 0; and transition matrix P , given by

P0i = δ0i, whereas for i ≥ 1: Pij = p, if j = i − 1; Pij = qj−i, if j > i; and Pij = 0

otherwise (W jumps down with probability p, up i steps with probability qi, i ≥ 1,

until it reaches 0, where it gets stuck). Let furtherN be the first hitting time forW of

{0}, so that a typical excursion length of X is equal in distribution to an independent

sum of N (possibly infinite) Exp(λ(R))-random variables. It is Wald’s identity that

β = (1/λ(R))E[N ]. Then (in the obvious notation, where ∞ indicates the sum

is inclusive of ∞), by Fubini: E[N ] =
∑∞

n=1 n
∑∞

l=1wlPl(N = n) =
∑∞

l=1wlkl,

where kl is the mean hitting time of {0} for W , if it starts from l ∈ N0, as in

[Norris, 1997, p. 12]. From the skip-free property of the chain W it is moreover

transparent that ki = αi, i ∈ N0, for some 0 < α ≤ ∞ (with the usual convention

0 ·∞ = 0). Moreover we know [Norris, 1997, p. 17, Theorem 1.3.5] that (ki : i ∈ N0)

is the minimal solution to k0 = 0 and ki = 1 +
∑∞

j=1 Pijkj (i ∈ N). Plugging

in ki = αi, the last system of linear equations is equivalent to (provided α < ∞)

0 = 1− pα + αζ, where ζ :=
∑∞

j=1 jqj . Thus, if ζ < p, the minimal solution to the

system is ki = i/(p − ζ), i ∈ N0, from which β = ζ/(λ((−∞, 0))(p − ζ)) follows at

once. If ζ ≥ p, clearly we must have α = +∞, hence E[N ] = +∞ and thus β = +∞.

To establish the probability of an excursion being infinite, i.e.
∑∞

i=1 qi(1 −
αi)/

∑∞
i=1 qi, where αi := Pi(N < ∞) > 0, we see that (by the skip-free property)

αi = αi1, i ∈ N0, and by the strong Markov property, for i ∈ N, αi = pαi−1 +∑∞
j=1 qjαi+j . It follows that 1 = pα−1

1 +
∑∞

j=1 qjα
j
1, i.e. 0 = ψ(log(α−1

1 )/h). Hence,

by Theorem 3.17(ii), whose proof will be independent of this one, α1 = e−Φ(0)h

(since α1 < 1, if and only if X drifts to −∞).

We turn our attention now to the supremum process X. First, using the

lack of memory property of the exponential law and the skip-free nature of X, we

deduce from the strong Markov property applied at the time Ta, that for every

a, b ∈ Z+
h , p > 0: P(Ta+b < ep) = P(Ta < ep)P(Tb < ep). In particular, for any

n ∈ N0: P(Tnh < ep) = P(Th < ep)
n. And since for s ∈ Z+

h , {Ts < ep} = {Xep ≥ s}
(P-a.s.), one has (for n ∈ N0): P(Xep ≥ nh) = P(Xep ≥ h)n. Therefore Xep/h ∼
geom(1− P(Xep ≥ h)).

Next, to identify P(Xep ≥ h), p > 0, observe that (for β ≥ 0, t ≥ 0):

E[exp{Φ(β)Xt}] = etβ and hence (exp{Φ(β)Xt − βt})t≥0 is an (F,P)-martingale by
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stationary independent increments of X, for each β ≥ 0. Then apply the Optional

Sampling Theorem at the bounded stopping time Tx ∧ t (t, x ≥ 0) to get:

E[exp{Φ(β)X(Tx ∧ t)− β(Tx ∧ t)}] = 1.

Note thatX(Tx∧t) ≤ hdx/he and Φ(β)X(Tx∧t)−β(Tx∧t) converges to Φ(β)hdx/he−
βTx (P-a.s.) as t → ∞ on {Tx < ∞}. It converges to −∞ on the complement of

this event, P-a.s., provided β + Φ(β) > 0. Therefore we deduce by dominated

convergence, first for β > 0 and then also for β = 0, by taking limits:

E[exp{−βTx}1{Tx<∞}] = exp{−Φ(β)hdx/he}. (3.7)

Before we formulate out next theorem, recall also that any non-zero Lévy

process either drifts to +∞, oscillates or drifts to −∞ [Sato, 1999, pp. 255-256,

Proposition 37.10 and Definition 37.11].

Theorem 3.17 (Supremum process and long-term behaviour).

(i) The failure probability for the geometrically distributed Xep/h is exp{−Φ(p)h}
(p > 0).

(ii) X drifts to +∞, oscillates or drifts to −∞ according as to whether ψ′(0+) is

positive, zero, or negative. In the latter case X∞/h has a geometric distribu-

tion with failure probability exp{−Φ(0)h}.

(iii) (Tnh)n∈N0 is a discrete-time increasing stochastic process, vanishing at 0 and

having stationary independent increments up to the explosion time, which is

an independent geometric random variable; it is a killed random walk.

Remark 3.18. Unlike in the spectrally negative case [Bertoin, 1996, p. 189], the

supremum process cannot be obtained from the reflected process, since the latter

does not discern a point of increase in X when the latter is at its running maximum.

Proof. We have for every s ∈ Z+
h :

P(Xep ≥ s) = P(Ts < ep) = E[exp{−pTs}1{Ts<∞}] = exp{−Φ(p)s}. (3.8)

Thus (i) obtains.

For (ii) note that letting p ↓ 0 in (3.8), we obtain X∞ < ∞ (P-a.s.), if and

only if Φ(0) > 0, which is equivalent to ψ′(0+) < 0. If so, X∞/h is geometrically

distributed with failure probability exp{−Φ(0)h} and then (and only then) does X

drift to −∞.
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It remains to consider drifting to +∞ (the cases being mutually exclusive

and exhaustive). Indeed, X drifts to +∞, if and only if E[Ts] is finite for each s ∈
Z+
h [Bertoin, 1996, p. 172, Proposition VI.17]. Using again the nondecreasingness

of (e−βTs − 1)/β in β ∈ [0,∞), we deduce from (3.7), by monotone convergence,

that one may differentiate under the integral sign, to get E[Ts1{Ts<∞}] = (β 7→
− exp{−Φ(β)s})′(0+). So the E[Ts] are finite, if and only if Φ(0) = 0 (so that

Ts < ∞ P-a.s.) and Φ′(0+) < ∞. Since Φ is the inverse of ψ|[Φ(0),∞), this is

equivalent to saying ψ′(0+) > 0.

Finally, (iii) is clear.

ψ′(0+) Φ(0) Φ′(0+) Long-term behaviour Excursion length

∈ (0,∞) 0 ∈ (0,∞) drifts to +∞ finite expectation

0 0 +∞ oscillates a.s. finite with infinite expectation

∈ [−∞, 0) ∈ (0,∞) ∈ (0,∞) drifts to −∞ infinite with a positive probability

Table 3.1: Connections between the quantities ψ′(0+), Φ(0), Φ′(0+). Behaviour of
X at large times and of its excursions away from the running supremum (the latter
if λ((−∞, 0)) > 0).

We conclude this paragraph by offering a way to reduce the general case of

an upwards skip-free Lévy chain to one which necessarily drifts to +∞. This will

prove useful in the sequel (more specifically, in the proof of Theorem 3.24). First,

there is a pathwise approximation of an oscillating X, by (what is again) an upwards

skip-free Lévy chain, but drifting to infinity.

Remark 3.19. Suppose X oscillates. Let (possibly by enlarging the probability space

to accommodate for it) N be an independent Poisson process with intensity 1 and

N ε
t := Ntε (t ≥ 0) so that N ε is a Poisson process with intensity ε, independent of X.

Define Xε := X + hN ε. Then, as ε ↓ 0, Xε converges to X, uniformly on bounded

time sets, almost surely, and is clearly an upwards skip-free Lévy chain drifting to

+∞.

The reduction of the case when X drifts to −∞ is somewhat more involved

and is done by a change of measure. For this purpose assume until the end of

this paragraph (i.e. up to and inclusive of Proposition 3.21), that X is already the

coordinate process on the canonical space Ω = Dh, equipped with the σ-algebra

F and filtration F of evaluation maps (so that P coincides with the law of X on

Dh and F = σ(prs : s ∈ [0,+∞)), whilst for t ≥ 0, Ft = σ(prs : s ∈ [0, t]), where

prs(ω) = ω(s), for (s, ω) ∈ [0,+∞)×Dh). We make this transition in order to be able

to apply the Kolmogorov extension theorem in the proposition, which follows. Note,
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however, that we are no longer able to assume standard conditions on (Ω,F ,F,P).

Notwithstanding this, (Tx)x∈R remain F-stopping times, since by the nature of the

space Dh, for x ∈ R, t ≥ 0, {Tx ≤ t} = {Xt ≥ x} ∈ Ft.

Proposition 3.20 (Exponential change of measure). Let c ≥ 0. Then, demanding:

Pc(Λ) = E[exp{cXt − ψ(c)t}1Λ] (Λ ∈ Ft, t ≥ 0) (3.9)

this introduces a unique measure Pc on F . Under the new measure, X remains an

upwards skip-free Lévy chain with Laplace exponent ψc = ψ(·+ c)−ψ(c), drifting to

+∞, if c ≥ Φ(0), unless c = ψ′(0+) = 0. Moreover, if λc is the new Lévy measure

of X under Pc, then λc � λ and dλc
dλ (x) = ecx λ-a.e. in x ∈ R. Finally, for every

F-stopping time T , Pc � P on restriction to F ′T := {A ∩ {T <∞} : A ∈ FT }, and:

dPc|F ′T
dP|F ′T

= exp{cXT − ψ(c)T}.

Proof. That Pc is introduced consistently as a probability measure on F follows

from the Kolmogorov extension theorem [Parthasarathy, 1967, p. 143, Theorem 4.2]

(see Appendix C for details). Indeed, M := (exp{cXt − ψ(c)t})t≥0 is a nonnegative

martingale (use independence and stationarity of increments of X and the definition

of the Laplace exponent), equal identically to 1 at time 0.2

Further, for all β ∈ C→, {t, s} ⊂ R+ and Λ ∈ Ft:

Ec[exp{β(Xt+s −Xt)}1Λ] = E[exp{cXt+s − ψ(c)(t+ s)} exp{β(Xt+s −Xt)}1Λ]

= E[exp{(c+ β)(Xt+s −Xt)− ψ(c)s}]E[exp{cXt − ψ(c)t}1Λ]

= exp{s(ψ(c+ β)− ψ(c))}Pc(Λ).

An application of the Functional Monotone Class Theorem then shows that X is

indeed a Lévy process on (Ω,F ,F,Pc) and its Laplace exponent under Pc is as

stipulated (that X0 = 0 Pc-a.s. follows from the absolute continuity of Pc with

respect to P on restriction to F0).

Next, from the expression for ψc, the claim regarding λc follows at once.

Then clearly X remains an upwards skip-free Lévy chain under Pc, drifting to +∞,

if ψ′(c+) > 0.
Finally, let A ∈ FT and t ≥ 0. Then A ∩ {T ≤ t} ∈ FT∧t, and by the

Optional Sampling Theorem:

Pc(A ∩ {T ≤ t})=E[Mt1A∩{T≤t}]=E[E[Mt1A∩{T≤t}|FT∧t]]=E[MT∧t1A∩{T≤t}]=E[MT1A∩{T≤t}].

2Remark that M is, in general, not uniformly integrable. For example, if X drifts to −∞ and c >
0, then M∞ := limt→∞Mt = 0 exists a.s. (see, e.g., [Karatzas and Shreve, 1988, Subsection 1.3.B]).
In particular, then, a martingale change of measure cannot be applied directly (cf. Remark C.7).
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Using the MCT, letting t → ∞, we obtain the equality Pc(A ∩ {T < ∞}) =

E[MT1A∩{T<∞}].

Proposition 3.21 (Conditioning to drift to +∞). Assume Φ(0) > 0 and denote

P\ := PΦ(0) (see (3.9)). We then have as follows.

(1) For every Λ ∈ A := ∪t≥0Ft, limn→∞ P(Λ|X∞ ≥ nh) = P\(Λ).

(2) For every x ≥ 0, the stopped process XTx = (Xt∧Tx)t≥0 is identical in law

under the measures P\ and P(·|Tx <∞) on the canonical space Dh.

Proof. With regard to (1), we have as follows. Let t ≥ 0. By the Markov property

of X at time t, the process
4
X := (Xt+s −Xt)s≥0 is identical in law with X on Dh

and independent of Ft under P. Thus, letting
4
T y := inf{t ≥ 0 :

4
Xt ≥ y} (y ∈ R),

one has for Λ ∈ Ft and n ∈ N0, by conditioning:

P(Λ ∩ {t < Tnh <∞}) = E[E[1Λ1{t<Tnh}1
{
4
T nh−Xt<∞}

|Ft]] = E[eΦ(0)(Xt−nh)
1Λ∩{t<Tnh}],

since {Λ, {t < Tnh}} ∪ σ(Xt) ⊂ Ft. Next, noting that {X∞ ≥ nh} = {Tnh <∞}:

P(Λ|X∞ > nh) = eΦ(0)nh (P(Λ ∩ {Tnh ≤ t}) + P(Λ ∩ {t < Tnh <∞}))

= eΦ(0)nh
(
P(Λ ∩ {Tnh ≤ t}) + E[eΦ(0)(Xt−nh)

1Λ∩{t<Tnh}]
)

= eΦ(0)nhP(Λ ∩ {Tnh ≤ t}) + P\(Λ ∩ {t < Tnh}).

The second term clearly converges to P\(Λ) as n → ∞. The first converges to 0,

because by (3.8) P(Xe1 ≥ nh) = e−nhΦ(1) = o(e−nhΦ(0)), as n → ∞, and we have

the estimate P(Tnh ≤ t) = P(Xt ≥ nh) = P(Xt ≥ nh|e1 ≥ t) ≤ P(Xe1 ≥ nh|e1 ≥
t) ≤ etP(Xe1 ≥ nh).

We next show (2). Note first that X is F-progressively measurable (in par-

ticular, measurable), hence the stopped process XTx is measurable as a mapping

into Dh [Karatzas and Shreve, 1988, p. 5, Problem 1.16].

Further, by the strong Markov property, conditionally on {Tx <∞}, FTx is

independent of the future increments of X after Tx, hence also of {Tx′ <∞} for any

x′ > x. We deduce that the law of XTx is the same under P(·|Tx <∞) as it is under

P(·|Tx′ < ∞) for any x′ > x. (2) then follows from (1) by letting x′ tend to +∞,

the algebra A being sufficient to determine equality in law by a π/λ-argument.

Wiener-Hopf factorization

Recall the notation and terminology of Subsection 1.2.2. Thanks to the skip-free

nature of the compound Poisson process X, we can expand on the contents of
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Proposition 1.26, by offering further details of its Wiener-Hopf factorization (the

first of its two versions, at least). Indeed, if we let Nt := Xt/h and Tk := Tkh (t ≥ 0,

k ∈ N0) then clearly T := (Tk)k≥0 are the arrival times of a renewal process (with a

possibly defective inter-arrival time distribution) and N := (Nt)t≥0 is the ‘number

of arrivals’ process. One also has the relation: G
∗
t = TNt , t ≥ 0 (P-a.s.). Thus the

random variables entering the Wiener-Hopf factorization are determined in terms of

the renewal process (T,N).

Moreover, we can proceed to calculate explicitly the Wiener-Hopf factors as

well as κ̂ and κ∗. Let p > 0. First, since Xep/h is a geometrically distributed

random variable we have, for any β ∈ C→:

E[e−βXep ] =

∞∑
k=0

e−βhk(1− e−Φ(p)h)e−Φ(p)hk =
1− e−Φ(p)h

1− e−βh−Φ(p)h
. (3.10)

Note here that Φ(p) > 0 for all p > 0. On the other hand, using conditioning

(Lemma A.1), for any α ≥ 0:

E
[
e−αG

∗
ep

]
= E

[(
(u, t) 7→

∞∑
k=0

1[0,∞)(tk)e
−αtk1[tk,tk+1)(u)

)
◦ (ep, T )

]

= E

[(
t 7→

∞∑
k=0

1[0,∞)(tk)e
−αtk(e−ptk − e−ptk+1)

)
◦ T

]
, since ep ⊥ T

= E

[ ∞∑
k=0

1{Tk<∞}

(
e−(p+α)Tk − e−(p+α)Tke−p(Tk+1−Tk)

)]

= E

[ ∞∑
k=0

e−(p+α)Tk1{Tk<∞}

(
1− e−p(Tk+1−Tk)

)]
.

Now, conditionally on Tk < ∞, Tk+1 − Tk is independent of Tk and has the same

distribution as T1. Therefore, by (3.7) and the theorem of Fubini:

E[e−αG
∗
ep ] =

∞∑
k=0

e−Φ(p+α)hk(1− e−Φ(p)h) =
1− e−Φ(p)h

1− e−Φ(p+α)h
. (3.11)

We identify from (3.10) for any β ∈ C→: κ∗(p,0)
κ∗(p,β) = 1−e−Φ(p)h

1−e−βh−Φ(p)h and therefore for

any α ≥ 0: κ∗(p+α,0)
κ∗(p+α,β) = 1−e−Φ(p+α)h

1−e−βh−Φ(p+α)h . We identify from (3.11) for any α ≥ 0:
κ∗(p,0)

κ∗(p+α,0) = 1−e−hΦ(p)

1−e−Φ(p+α)h . Therefore, multiplying the last two equalities, for α ≥ 0
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and β ∈ C→, the equality:

κ∗(p, 0)

κ∗(p+ α, β)
=

1− e−Φ(p)h

1− e−βh−Φ(p+α)h
(3.12)

obtains. In particular, for α > 0 and β ∈ C→, we recognize for some constant
k∗ ∈ (0,∞): κ∗(α, β) = k∗(1 − e−(β+Φ(α))h). Next, observe that by independence
and duality (for α ≥ 0 and θ ∈ R):

E[exp{−αG∗ep + iθXep}]E[exp{−αGep + iθXep
}] =

∫ ∞
0

dtpe−ptE[exp{−αt+ iθXt}] =∫ ∞
0

dtpe−pt−αt+Ψ(θ)t =
p

p+ α−Ψ(θ)
.

Therefore:

(p+ α− ψ(iθ))
κ̂(p, 0)

κ̂(p+ α, iθ)
= p

1− eiθh−Φ(p+α)h

1− e−Φ(p)h
.

Both sides of this equality are continuous in θ ∈ C↓ and analytic in θ ∈ C↓. They

agree on R, hence agree on C↓ by analytic continuation. Therefore (for all α ≥ 0,

β ∈ C→):

(p+ α− ψ(β))
κ̂(p, 0)

κ̂(p+ α, β)
= p

1− eβh−Φ(p+α)h

1− e−Φ(p)h
, (3.13)

i.e. for all β ∈ C→ and α ≥ 0 for which p+ α 6= ψ(β) one has:

E[exp{−αGep + βXep}] =
p

p+ α− ψ(β)

1− e(β−Φ(p+α))h

1− e−Φ(p)h
.

Moreover, for the unique β0 > 0, for which ψ(β0) = p+α, one can take the limit β →
β0 in the above to obtain: E[exp{−αGep + β0Xep}] = ph

ψ′(β0)(1−e−Φ(p)h)
= phΦ′(p+α)

1−e−Φ(p)h .

We also recognize from (3.13) for α > 0 and β ∈ C→ with α 6= ψ(β), and some

constant k̂ ∈ (0,∞): κ̂(α, β) = k̂ α−ψ(β)

1−e(β−Φ(α))h . With β0 = Φ(α) one can take the

limit in the latter as β → β0 to obtain: κ̂(α, β0) = k̂ψ′(β0)/h = k̂
hΦ′(α) .

In summary:

Theorem 3.22 (Wiener-Hopf factorization for upwards skip-free Lévy chains). We

have the following identities in terms of ψ and Φ:

(i) For every α ≥ 0 and β ∈ C→:

E[exp{−αG∗ep − βXep}] =
1− e−Φ(p)h

1− e−(β+Φ(p+α))h

and

E[exp{−αGep + βXep}] =
p

p+ α− ψ(β)

1− e(β−Φ(p+α))h

1− e−Φ(p)h
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(the latter whenever p + α 6= ψ(β); for the unique β0 > 0 such that ψ(β0) =

p+α, i.e. for β0 = Φ(p+α), the right-hand side is given by ph
ψ′(β0)(1−e−Φ(p)h)

=

phΦ′(p+α)

1−e−Φ(p)h ).

(ii) For some {k∗, k̂} ⊂ R+ and then for every α > 0 and β ∈ C→:

κ∗(α, β) = k∗(1− e−(β+Φ(α))h)

and

κ̂(α, β) = k̂
α− ψ(β)

1− e(β−Φ(α))h

(the latter whenever α 6= ψ(β); for the unique β0 > 0 such that ψ(β0) = α,

i.e. for β0 = Φ(α), one has the right-hand side given by k̂ψ′(β0)/h = k̂
hΦ′(α)).

As a consequence of Theorem 3.22(i), we obtain the formula for the Laplace

transform of the running infimum evaluated at an independent exponentially dis-

tributed random time ep:

E[e
βXep ] =

p

p− ψ(β)

1− e(β−Φ(p))h

1− e−Φ(p)h
(β ∈ R+\{Φ(p)}) (3.14)

(and E[e
Φ(p)Xep ] = pΦ′(p)h

1−e−Φ(p)h ). In particular, if ψ′(0+) > 0, then letting p ↓ 0 in

(3.14), one obtains by the DCT:

E[eβX∞ ] =
eβh − 1

Φ′(0+)hψ(β)
(β > 0). (3.15)

3.2.4 Theory of scale functions

Again the reader is invited to compare the exposition of the following subsection

with that of [Bertoin, 1996, Section VII.2] and [Kyprianou, 2006, Section 8.2], which

deal with the spectrally negative case.

The scale function W

It will be convenient to consider in this paragraph the times at which X attains
a new maximum. We let D1, D2 and so on, denote the depths (possibly zero, or
infinity) of the excursions below these new maxima. For k ∈ N, it is agreed that
Dk = +∞ if the process X never reaches the level (k − 1)h. Then it is clear that
for y ∈ Z+

h , x ≥ 0 (cf. [Bühlmann, 1970, p. 137, Paragraph 6.2.4(a)] [Doney and
Picard, 2007, p. 99, Section 9.3]):

P(XTy
≥ −x) = P(D1 ≤ x,D2 ≤ x+ h, . . . ,Dy/h ≤ x+ y − h) =
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P(D1 ≤ x) · P(D1 ≤ x+ h) · · ·P(D1 ≤ x+ y − h) =

∏b(y+x)/hc
r=1 P(D1 ≤ (r − 1)h)∏bx/hch
r=1 P(D1 ≤ (r − 1)h)

=
W (x)

W (x+ y)
,

where we have introduced (up to a multiplicative constant) the scale function:

W (x) := 1/

bx/hc∏
r=1

P(D1 ≤ (r − 1)h) (x ≥ 0). (3.16)

(When convenient, we extend W by 0 on (−∞, 0).)

Remark 3.23. If needed, we can of course express P(D1 ≤ hk), k ∈ N0, in terms of

the usual excursions away from the maximum. Thus, let D̃1 be the depth of the

first excursion away from the current maximum. By the time the process attains a

new maximum (that is to say h), conditionally on this event, it will make a total of

N departures away from the maximum, where (with J1 the first jump time of X,

p := λ({h})/λ(R), p̃ := P(XJ1 = h|Th < ∞) = p/P(Th < ∞)) N ∼ geom(p̃). So,

denoting θ̃k := P(D̃1 ≤ hk), one has P(D1 ≤ hk) = P(Th < ∞)
∑∞

l=0 p̃(1 − p̃)lθ̃lk =
p

1−(1−eΦ(0)hp)θ̃k
, k ∈ N0.

The following theorem characterizes the scale function in terms of its Laplace

transform.

Theorem 3.24 (The scale function). For every y ∈ Z+
h and x ≥ 0 one has:

P(XTy ≥ −x) =
W (x)

W (x+ y)
(3.17)

and W : [0,∞) → [0,∞) is (up to a multiplicative constant) the unique right-

continuous and piecewise continuous function of exponential order with Laplace

transform:

Ŵ (β) =

∫ ∞
0

e−βxW (x)dx =
eβh − 1

βhψ(β)
(β > Φ(0)). (3.18)

Proof. (For uniqueness see e.g. [Engelberg, 2005, p. 14, Theorem 10]. It is clear

that W is of exponential order, simply from the definition (3.16).)

Suppose first X tends to +∞. Then, letting y → ∞ in (3.17) above, we

obtain P(−X∞ ≤ x) = W (x)/W (+∞). Here, since the left-hand side limit exists

by the DCT, is finite and non-zero at least for all large enough x, so does the

right-hand side, and W (+∞) ∈ (0,∞).

Therefore W (x) = W (+∞)P(−X∞ ≤ x) and hence the Laplace-Stieltjes

transform of W is given by (3.15) — here we consider W as being extended by 0 on

(−∞, 0):
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∫
[0,∞)

e−βxdW (x) = W (+∞)
eβh − 1

Φ′(0+)hψ(β)
(β > 0).

Since (integration by parts [Revuz and Yor, 1999, Chapter 0, Proposition 4.5])∫
[0,∞) e

−βxdW (x) = β
∫

(0,∞) e
−βxW (x)dx,

∫ ∞
0

e−βxW (x)dx =
W (+∞)

Φ′(0+)

eβh − 1

βhψ(β)
(β > 0). (3.19)

Suppose now that X oscillates. Via Remark 3.19, approximate X by the processes

Xε, ε > 0. In (3.19), fix β, carry over everything except for W (+∞)
Φ′(0+) , divide both

sides by W (0), and then apply this equality to Xε. Then on the left-hand side, the

quantities pertaining to Xε will converge to the ones for the process X as ε ↓ 0

by the MCT. Indeed, for y ∈ Z+
h , P(XTy = 0) = W (0)/W (y) and (in the obvious

notation): 1/P(Xε
T εy

= 0) ↑ 1/P(XTy = 0) = W (y)/W (0), since Xε ↓ X, uniformly

on bounded time sets, almost surely, as ε ↓ 0. (It is enough to have convergence

for y ∈ Z+
h , as this implies convergence for all y ≥ 0, W being the right-continuous

piecewise constant extension of W |Z+
h

.) Thus we obtain in the oscillating case, for

some α ∈ (0,∞) which is the limit of the right-hand side as ε ↓ 0:∫ ∞
0

e−βxW (x)dx = α
eβh − 1

βhψ(β)
(β > 0). (3.20)

Finally, we are left with the case when X drifts to −∞. We treat this case by a
change of measure (see Proposition 3.20 and the paragraph immediately preceding
it). To this end assume, provisionally, that X is already the coordinate process
on the canonical filtered space Dh. Then we calculate by Proposition 3.21(2) (for
y ∈ Z+

h , x ≥ 0):

P(XTy
≥ −x) = P(Ty <∞)P(XTy

≥ −x|Ty <∞) = e−Φ(0)yP(XTy
∞ ≥ −x|Ty <∞) =

e−Φ(0)yP\(XTy
∞ ≥ −x) = e−Φ(0)yP\(XT (y) ≥ −x) = e−Φ(0)yW \(x)/W \(x+ y),

where the third equality uses the fact that (ω 7→ inf{ω(s) : s ∈ [0,∞)}) : (Dh,F)→
([−∞,∞),B([−∞,∞)) is a measurable transformation. Here W \ is the scale func-

tion corresponding to X under the measure P\, with Laplace transform:∫ ∞
0

e−βxW \(x)dx =
eβh − 1

βhψ(Φ(0) + β)
(β > 0).

Note that the equality P(XTy ≥ −x) = e−Φ(0)yW \(x)/W \(x+ y) remains true if we

revert back to our original X (no longer assumed to be in its canonical guise). This

is so because we can always go from X to its canonical counter-part by taking an
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image measure. Then the law of the process, hence the Laplace exponent and the

probability P(XTy ≥ −x) do not change in this transformation.

Now define W̃ (x) := eΦ(0)b1+x/hchW \(x) (x ≥ 0). Then W̃ is the right-

continuous piecewise-constant extension of W̃ |Z+
h

. Moreover, for all y ∈ Z+
h and

x ≥ 0, (3.17) obtains with W replaced by W̃ . Plugging in x = 0 into (3.17), W̃ |Zh
and W |Zh coincide up to a multiplicative constant, hence W̃ and W do as well.

Moreover, for all β > Φ(0), by the MCT:∫ ∞
0

e−βxW̃ (x)dx = eΦ(0)h
∞∑
k=0

∫ (k+1)h

kh
e−βxeΦ(0)khW \(kh)dx

= eΦ(0)h
∞∑
k=0

1

β
e−βkh(1− e−βh)eΦ(0)khW \(kh)

= eΦ(0)hβ − Φ(0)

β

1− e−βh

1− e−(β−Φ(0))h

∫ ∞
0

e−(β−Φ(0))xW \(x)dx

= eΦ(0)hβ − Φ(0)

β

1− e−βh

1− e−(β−Φ(0))h

e(β−Φ(0))h − 1

(β − Φ(0))hψ(β)
=

(eβh − 1)

βhψ(β)
.

Remark 3.25. Henceforth the normalization of the scale function W will be under-

stood so as to enforce the validity of (3.18).

Proposition 3.26. W (0) = 1/(hλ({h})), and W (+∞) = 1/ψ′(0+) if Φ(0) = 0. If

Φ(0) > 0, then W (+∞) = +∞.

Proof. Integration by parts and the DCT yield W (0) = limβ→∞ βŴ (β). (3.18) and

another application of the DCT then show that W (0) = 1/(hλ({h})). Similarly,

integration by parts and the MCT give the identity W (+∞) = limβ↓0 βŴ (β). The

conclusion W (+∞) = 1/ψ′(0+) is then immediate from (3.18) when Φ(0) = 0. If

Φ(0) > 0, then the right-hand side of (3.18) tends to infinity as β ↓ Φ(0) and thus,

by the MCT, necessarily W (+∞) = +∞.

The scale functions W (q), q ≥ 0

Definition 3.27. For q ≥ 0, let W (q)(x) := eΦ(q)b1+x/hchWΦ(q)(x) (x ≥ 0), where

Wc plays the role of W but for the process (X,Pc) (c ≥ 0; see Proposition 3.20).

Note that W (0) = W . When convenient we extend W (q) by 0 on (−∞, 0).

Theorem 3.28. For each q ≥ 0, W (q) : [0,∞) → [0,∞) is the unique right-

continuous and piecewise continuous function of exponential order with Laplace
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transform:

Ŵ (q)(β) =

∫ ∞
0

e−βxW (q)(x)dx =
eβh − 1

βh(ψ(β)− q)
(β > Φ(q)). (3.21)

Moreover, for all y ∈ Z+
h and x ≥ 0:

E[e−qTy1{XTy
≥−x}] =

W (q)(x)

W (q)(x+ y)
. (3.22)

Proof. The claim regarding the Laplace transform follows from Proposition 3.20,

Theorem 3.24 and Definition 3.27 as it did in the case of the scale function W (cf.

final paragraph of the proof of Theorem 3.24). For the second assertion, let us

calculate (moving onto the canonical space Dh as usual, using Proposition 3.20 and

noting that XTy = y on {Ty <∞}):

E[e−qTy1{XTy
≥−x}] = E[eΦ(q)XTy−qTy1{XTy

≥−x}]e
−Φ(q)y =

e−Φ(q)yPΦ(q)(XTy ≥ −x) = e−Φ(q)y WΦ(q)(x)

WΦ(q)(x+ y)
=

W (q)(x)

W (q)(x+ y)
.

Proposition 3.29. For all q > 0: W (q)(0) = 1/(hλ({h})) and W (q)(+∞) = +∞.

Proof. As in Proposition 3.26, W (q)(0) = limβ→∞ βŴ (q)(β) = 1/(hλ({h})). Since

Φ(q) > 0, W (q)(+∞) = +∞ also follows at once from the expression for Ŵ (q).

Moreover:

Proposition 3.30. For q ≥ 0:

(i) If Φ(q) > 0 or ψ′(0+) > 0, then limx→∞W
(q)(x)e−Φ(q)b1+x/hch = 1/ψ′(Φ(q)).

(ii) If Φ(q) = ψ′(0+) = 0 (hence q = 0), then W (q)(+∞) = +∞, however

lim supx→∞W
(q)(x)/x < ∞. Indeed, limx→∞W

(q)(x)/x = 2/m2, if m2 :=∫
y2λ(dy) <∞ and limx→∞W

(q)(x)/x = 0, if m2 =∞.

Proof. The first claim is immediate from Proposition 3.26, Definition 3.27 and

Proposition 3.20. To handle the second claim, let us calculate, for the Laplace

transform d̂W of the measure dW , the quantity (using integration by parts, Theo-

rem 3.24 and the fact that (since ψ′(0+) = 0)
∫
yλ(dy) = 0):

lim
β↓0

βd̂W (β) = lim
β↓0

β2

ψ(β)
=

2

m2
∈ [0,+∞).
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For:

lim
β↓0

∫
(eβy − 1)λ(dy)/β2 = lim

β↓0

∫
eβy − βy − 1

β2y2
y2λ(dy) =

m2

2
,

by the MCT, since (u 7→ e−u+u−1
u2 ) is nonincreasing on (0,∞) (the latter can be

checked by comparing derivatives). The claim then follows by the Karamata Taube-

rian Theorem [Bingham et al., 1987, p. 37, Theorem 1.7.1 with ρ = 1].

The functions Z(q), q ≥ 0

Definition 3.31. For each q ≥ 0, let Z(q)(x) := 1 + q
∫ bx/hch

0 W (q)(z)dz (x ≥ 0).

When convenient we extend these functions by 1 on (−∞, 0).

Proposition 3.32. In the sense of measures on the real line, for every q > 0:

P−Xeq
=

qh

eΦ(q)h − 1
dW (q) − qW (q)(· − h) ·∆,

where ∆ := h
∑∞

k=1 δkh is the normalized counting measure on Z++
h ⊂ R, P−Xeq

is

the law of −Xeq under P, and (W (q)(·−h) ·∆)(A) =
∫
AW

(q)(y−h)∆(dy) for Borel

subsets A of R.

Theorem 3.33. For each x ≥ 0,

E[e−qT
−
x 1{T−x <∞}] = Z(q)(x)− qh

eΦ(q)h − 1
W (q)(x) (3.23)

when q > 0, and P(T−x <∞) = 1−W (x)/W (+∞). The Laplace transform of Z(q),

q ≥ 0, is given by:

Ẑ(q)(β) =

∫ ∞
0

Z(q)(x)e−βxdx =
1

β

(
1 +

q

ψ(β)− q

)
, (β > Φ(q)). (3.24)

Proof of Proposition 3.32 and Theorem 3.33. First, with regard to the Laplace

transform of Z(q), we have the following derivation (using integration by parts, for

every β > Φ(q)):

∫ ∞
0

Z(q)(x)e−βxdx =

∫ ∞
0

e−βx

β
dZ(q)(x) =

1

β

(
1 + q

∞∑
k=1

e−βkhW (q)((k − 1)h)h

)

=
1

β

(
1 +

qe−βhβh

1− e−βh
∞∑
k=1

(1− e−βh)

β
e−β(k−1)hW (q)((k − 1)h)

)

=
1

β

(
1 + q

βh

eβh − 1
Ŵ (q)(β)

)
=

1

β

(
1 +

q

ψ(β)− q

)
.
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Next, to prove Proposition 3.32, note that it will be sufficient to check the

equality of the Laplace transforms [Bhattacharya and Waymire, 2007, p. 109, The-

orem 8.4]. By what we have just shown, (3.14), integration by parts, and Theo-

rem 3.28, we need then only establish, for β > Φ(q):

q

ψ(β)− q
e(β−Φ(q))h − 1

1− e−Φ(q)h
=

qh

eΦ(q)h − 1

β(eβh − 1)

(ψ(β)− q)βh
− q

ψ(β)− q
,

which is clear.

Finally, let x ∈ Z+
h . For q > 0, evaluate the measures in Proposition 3.32 at

[0, x], to obtain:

E[e−qT
−
x 1{T−x <∞}] = P(eq ≥ T−x ) = P(Xeq < −x) = 1− P(Xeq ≥ −x)

= 1 + q

∫ x

0
W (q)(z)dz − qh

eΦ(q)h − 1
W (q)(x),

whence the claim follows. On the other hand, when q = 0, the following calculation

is straightforward: P(T−x < ∞) = P(X∞ < −x) = 1 − P(X∞ ≥ −x) = 1 −
W (x)/W (+∞) (we have passed to the limit y →∞ in (3.17) and used the DCT on

the left-hand side of this equality).

Proposition 3.34. Let q ≥ 0, x ≥ 0, y ∈ Z+
h . Then:

E[e−qT
−
x 1{T−x <Ty}] = Z(q)(x)− Z(q)(x+ y)

W (q)(x)

W (q)(x+ y)
.

Proof. Observe that {T−x = Ty} = ∅, P-a.s. The case when q = 0 is immediate
and indeed contained in Theorem 3.24, since, P-a.s., Ω\{T−x < Ty} = {T−x ≥ Ty} =
{XTy ≥ −x}. For q > 0 we observe that by the strong Markov property, Theo-
rem 3.28 and Theorem 3.33:

E[e−qT
−
x 1{T−x <Ty}

] = E[e−qT
−
x 1{T−x <∞}

]− E[e−qT
−
x 1{Ty<T−x <∞}

]

= Z(q)(x)− qh

eΦ(q)h − 1
W (q)(x)− E[e−qTy1{Ty<T−x }]E[e−qT

−
x+y1{T−x+y<∞}

]

= Z(q)(x)− qh

eΦ(q)h − 1
W (q)(x)− W (q)(x)

W (q)(x+ y)

(
Z(q)(x+ y)− qh

eΦ(q)h − 1
W (q)(x+ y)

)
= Z(q)(x)− Z(q)(x+ y)

W (q)(x)

W (q)(x+ y)
.
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Calculating scale functions

In this paragraph it will be assumed for notational convenience, but without loss of

generality, that h = 1 and that X is the canonical process on Ω = Dh equipped with

the usual σ-algebra and filtration. We define:

γ := λ(R), p := λ({1})/γ, qk := λ({−k})/γ, k ≥ 1.

Fix q ≥ 0. Then denote, provisionally, em,k := E[e−qTk1{XTk
≥−m}], and ek := e0,k,

where {m, k} ⊂ N0 and note that, thanks to Theorem 3.28, em,k =
em+k

em
for all

{m, k} ⊂ N0. Now, e0 = 1. Moreover, by the strong Markov property and using
Lemma A.1, for each k ∈ N0, by conditioning on FTk and then on FJ , where J is the
time of the first jump after Tk (so that, conditionally on Tk <∞, J−Tk ∼ Exp(γ)):

ek+1 = E
[
e−qTk1{XTk≥0}e

−q(J−Tk)(
1(next jump after Tk up) +

1(next jump after Tk 1 down, then up 2 before down more than k − 1) + · · ·+

1(next jump after Tk k down & then up k + 1 before down more than 0)
)
e−q(Tk+1−J)

]
= ek

γ

γ + q
[p+ q1ek−1,2 + · · ·+ qke0,k+1] = ek

γ

γ + q
[p+ q1

ek+1

ek−1
+ · · ·+ qk

ek+1

e0
].

Upon division by ekek+1, we obtain:

W (q)(k) =
γ

γ + q
[pW (q)(k + 1) + q1W

(q)(k − 1) + · · ·+ qkW
(q)(0)].

Put another way, for all k ∈ Z+:

pW (q)(k + 1) =

(
1 +

q

γ

)
W (q)(k)−

k∑
l=1

qlW
(q)(k − l). (3.25)

Coupled with the initial condition W (q)(0) = 1/(γp) (from Proposition 3.29 and

Proposition 3.26), this is an explicit recursion scheme by which the values of W (q)

can be obtained (cf. [Vylder and Goovaerts, 1988, Section 4, Equations (6) & (7)]

[Dickson and Waters, 1991, Section 7, Equations (7.1) & (7.5)] [Marchal, 2001, p.

255, Proposition 3.1]). We can also see the vector W (q) = (W (q)(k))k∈Z as a suitable

eigenvector of the transition matrix P associated to the jump chain of X. Namely,

we have for all k ∈ Z+:
(

1 + q
γ

)
W (q)(k) =

∑
l∈Z PklW

(q)(l).

Now, with regard to the function Z(q), its values can be computed directly

from the values of W (q) by a straightforward summation, indeed: Z(q)(n) = 1 +

q
∑n−1

k=0 W
(q)(k) (n ∈ N0). Alternatively, (3.25) yields immediately its analogue,

valid for each n ∈ Z+ (make a summation
∑n−1

k=0 and multiply by q, using Fubini’s
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theorem for the last sum):

pZ(q)(n+ 1)− p− pqW (q)(0) =

(
1 +

q

γ

)
(Z(q)(n)− 1)−

n−1∑
l=1

ql(Z
(q)(n− l)− 1),

i.e. for all k ∈ Z+:

pZ(q)(k + 1) +

(
1− p−

k−1∑
l=1

ql

)
=

(
1 +

q

γ

)
Z(q)(k)−

k−1∑
l=1

qlZ
(q)(k − l). (3.26)

Again this can be seen as an eigenvalue problem. Namely, for all k ∈ Z+ we have:(
1 + q

γ

)
Z(q)(k) =

∑
l∈Z PklZ

(q)(l). In summary:

Proposition 3.35 (Calculation of W (q) and Z(q)). Let h = 1 and q ≥ 0. Seen as

vectors, W (q) := (W (q)(k))k∈Z and Z(q) := (Z(q)(k))k∈Z satisfy, entry-by-entry (P

being the transition matrix associated to the jump chain of X; λq := 1 + q/λ(R)):

(PW (q))|Z+ = λqW
(q)|Z+ and (PZ(q))|Z+ = λqZ

(q)|Z+ , (3.27)

i.e. (3.25) and (3.26) hold true for k ∈ Z+. Additionally, W (q)|Z− = 0 with

W (q)(0) = 1/λ({1}), whereas Z(q)|Z− = 1.

For the purposes of the following remark and corollary it is no longer assumed

that h = 1 or, indeed, that the underlying filtered probability space is the canonical

one, i.e. we revert back to our original setting.

Remark 3.36. Let L be the infinitesimal generator [Sato, 1999, p. 208, Theorem 31.5]

of X. It is seen from (3.27), that for each q ≥ 0, ((L − q)W (q))|R+ = ((L −
q)Z(q))|R+ = 0.

Corollary 3.37. For each q ≥ 0, the stopped processes Y and Z, defined by Yt :=

e−q(t∧T
−
0 )W (q) ◦ Xt∧T−0

and Zt := e−q(t∧T
−
0 )W (q) ◦ Xt∧T−0

, t ≥ 0, are nonnegative

P-martingales with respect to the natural filtration FX = (FXs )s≥0 of X.

Proof. We argue for the case of the process Y , the justification for Z being similar.
Let (Hk)k≥1, H0 := 0, be the sequence of jump times of X (where, possibly by
discarding a P-negligible set, we may insist on all of the Hk, k ∈ N0, being finite
and increasing to +∞ as k →∞). Let 0 ≤ s < t, A ∈ FXs . By the MCT it will be
sufficient to establish for {l, k} ⊂ N0, l ≤ k, that:

E[1(Hl ≤ s < Hl+1)1AYt1(Hk ≤ t < Hk+1)]=E[1(Hl ≤ s < Hl+1)1AYs1(Hk ≤ t < Hk+1)]. (3.28)

On the left-hand (respectively right-hand) side of (3.28) we may now replace Yt

(respectively Ys) by YHk (respectively YHl) and then harmlessly insist on l < k.
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Moreover, up to a completion, FXs ⊂ σ((Hm ∧ s,X(Hm ∧ s))m≥0). Therefore, by a

π/λ-argument, we need only verify (3.28) for sets A of the form: A =
⋂M
m=1{Hm∧s ∈

Am} ∩ {X(Hm ∧ s) ∈ Bm}, Am, Bm Borel subsets of R, 1 ≤ m ≤ M , M ∈ N. Due

to the presence of the indicator 1(Hl ≤ s < Hl+1), we may also take, without loss of

generality, M = l and hence A ∈ FXHl . Further, H := σ(Hl+1−Hl, Hk −Hl, Hk+1−
Hl) is independent of FXHl ∨ σ(YHk) and then E[YHk |FXHl ∨ H] = E[YHk |FXHl ] = YHl ,

P-a.s. (as follows at once from (3.27) of Proposition 3.35), whence (3.28) obtains.
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Chapter 4

Application to the numerical

evaluation of scale functions for

spectrally negative Lévy

processes

We introduce a general algorithm for the computation of the scale func-

tions of a spectrally negative Lévy process X, based on the weak ap-

proximation of X via upwards skip-free continuous-time Markov chains

with stationary independent increments from Chapter 2. The algorithm

consists of evaluating a finite linear recursion with coefficients given ex-

plicitly in terms of the Lévy triplet of X, thus providing an explicit link

between the semimartingale characteristics of X and its scale functions.

In the interest of space we forgo making the analysis of the algorithm

explicit in the present thesis; the interested reader is referred instead to

the preprint [Mijatović, Vidmar, and Jacka, 2013b].

Throughout this chapter we let X be a spectrally negative Lévy process (see Defini-

tion 1.27). The Laplace exponent ψ of X can then be expressed as (see e.g. [Bertoin,

1996, p. 188]):

ψ(β) =
1

2
σ2β2 + µβ +

∫
(−∞,0)

(
eβy − βyc̃(y)− 1

)
λ(dy), β ∈ C→.

The Lévy triplet of X is thus given by (σ2, λ, µ)c̃, c̃ := 1[−V,0) with V equal to

either 0 or 1, the former only if
∫

[−1,0) |x|λ(dx) < ∞. Further, when the Lévy
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measure satisfies
∫

[−1,0) |x|λ(dx) <∞, we may always express ψ in the form ψ(β) =
1
2σ

2β2 + µ0β +
∫

(−∞,0)

(
eβy − 1

)
λ(dy) for β ∈ C→. If in addition σ2 = 0, then

necessarily the drift µ0 must be positive, µ0 > 0 [Kyprianou, 2006, p. 212].

4.1 Introduction

For a spectrally negative Lévy process X, fluctuation theory in terms of the two

families of scale functions, (W (q))q∈[0,∞) and (Z(q))q∈[0,∞), has been developed (see

Subsection 1.2.2 and the references therein). Of particular importance is the function

W := W (0), in terms of which the others may be defined, and which features in the

solution of many important problems of applied probability (see Section 4.2 below).

It is central to these applications to be able to evaluate scale functions numerically

for any spectrally negative Lévy process X.

Analytically, W is characterized by its Laplace transform. Typically, how-

ever, it is not possible to perform the inversion explicitly and the user is faced with

a Laplace inversion algorithm, involving, usually, complex numerical integration of

a function of the Laplace exponent of X, and certainly the evaluation of the Laplace

exponent (for complex arguments). While such a procedure provides a way of nu-

merically evaluating W , it says little about the dependence of the scale function on

the Lévy triplet of X: recall that the characteristic exponent of X depends on a

parametric complex integral of the Lévy measure, a function of which the algorithm

integrates numerically in the parameter along a curve in the complex plane (in the

case of the Bromwich integral), making it hard to discern how a perturbation in the

Lévy measure influences the values taken by the scale function. Moreover, a Laplace

inversion algorithm fails to ensure that the computed values of the scale function

are probabilistically meaningful. Put differently, given an output of a numerical

Laplace inversion it is not necessary that the formulae involving W in Section 4.2

below yield probabilities of events, i.e. values in the interval [0, 1].

The goal of the present chapter is to define a very simple novel algorithm

for computing W , based on a purely probabilistic idea of the weak approximation

from Chapter 2 and the findings of Section 3.2 (Chapter 3), which avoids all the

issues mentioned in the paragraph above. Indeed, this weak approximation of X

(as a Markov process) by a CTMC, which (as it emerges) is skip-free to the right,

provides a natural way of encoding the underlying probabilistic structure of the

problem in the design of the algorithm. In particular, to compute W (x) for some

x > 0, choose small h > 0 such that x/h is an integer and define the approximation
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Wh(x) by the formula:

pWh(y + h) = Wh(y)−
y/h∑
k=1

qkWh(y − kh), Wh(0) = (pγh)−1, (4.1)

for y = 0, h, 2h, . . . , x−h, where the coefficients p, (qk)k≥1 and γ are given explicitly

in terms of the Lévy measure λ, (possibly vanishing) Gaussian component σ2 and

drift µ of the spectrally negative Lévy process X (see (4.4)–(4.5) in Section 4.3

below). Furthermore, these coefficients have a natural probabilistic interpretation

in terms of the upwards skip-free Lévy chain (see Definition 3.1), which is used to

approximate X: p (resp. qk, k ∈ N) is the probability that the jump of the chain

is of size h (resp. −kh, k ∈ N) and γ is the total mass of the Lévy measure of

the chain. An algorithm, completely analogous to (4.1), for the computation of the

scale functions W (q) and Z(q), q ≥ 0, also follows from our results.

Now, it is clear from (4.1) that the values of Wh may be computed by a

simple finite linear recursion with coefficients given explicitly in terms of the char-

acteristics of X. Algorithm (4.1) yields, as a by-product of the evaluation of Wh(x),

values Wh(y) for all y = 0, h, 2h, · · · , x− h, x (see MATLAB code for the algorithm

in [Mijatović, Vidmar, and Jacka, 2013a]).

Furthermore, Algorithm (4.1) provides an explicit link between the (deter-

ministic) semimartingale characteristics of X, and in particular its Lévy measure,

and the scale function W (see (4.4)–(4.5)). This is analogous in spirit to the one-

dimensional Itô diffusion setting, where the computation of the scale function re-

quires numerical evaluation of certain integrals of the coefficients of the SDE driv-

ing the diffusion, thus linking the deterministic characteristics of the process with

its scale function (for the explicit formulae of the integrals see e.g. [Borodin and

Salminen, 2002, Chapters 2 and 3]). Moreover, Algorithm (4.1) gives a precise eval-

uation (modulo computer arithmetic) of a scale function, introduced in Section 3.2

of Chapter 3, of the approximating upwards skip-free Lévy chain and hence yields

probabilistically consistent outputs whenever it is well-defined.

Finally, one may show, albeit we avoid making this explicit in the present

thesis (but refer the reader to the preprint [Mijatović, Vidmar, and Jacka, 2013b]),

that, as h ↓ 0, the pointwise convergence of the approximating scale functions to

those of the original Lévy process holds; further, under mild additional assumptions,

it is possible to establish the sharp rate at which this convergence transpires on Zh
(again see [Mijatović, Vidmar, and Jacka, 2013b]) .
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4.2 Literature overview and applications

An excellent overview of available numerical methods for computing the scale func-

tions can be found in [Kuznetsov et al., 2013, Chapter 5]. Except possibly for

special subclasses of the spectrally negative family, these are one or another of the

many Laplace inversion methods, which have stood the test of time. They require,

thus, the evaluation of the Laplace exponent at complex, rarely only real, values of

its argument. This makes our proposed approach qualitatively different from the

techniques in the literature.

Nevertheless, in the special case when X is a positive drift minus a com-

pound Poisson subordinator, numerical schemes for (finite time) ruin/survival prob-

abilities that very much parallel our approach have been proposed (see e.g. [Vylder

and Goovaerts, 1988] and [Dickson and Waters, 1991]; note that ruin probabilities

are intimately related to scale functions, see (i)-(ii) below). Indeed, discrete-time

Markov chain approximations of one sort or another for this, modulo the starting

value, classical insurance surplus process in the collective model, are quite ubiqui-

tous in literature (see further e.g. [Cardoso and Waters, 2003; Dickson and Gray,

1984] and the references therein).

Further, for an overview of (the few, but important) examples when the scale

functions can be given analytically, see e.g. [Hubalek and Kyprianou, 2011]. Indeed,

in the case of meromorphic Lévy processes [Kuznetsov et al., 2012], a computational

method for the (finite-time) Gerber-Shiu measure (which is related to scale functions

[Kyprianou, 2013, Theorem 5.5]) can be found in [Kuznetsov and Morales, 2014].

We note that it is also possible to construct various scale functions indirectly, see

e.g. [Kuznetsov et al., 2013, Chapter 4], i.e. not starting from the basic datum,

which we consider to be the characteristic triplet of X.

Finally, in terms of applications there are numerous identities concerning

boundary crossing problems and related path decompositions in which scale func-

tions feature [Kuznetsov et al., 2013, p. 100]. They do so either indirectly (usually as

Laplace transforms of quantities which are ultimately of interest), or even directly.

We list a few important problems in applied probability, the solutions of which are

given explicitly in terms of the scale function W (see Subsection 1.2.2 for notation

regarding first passage times, the supremum process etc.):

(i) Two-sided exit problem. For a ≥ 0, recall Ta (respectively T−a ) is the first

entrance time of X to [a,∞) (respectively (−∞,−a)), see Definition 1.20.

Then:

P(T−x > Ta) =
W (x)

W (a+ x)
,
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whenever {a, x} ⊂ R+, see e.g. [Bertoin, 1996, Chapter VII, Theorem 8].

These quantities are of interest for the insurance industry, where capital may

be modeled, e.g., by a positive drift (representing accrued premiums) minus a

subordinator (representing claims), in which case x corresponds to the initial

capital.

(ii) Ruin probabilities. Of particular relevance in the insurance context is the

probability of eventual bankruptcy. In the case that the modeling Lévy pro-

cess X drifts to +∞, we have for x ∈ R+, the generalised Cramér-Lundberg

identity:

P(T−x =∞) = W (x)ψ′(0+),

where ψ is the Laplace exponent of X, see e.g. [Kyprianou, 2006, p. 217,

Equation (8.15)].

(iii) Continuous-state branching processes. Under mild conditions, the law

of the supremum of a continuous-state branching process Y is given by the

identity (for x ∈ R+, y ∈ R):

Py(sup
s≥0

Ys ≤ x) =
W (x− y)

W (x)
,

where W is the scale function of the associated Lévy process, see [Bingham,

1976].

(iv) Population biology. The typical branch length H between two consecutive

individuals alive at time t ∈ R+, conditionally on there being at least two

extant individuals at said time, satisfies the identity:

P(H < s) =
1−W (s)−1

1−W (t)−1
,

whenever s ∈ (0, t], and with W the scale function associated to the jumping

chronological contour process. We refer to [Lambert, 2011] for details.

Miscellaneous other areas featuring scale functions (together with their derivatives

and the integrals Z(q)) include queuing theory, optimal stopping and control prob-

lems, fragmentation processes etc. For example in:

(a) Optimal stopping. Consider the Shepp-Shiryaev optimal stopping problem

v(x) = supτ E[e−qτ+(Xτ∨x)] (which was solved for a spectrally negative Lévy

process X in [Avram et al., 2104]). Here X denotes the running supremum
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process of X, and the supremum is taken over all a.s. finite stopping times τ

relative to the natural filtration of X. Then, under relatively mild additional

conditions:

v(x) = exZ(q)(x∗ − x),

with x∗ = inf{x ≥ 0 : Z(q)(x) − qW (q)(x) ≤ 0}. Note that our algorithm

is particularly suited to the calculation of an approximation for x∗, since the

values of the scale functions are computed recursively, and one can simply stop

the first time a nonpositive value of the difference Z
(q)
h (x)−qW (q)

h (x) has been

found.

(b) Optimal control. In an optimal dividend problem involving a spectrally

negative Lévy process X and a discounting rate q, the value function u under

a barrier strategy at level a > 0, is given, under suitable conditions, by (for

details see [Loeffen, 2008]):

u(x) =

{
W (q)(x)/W (q)′(a), for 0 ≤ x ≤ a,
x− a+ W (q)(a)

W (q)′(a)
, for x > a.

For a comprehensive overview of these and further applications we refer to [Kuznetsov

et al., 2013, Section 1.2] and the references therein. A suite of identities involving

Laplace transforms of quantities pertaining to the reflected process of X can be

found in [Mijatović and Pistorius, 2012].

4.3 Genesis of the algorithm

The key idea leading to the algorithm in (4.1) is best described by the following

three steps: (i) approximate the spectrally negative Lévy process X by a family of

continuous-time Markov chains Xh with state space Zh (h ∈ (0, h?) for some h? > 0,

cf. Definition 2.19), as described in Chapter 2; (ii) recognize that the Xh are (upon

the choice of càdlàg versions) upwards skip-free Lévy chains and (iii) apply the

results of Proposition 3.35 to the processes Xh/h, h ∈ (0, h?). One thus obtains

for each q ≥ 0, a family of scale functions (W
(q)
h )h∈(0,h?), which approximate W (q)

(likewise for Z(q)) and converge thereto as h ↓ 0 (see [Mijatović, Vidmar, and Jacka,

2013b] for a precise analysis of this convergence). Moreover, a finite recursion for

computing these approximating scale functions is readily available.

We now explicate the three steps in some detail.

Consider first step (i). As we have seen in Chapter 2, we shall use two
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approximating schemes, scheme 1 and 2, according as to whether σ2 > 0 or σ2 = 0.

To construct the processes (Xh)h∈(0,h?), we further let V = 0, if λ is finite and V = 1,

if λ is infinite (see Table 2.1). Note h? ∈ (0,+∞] needs to be chosen small enough

to make the approximations well-defined (recall statement of Proposition 2.18). For

h > 0, define also chy := λ(Ahy) with Ahy := [y − h/2, y + h/2) (y ∈ Z−−h ); Ah0 :=

[−h/2, 0);

ch0 :=

∫
Ah0

y2
1[−V,0)(y)λ(dy) and µh :=

∑
y∈Z−−h

y

∫
Ahy

1[−V,0)(z)λ(dz).

It is clear from Chapter 2 that, for each h ∈ (0, h?), X
h will be a CP process

(we shall insist on càdlàg versions, as we may, cf. Remark 1.36), with Xh
0 = 0,

a.s., and whose positive jumps do not exceed h. Thus each Xh admits its Laplace

exponent ψh(β) := log E[eβX
h
1 ] (β ∈ C→), which in turn uniquely determines its

law. Moreover, ψh may be obtained from the characteristic exponent by analytic

continuation, and we have from Equations (2.10) and (2.11) (for β ∈ C→) under

scheme 1,

ψh(β) = (µ−µh)
eβh − e−βh

2h
+(σ2 +ch0)

eβh + e−βh − 2

2h2
+
∑

y∈Z−−h

chy

(
eβy − 1

)
, (4.2)

and under scheme 2,

ψh(β) = (µ− µh)
eβh − 1

h
+ ch0

eβh + e−βh − 2

2h2
+
∑

y∈Z−−h

chy

(
eβy − 1

)
. (4.3)

Note that, starting directly from (2.11), the term (µ − µh) e
βh−1
h in (4.3) should

actually read as:

(µ− µh)

(
eβh − 1

h
1[0,∞)(µ− µh) +

1− e−βh

h
1(−∞,0](µ− µh)

)
.

However, since X is a spectrally negative Lévy process, we have µ−µh ≥ 0, at least

for all sufficiently small h. For, if
∫

[−1,0) |y|λ(dy) <∞, then µ0 > 0 and by dominated

convergence µ− µh → µ0 as h ↓ 0. On the other hand, if
∫

[−1,0) |y|λ(dy) =∞, then

we deduce by monotone convergence −µh ≥ 1
2

∫
[−1,−h/2) |y|λ(dy)→∞ as h ↓ 0. We

may therefore assume that h? is already chosen small enough, so that µ − µh ≥ 0

holds for all h ∈ (0, h?).

In summary, then, h? is chosen so small as to guarantee that, for all h ∈
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(0, h?): (I) µ − µh ≥ 0 and (II) ψh is the Laplace exponent of some CP process

Xh, which is also a CTMC with state space Zh. Equations (4.2) and (4.3) then

determine the weak approximation (Xh)h∈(0,h?) precisely. This concludes step (i).

Next, it is easily seen that, for each h ∈ (0, h?), X
h is in fact an upwards

skip-free Lévy chain (establishing step (ii)): one need only check that λh({h}) > 0,

where λh is the Lévy measure of Xh, and this can be seen, e.g., from the explicit

expression for ψh.

Finally, step (iii) is nothing other than a direct application of Proposi-

tion 3.35. In particular, we can express explicitly the coefficients of the linear

recursion in (4.1) in terms of the Lévy triplet of X. Define:

σ̃2
h :=

1

2h2

(
σ2 + ch0

)
, µ̃h :=

1

2h

(
µ− µh

)
,

and note that µ̃h is non-negative for h ∈ (0, h?). Recall that V equals 0 or 1
according as to whether λ is finite or infinite and note that, if V = 0, we have
σ̃2
h = σ2/2h2 and µ̃h = µ/2h. We can now define the coefficients in (4.1) by:

γ := λ(−∞,−h/2) + 2σ̃2
h + 1{0}(σ

2)2µ̃h, p :=
(
σ̃2
h + 1(0,∞)(σ

2)µ̃h + 1{0}(σ
2)2µ̃h

)
/γ, (4.4)

q1 :=
(
σ̃2
h − 1(0,∞)(σ

2)µ̃h + ch−h

)
/γ, qk := chy/γ, where y = −kh, k ≥ 2. (4.5)

(observe that necessarily γ > 0).

4.4 Key attractions of algorithm

We conclude by summarising the key attractions of our algorithm (also in relation to

the numerical procedures for Laplace inversion currently available for the evaluation

of scale functions, see e.g. [Cohen, 2007] and [Kuznetsov et al., 2013, Chapter 5]):

(a) consistency : for each fixed h > 0, our algorithm calculates precisely (i.e.

without numerical error, only modulo rounding) the values of a scale function

for the process Xh, which weakly approximates X; i.e. no approximation is

required to evaluate a scale function of Xh;

(b) conceptual simplicity : a weak approximation of X (as a Markov process) by

a CTMC, which is skip-free to the right, provides a natural way of encod-

ing the underlying probabilistic structure of the problem in the design of the

algorithm;

(c) robustness: the method in (4.1) is valid for all spectrally negative Lévy pro-

cesses;
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(d) straightforwardness of the algorithm: the implementation requires only to solve

a lower triangular system of linear equations (Matlab code [Mijatović, Vidmar,

and Jacka, 2013a]) avoiding e.g. numerical complex integration;

(e) convergence: the rates of convergence of this algorithm have been established

under mild assumptions, together with their optimality [Mijatović, Vidmar,

and Jacka, 2013b] — these rates depend on the behaviour of the tail of the Lévy

measure at the origin; by contrast behaviour of Laplace inversion algorithms

tends to be susceptible to the degree of smoothness of the scale function itself

(for which see [Chan et al., 2011]) [Abate and Whitt, 2006]).

Finally, it is worth (in part re-) emphasizing the key difference between our algo-

rithm on the one hand, and any of the Laplace inversion techniques on the other.

Indeed, the latter start with the Laplace transform of the scale functions (thus the

Laplace exponent) as their basic datum, whilst the former derives the coefficients

needed for its computation directly from the characteristic triplet (modulo the com-

putation of the jump intensities of the approximating chain, of course). When the

Laplace exponent is not given explicitly in terms of elementary/special functions,

then with Laplace inversion techniques one would have necessarily to resort to an

evaluation of the Laplace exponent (at complex values of its argument) via numer-

ical integration — which appears disadvantageous as compared to the computation

of the jump intensities of the approximating chain in our algorithm. In a sense,

then, the scale functions go from being a Laplace exponent and then an inversion,

to being just a limit process, away from the characteristic triplet — a result also of

purely theoretical significance.
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J. E. Figueroa-López. Approximations for the distributions of bounded variation
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processes. Stochastic Processes and their Applications, 122(11):3812–3836, 2012.
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Appendix A

Two lemmas on conditioning

Let (Ω,F ,P) be a probability space. Recall that the symbol ⊥ is used to indicate

stochastic independence relative to the probability measure P, whereas the com-

pletion of a σ-field S relative to the measure µ is denoted Sµ, µ being the unique

extension of µ to Sµ.

Proposition A.1 (Basic lemma on conditioning). Let Y : (Ω,F) → (S,S) and

Z : (Ω,F) → (T, T ) be two random elements, and G any sub-σ-algebra of F ,

such that σ(Y ) ⊂ G and σ(Z) ⊥ G. Let f be any bounded (or nonnegative, or

nonpositive) S ⊗ T /B([−∞,+∞])-measurable mapping. Then for any y ∈ S, f ◦
(y, Z) is F/B([−∞,+∞])-measurable, g := (y 7→ E[f ◦ (y, Z)]) is S/B([−∞,+∞])-

measurable and, P-a.s.,

E[f ◦ (Y,Z)|G] = g ◦ Y. (A.1)

Proof. Linearity and monotonicity of conditional expectation [Çinlar, 2011, p. 143]

show that the class of functions f for which the conclusion of the lemma holds true is

a monotone class. By the Functional Monotone Class Theorem [Çinlar, 2011, p. 10,

Theorem 2.19], it is then sufficient to check its validity for f = 1Λ with Λ belonging

to the π-system {A × B : (A,B) ∈ S × T } generating S ⊗ T . In that case (A.1)

(measurability being clear) follows at once by independence of Y and Z [Klenke,

2008, p. 174, Theorem 8.14(vi)] and the “taking out what is known” property

(conditional determinism [Çinlar, 2011, p. 144, Theorem 1.10(a)]) of conditional

expectation.

There is a modification of this proposition, which allows for completions, to

wit:
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Proposition A.2 (Lemma on conditioning with completions). Assume now (F ,P)

is complete. Let Y : (Ω,F)→ (S,S) and Z : (Ω,F)→ (T, T ) again be two random

elements, and G any sub-σ-algebra of F , such that σ(Y ) ⊂ G and σ(Z) ⊥ G. Let f be

any bounded (or nonnegative, or nonpositive) S ⊗ T P(Y,Z)/B([−∞,+∞])-measurable

mapping. Then:

(i) (Y,Z) is F/S ⊗ T P(Y,Z)-measurable,

(ii) Y (respectively Z) is F/SPY -measurable (respectively F/T PZ -measurable),

(iii) PY -a.s. in y ∈ S, f ◦ (y, Z) is F/B([−∞,+∞])-measurable,

(iv) (y 7→ E[f ◦ (y, Z)]) is SPY /B([−∞,+∞])-measurable (defining E[f ◦ (y, Z)]

to be, say, 0, on the PY -negligible set in y ∈ S, on which f ◦ (y, Z) is not

F/B([−∞,+∞])-measurable)

and, P-a.s.,

E[f ◦ (Y,Z)|G] = (y 7→ E[f ◦ (y, Z)]) ◦ Y. (A.2)

Proof. Throughout we use the Image Measure Theorem [Dudley, 2004, p. 121,

Theorem 4.1.11].

First note that (Y,Z) is F/S ⊗ T -measurable, hence it is F/S ⊗ T P(Y,Z)-

measurable, since F is P-complete. Similarly for Y and Z. (In both cases apply

a generating class argument combining [Dudley, 2004, pp. 101-102, Theorem 3.3.1

and Propositions 3.3.2 & 3.3.3], cf. also [Kallenberg, 1997, p. 21, Exercise 8].) Thus

we have (i) and (ii).

Next, the measure spaces (S,SPY ,PY ) and (T, T PZ ,PZ) are complete and,

by [Yeh, 2006, p. 543, Theorem 23.23], SPY ⊗ T PZ
PY ×PZ

= S ⊗ T P(Y,Z) , since

PY × PZ = P(Y,Z), owing to independence of Y and Z. It follows that f is

SPY ⊗ T PZ
PY ×PZ

/B([−∞,+∞])-measurable. The latter allows us to conclude (iii)

and (iv), as follows.

First, by [Yeh, 2006, p. 545, Theorem 23.25(b)], f(y, ·) is T PZ/B([−∞,+∞])-

measurable, PY -a.s. in y ∈ S. Coupled with (ii), this yields (iii). Second, note that

for any y ∈ S for which f(y, ·) is T PZ/B([−∞,+∞])-measurable, E[f ◦ (y, Z)] =∫
f(y, ·)dPZ . Thus (iv) follows by Tonelli’s Theorem [Yeh, 2006, p. 546, Theorem

23.26(a)].

Finally we wish to establish (A.2). As in Lemma A.1, linearity and mono-

tonicity of conditional expectation show that the class of S ⊗ T P(Y,Z)/B([−∞,+∞])-

measurable functions f for which (A.2) holds is a monotone class. By the Functional
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Monotone Class Theorem it will thus be sufficient to consider f = 1Λ with Λ be-

longing to the π-system {A × B : (A,B) ∈ S × T } ∪ N , where N is the set of all

P(Y,Z)-null sets, generating S ⊗ T P(Y,Z) [Dudley, 2004, p. 102, Proposition 3.3.2].

Now, for Λ belonging to {A × B : (A,B) ∈ S × T }, (A.2) is the contents

of Proposition A.1. On the other hand suppose Λ is P(Y,Z)-null. Then, P-a.s.,

the left-hand side of (A.2) is equal to 0, since P(Y,Z) coincides with the law of

(Y,Z) on (S × T,S ⊗ T P(Y,Z)) (the extension of a law to its completed σ-field being

unique), and hence E[f ◦ (Y, Z)] =
∫
fdP(Y,Z) = 0. The right-hand side of (A.2) is

nonnegative. To show that it too is 0, P-a.s., compute again its expectation using

Tonelli’s Theorem [Yeh, 2006, p. 546, Theorem 23.26] and the fact that by [Yeh,

2006, p. 543, Theorem 23.23] P(Y,Z) = PY × PZ (where PY and PZ are also the laws

of Y and Z on the completed spaces (S,SPY ) and (T, T PZ ), respectively):∫
dPY (y)

∫
dPZ(z)f(y, z) =

∫
fdPY × PZ =

∫
fdP(Y,Z) = 0. (A.3)

Thus indeed also the right-hand side of (A.2) equals 0, P-a.s., and the proof is

complete.
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Appendix B

Continuous-time random walk

reflected at its maximum

Given a compound Poisson process on Zh := {hk : k ∈ Z} (i.e. (modulo a spatial

scaling) given a random walk embedded into continuous time as a CP process),

we rigorously establish the infinitesimal generator of its reflected process at the

maximum (for the definition of the latter, see Definition 1.24). In the sequel l∞(S)

will denote the Banach space of bounded complex-valued functions on a denumerable

set S, endowed with the supremum norm; a Q-matrix is said to be regular when its

entries are uniformly bounded.

To begin with, let Y = (Yt)t≥0 be a Markov process [Çinlar, 2011, Chapter

IX] on (Ω,F ,F = (Ft)t≥0,P) with state space (S, 2S), where S is denumerable, and

define for 0 ≤ s ≤ t, f ∈ l∞(S) and u ∈ S:

(P (s, t)f)(u) :=
∑
u′∈S

f(u′)P(Yt = u′|Ys = u),

if P(Ys = u) 6= 0 and let (P (s, t)f)(u) := f(u) otherwise. Clearly P (s, t) : l∞(S)→
l∞(S), ‖P (s, t)‖ = 1. Moreover, E[f ◦ Yt|Fs] = E[f ◦ Yt|Ys] = (P (s, t)f) ◦ Ys (P-a.s.)

by the Markov property.

If we now let l∞t (S) denote the set of equivalence classes of l∞(S) with respect

to the measure P ◦ Y −1
t , then clearly we have a canonical way of forcing P (s, t) :

l∞t (S) → l∞s (S) and we shall use the same symbol for this enforcement. Moreover,

for f ∈ l∞(S) and s ≥ 0, we shall let ‖f‖s stand for the essential supremum of f with

respect to the measure PYs and we observe that this is (in a canonical way) a norm

on l∞s (S) and a seminorm on l∞(S); P (s, t) is a bounded linear operator from l∞t (S)

to l∞s (S) and its norm is 1. When viewed as such, clearly for 0 ≤ s ≤ t ≤ u one has
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Ps,tPt,u = Ps,u, since for any f ∈ l∞u (S), P-a.s., (Ps,tPt,uf)◦Ys = E[(Pt,uf)◦Yt|Fs] =

E[E[f ◦ Yu|Ft]|Fs] = E[f ◦ Yu|Fs] = (Ps,uf) ◦ Ys and hence Ps,tPt,uf = Ps,uf (in

l∞s (S)). In the sequel, however, we shall view P (s, t) as mapping on quotient spaces

only if we explicitly say so.

With these preliminaries having been established, we have the following key:

Proposition B.1 (Extracting the generator). Let L : l∞(S)→ l∞(S) be a bounded

linear operator. Suppose:

lim
u↓0

sup
t≥0

sup
f∈l∞(S),‖f‖≤1

∥∥∥∥(P (t, t+ u)− I
u

− L
)
f

∥∥∥∥
t

= 0 (B.1)

(i.e. P (t, t+ u) admits L as a PYt-essential right derivative at u = 0, uniformly in

t). Then for every 0 ≤ s ≤ t, P (s, t)f = eL(t−s)f (PYs-a.s.) for every f ∈ l∞(S),

i.e. L is the infinitesimal generator of Y and Y is a time-homogeneous Markov

process with transition semigroup (Pt)t≥0 = (eLt)t≥0.

Proof. Fix 0 ≤ s ≤ t. Condition (B.1) says that for each n ∈ N and each 0 ≤ k ≤
n−1, P (s+ k

n(t−s), s+ k+1
n (t−s)) = I+L(t−s)/n+((t−s)/n)Bn(k) where αn :=

sup0≤k≤n−1 supf∈l∞(S),‖f‖≤1 ‖Bn(k)f‖s+ k
n

(t−s) → 0 as n→∞. Viewed as operators

on appropriate quotient spaces, we have P (s, t) =
∏n−1
k=0 P (s+ k

n(t−s), s+ k+1
n (t−s));

consequently for every f ∈ l∞(S), ‖P (s, t)f−
∏n−1
k=0 P (s+ k

n(t−s), s+k+1
n (t−s))f‖s =

0. Next, proceeding via a telescopic sum:

n−1∏
k=0

P

(
s+

k

n
(t− s) , s+

k + 1

n
(t− s)

)
−
(
I +

t− s
n

L

)n
=

= P

(
s, s+

1

n
(t− s)

)
· · ·P

(
s+

n− 2

n
(t− s) , s+

n− 1

n
(t− s)

)
P

(
s+

n− 1

n
(t− s) , t

)
− P

(
s, s+

1

n
(t− s)

)
· · ·P

(
s+

n− 2

n
(t− s) , s+

n− 1

n
(t− s)

)(
I +

t− s
n

L

)
+ · · ·+

+ P

(
s, s+

1

n
(t− s)

)(
I +

t− s
n

L

)n−1

−
(
I +

t− s
n

L

)n
so that for every f ∈ l∞(S),∥∥∥∥∥

(
n−1∏
k=0

P

(
s+

k

n
(t− s) , s+

k + 1

n
(t− s)

))
f −

(
I +

t− s
n

L

)n
f

∥∥∥∥∥
s

≤ t− s
n
‖f‖αn

(
1 + (1 + (t− s)‖L‖/n) + · · ·+ (1 + (t− s)‖L‖/n)n−1

)
≤ αn(t− s) (1 + (t− s)‖L‖/n)n ‖f‖ → 0

as n→∞ (where we have used the seminorm triangle inequality, and, in addition,

the fact that ‖P (u1, u2)g‖u1 ≤ ‖g‖u2 , for all 0 ≤ u1 ≤ u2 and g ∈ l∞(S)). Finally
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‖(I + t−s
n L)nf − e(t−s)Lf‖s → 0 as n → ∞, since in fact (I + t−s

n L)n → e(t−s)L in

l∞(S).1

Now take X to be a compound Poisson process with values in Zh = hZ,

càdlàg with certainty, Lévy measure λ, living on (Ω,F ,P). Denote the running

supremum process by X and the reflected process by Y := X −X. On account of

the stationarity and independence of increments of X, the latter is a Markov process

in turn [Bertoin, 1996, p. 156, Proposition 1], with values in Z+
h . Define also the

Q-matrix Q̃ : Z+
h × Z+

h → R by demanding:

Q̃uu′ := λ([u,∞))− δuu′λ(R), if u′ = 0

Q̃uu′ := λ({u− u′})− δuu′λ(R), if u′ > 0

({u, u′} ⊂ Z+
h ). Manifestly Q̃ is regular, albeit it is not spatially homogeneous (but

it does verify the Feller condition, cf. Proposition 1.35).

Proposition B.2 (Generator of the reflected process). Let 0 ≤ v. Then:

lim
v↓0

sup
t≥0

PYt−ess sup
u∈Z+

h

∑
u′∈Z+

h

∣∣∣∣P(Yt+v = u′|Yt = u)− δuu′
v

− Q̃uu′
∣∣∣∣ = 0.

Consequently, if we consider Y as living on Z+
h in Proposition B.1 and associate to

Q̃ the mapping L̃ : l∞(Z+
h )→ l∞(Z+

h ) via L̃f(u) =
∑

u′∈Z+
h
Q̃uu′f(u′) (f ∈ l∞(Z+

h ),

u ∈ Z+
h ), we have also:

lim
v↓0

sup
t≥0

sup
f∈l∞(Z+

h ),‖f‖≤1

∥∥∥∥(P (t, t+ v)− I
v

− L̃
)
f

∥∥∥∥
t

= 0.

Thus L̃ is the infinitesimal generator of Y .

Proof. Let {u, u′} ⊂ Z+
h , suppose P(Yt = u) > 0, denote q := λ(R). Le T be

the time to the second jump of X strictly after t (that is to say, T is the second

jump time of the incremental process
4
X := (Xt+s − Xt)s≥0, which is independent

of X|[0,t] and thus of Y |[0,t]). Then
∑

u′∈Z+
h
P({Yt+v = u′} ∩ {T ≤ v}|Yt = u) =

P(T ≤ v) =
∫ v

0 qse
−qsd(qs) ≤ (qv)2/2 (since T is independent of Yt and has law

Exp(q) ? Exp(q)). Next note that {T > v} is the disjoint union of the two events

1Indeed, if A is a bounded linear operator on a Banach space, one has (I + A/n)n → eA as

n→∞. This follows from the same relation for real numbers: ‖eA − (I +A/n)n‖ = ‖
∑∞
k=0

Ak

k!
−∑n

k=0

(
n
k

)
Ak

nk
‖ ≤

∑n
k=0

‖A‖k
k!

(1− n···(n−k+1)

nk
) +

∑∞
k=n+1

‖A‖k
k!

= e‖A‖ − (1 + ‖A‖
n

)n → 0 as n→∞.
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corresponding to the incremental process
4
X having no jumps and having precisely

one jump in the interval [0, t], respectively. Thus if u′ = 0, then:

P({Yt+v = u′} ∩ {T > v}|Yt = u) = δuu′e
−qv + ve−qvλ([u,∞)),

whilst if u′ > 0, then:

P({Yt+v = u′} ∩ {T > t}|Yt = u) = δuu′e
−qv + λ({u− u′})ve−qv.

The first claim follows, with it the second, and the final one obtains from Proposi-

tion B.1.
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Appendix C

The Kolmogorov consistency

theorem and martingale change

of measure

We prepare first the notational apparatus.

Notation C.1 (The space D). Let D denote the Skorohod space [Jacod and Shiryaev,

2003, Chapter VI, Section 1] of càdlàg paths in R[0,∞) endowed with the Skorohod

metric (making it into a Polish (so separable and metrizable for a complete metric)

topological space), and the corresponding Borel σ-algebra F , which coincides with

the σ-algebra σ(prt : t ≥ 0) generated by all the evaluation maps. We equip D
also with the filtration F = (Ft)t≥0, where Ft := σ(prs : s ∈ [0, t]) is generated by

evaluations up to time t. Clearly F∞ = F is the terminal σ-field in this setting.

In the same vein, for each t ≥ 0, let D[0, t] be the space of càdlàg paths

in R[0,t] [Parthasarathy, 1967, Chapter VII, Section 6] endowed with the Skorohod

metric (making it into a Polish topological space) and the corresponding Borel σ-

algebra F [0, t], which coincides with the σ-algebra σ(prs : s ∈ [0, t]) generated by

all the evaluation maps.

Definition C.2 (Standard space and atoms). A measurable space (X,B) is stan-

dard, if B is σ-isomorphic to the Borel σ-algebra B0 of some Polish space, i.e. there

exists a mapping τ : B → B0, one-to-one and onto, and preserving countable set

operations [Parthasarathy, 1967, p. 133, Definition 2.2]. An atom of (X,B) is a set

A0 ∈ B\{∅}, such that B 3 A ⊂ A0 implies A ∈ {A0, ∅}.

Remark C.3. Every standard measurable space is automatically countably gener-

ated (i.e. there is a countable subset of its σ-algebra B, generating B). Further,
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the σ-algebras Ft and F [0, t] are not the same, but they are σ-isomorphic (and

hence (D,Ft) is standard in the sense of Definition C.2 for every t ≥ 0). Indeed,

the mapping τt := (A 7→ pr−1
[0,t](A) = {ω ∈ D : ω|[0,t] ∈ A}) preserves countable set

operations, hence is from F [0, t] into Ft (apply a generating class argument), it is

one-to-one (note here that one can always extend ω ∈ D[0, t] by ω(t) to get an ele-

ment of D), and it is onto (again apply a generating class argument). Consequently,

the atoms of (D,Ft) are precisely sets of the form τt({ω}) for ω ∈ D[0, t]. We have

used the fact that singletons are measurable in (D[0, t],F [0, t]) which is clear, since

we are dealing with the Borel σ-algebra of a T1 topological space.

Next we cite from [Parthasarathy, 1967, p. 143, Theorem 4.2] the following

theorem, allowing one to extend a consistent family of probability measures defined

on some collection of sub-σ-algebras, to the one generated by them:

Theorem C.4 (Kolmogorov extension theorem). Let (X,B) be a measurable space,

∆ a directed set1 under an ordering < and let there be given a family (Bα)α∈∆ of

sub-σ-algebras of B. Suppose:

(a) the family is a filtration, i.e. Bα ⊂ Bα′ whenever α < α′ are from ∆;

(b) each (X,Bα) is standard (α ∈ ∆);

(c) σ(Bα : α ∈ ∆) = B;

(d) for any sequence A1, A2, . . . with A1 ⊃ A2 ⊃ . . . and with An an atom of Bαn,

α1 < α2 < . . ., one has ∩n∈NAn 6= ∅.

Then, given any consistent family of probability measures (µα : α ∈ ∆) (i.e. when-

ever α < α′ are from ∆, µα′ |Bα = µα), there exists a unique probability measure µ

on B extending this family (i.e. µ|Bα = µα for every α ∈ ∆).

This allows us to establish:

Proposition C.5 (Local martingale change of measure). Assume the process M =

(Mt)t≥0 is a martingale on the filtered space (D,F ,F) under some measure P, with

E[M0] = 1 and Mt ≥ 0 P-a.s. for every t ≥ 0. Then the family (P\t)t≥0 given by

P\t(A) = E[Mt1A] (A ∈ Ft, t ≥ 0)

extends uniquely to a probability measure P\ on F .

1Meaning that ∆ is non-empty, and < is an irreflexive, transitive binary operation with any two
elements having an upper bound.
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Proof. Since E[Mt] = 1 for all t ≥ 0, we are indeed dealing with a family of proba-

bility measures (apply DCT). The family is consistent by the martingale property

of M . Hence, applying Remark C.3, the conditions of the Kolmogorov extension

theorem are fulfilled for the family (P\n)n∈N0 and the result obtains at once.2

Remark C.6. In Proposition C.5, P\ � P on restriction to the algebra A := ∪t≥0Ft.
If Mt > 0, P-a.s., for each t ≥ 0, then also P� P\ on restriction to A.

Remark C.7 (Martingale change of measure). Provided M is uniformly integrable

(UI), then in Proposition C.5 the filtered probability space need not be the canonical

one, and the conclusion still holds in the sense that the unique extension exists on

the terminal σ-field F∞ := σ(A). Indeed, note that by the martingale property, the

family of measures (P\t)t≥0 clearly extends to a unique finitely-additive set function

P\∞ on the algebra A. By the theorem of Carathéodory, it is sufficient to show

that (*) for every sequence (Ai)i≥1 of disjoint sets in A, with A := ∪i≥1Ai ∈ A,

P\∞(A) =
∑

i≥1 P
\
∞(Ai). We then get existence of P\, uniqueness being clear by

a π/λ-argument. To show (*), let Ai ∈ Fti in nondecreasing order, i ≥ 1, A :=

∪i≥1Ai ∈ Ft. Then for each n ∈ N, by finite additivity P\∞(A) = P\∞((∪1≤i≤nAi) ∪
(∪i≥n+1Ai)) =

(∑n
i=1 P

\
∞(Ai)

)
+ E[Mtn∨t1∪i≥n+1Ai ]. Now let n → ∞. By the

UI property, the second term converges to 0, since P(∪i≥n+1Ai) → 0 as n → ∞
[Klenke, 2008, p. 137, Theorem 6.24(iii)]. In the general case, the same argument

shows that P\∞ is a countably super-additive (and finitely additive) set-function on

the algebra A, in the sense that for every sequence (Ai)i≥1 of disjoint sets in A, with

A := ∪i≥1Ai ∈ A, P\∞(A) ≥
∑

i≥1 P
\
∞(Ai) (with equality, if all but finitely many

Ai, i ≥ 1, are empty).

Moreover, when this is so (i.e. M is UI), by taking a sequence 0 ≤ tn ↑ ∞,

(Mtn)n∈N is a UI discrete-time martingale which converges P-a.s. to some random

variable M∞, necessarily nonnegative P-a.s., and with E[M∞] = 1. We conclude

that P\(A) = E[M∞1A] for each A ∈ A and hence each A ∈ F∞ by a π/λ-argument,

i.e. P\ � P and M∞ is the Radon-Nikodym derivative. If M∞ > 0 P-a.s., then also

P� P\.

See also e.g. [Revuz and Yor, 1999, pp. 325-326].

Remark C.8 (Smaller spaces). Finally note that C[0,∞) := {ω ∈ D : ω continuous}
and Dh := {ω ∈ D : ω has values in Zh} are measurable subsets of (D,F). The

second is so by right-continuity of the sample paths, and the first was shown to be

as such in Lemma 3.7 of Subsection 3.1.3. Let H be generic for Dh or C[0,∞). Then

2Note that, in applying Theorem C.4, it is necessary to restrict oneself to a sequence of times
tn ↑ ∞ (say, tn = n, as was the case), as n→∞, because only then is it the case that (d) thereof
obtains. There are issues with having tn ↑ t∗ <∞, as n→∞!
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it is easy to see that for every 0 ≤ t ≤ ∞, the trace σ-algebra of Ft on H is the

same as the σ-algebra of evaluations on H up to time t. Indeed one need only check

that {H ∩ F : F ∈ Ft} = σ({H ∩ pr−1
s (B) : 0 ≤ s ≤ t, B ∈ B(R)}) =: Ht (where

on the right-hand side one excludes s = ∞ if t = ∞). Thus all the spaces (H,Ht)
are standard by [Parthasarathy, 1967, p. 135, Theorem 2.3]. Moreover, every atom

H of Ht clearly fixes the entire path up to time t, in the sense that |pr[0,t](H)| = 1.

It follows that in the above we could just as easily have worked with the space

(H,H∞, (Ht)t≥0) in place of (D,F∞,F) and none of the results would have been

affected.
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