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Motivation

Advancing technology

��
Vast amounts of data being generated each day

��
Need for analysing these data
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Background

Data depend on a number of variables D. We assume that each variable takes
values in the real space R. We call the union of these sets, the data space.

Each variable defines a dimension of the data space.

Data generated in the physical world in general depend on a large number of
such variables.

Example: weather forecast measurements
time instance, spatial location, temperature reading, wind speed and direction,
humidity rate, atmospheric pressure, UV index, etc

⇒ data live in a space of ≥ 8 dimensions.

Impossible for the human brain to process raw data and make observations
about patterns.
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Background

Variables generating the data are strongly dependent on one another.

⇒ the data
reside on a subspace of the data space, which has smaller dimensionality.

Example: Handwritten digits
Consider one of the off-line digits, represented by a 64× 64 pixel grey-level image
(Fig. 1). Embedding this in a larger image of size 100× 100 by padding with zero
pixels. ⇒ each image datapoint lies in a 10, 000 dimensional space.
Create multiple copies of the same digit 3, varying the location and orientation of the
digit at random in each copy.

Figure: Samples of the off digit 3 obtained by rotation and translation (obtained from the
Mnist Dataset). The intrinsic dimensionality of the data manifold is 3.

⇒ there are only three DOF of variability: (a) Vertical displacement, (b) Horizontal
displacement and (c) Rotation. (intrinsic dimensionality of the data set is three).
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Notation

We will restrict our attention to datasets X taking values in RD and we will
represent data points by D dimensional column vectors. Further we will
distinguish between linear and non-linear models.

Linear models assume a linear structure for the data. That is, the data
reside on some Q−dimensional hyperplane where Q < D.

This assumption is relaxed in the case of non-linear models.
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Linear Dimensionality Reduction Models

Rely on simple intuitive models and therefore provide

fast algorithms

clear interpretation of the reduced space

Further, linear models handle well noise in data
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Principal Component Analysis

Consider a data set X = {x1, . . . , xN} ⊂ RD and a linear subspace U of RD of
dimensionality Q ≤ D.

Assumptions
Fix Q.
We assume that ∃b ∈ RD \ U such that ∀n, we can approximate xn by an x̃n of
the form

x̃n = b + zn, (1)

where zn ∈ U

It is convenient to define a basis {u1, . . . ,uQ} be a basis for U ⊂ RD and
extend this to a basis {u1, . . . ,uQ,uQ+1, . . . ,uD} for RD. Then express

b =

D∑
j=Q+1

bjuj, zn =

Q∑
q=1

znquq for znq, bq reals.
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Principal Component Analysis: the two approaches

Pearson’s approach:
Minimise the average projection cost

J =
1
N

N∑
n=1

‖xn − x̃n‖2. (2)

with respect to (uq, znq and bj).
Hotelling’s approach:
Write znq = (uᵀxn) and maximize the variance of the projected data zn.

σ2
C = tr (C) , (3)

where C is the covariance matrix of the projected data.

C =
1
N

∑
n

(zn − z̄) (zn − z̄)T =

Q∑
p=1

Q∑
q=1

(
uT

p Suq
)

upuT
q . (4)

Pearson (1901)
Hotelling (1933)
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Principal Component Analysis

Figure: PCA seeks a space of lower
dimensionality (magenta line) such that: (1) the

orthogonal projection of the data points (red dots)
onto this subspace maximizes the variance of the

projected points (green dots). (2) the
sum-of-squares of the projection errors (blue lines)

is minimised.

.

Let λ1, . . . , λD be the eigenvalues of the
data covariance
S = 1

N

∑N
n=1 (xn − x̄) (xn − x̄)

T ordered
in decreasing values. Then the average
projection cost J and the data variance
σ2 are extremised if we choose

{uq}Q
q=1 to be the eigenvectors of S

associated to λ1, . . . , λQ,

In particular, we can approximate each
xn by

x̃n =
∑Q

q=1

{
(xn − x̄)

T uq

}
uq + x̄.

Bishop (2006)
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Principal Component Analysis

Algorithm 1: Principal Component Analysis (PCA)
begin

1 centralise data by removing the data mean x̄ from each datapoint
X̂ = X− (1 1 . . . , 1)T x̄T

2 evaluate the data covariance S = 1
N X̂TX̂

3 find all eigenvectors u1, . . . , uD and eigenvalues λ1, . . . , λD of S;
4 sort the eigenvalues in decreasing order of magnitude and reorder the eigenvectors

accordingly;
5 λ = (λ1, . . . , , λQ)T ; U = (u1, . . . , uQ);
6 compute the reconstruction of the input data points Z = UTX̂T;
7 X̃ = (1 1 . . . , 1)T x̄ + (UZ)T;
8 Return X̃;

end
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Probabilistic Principal Component Analysis

Introduce the latent variable z ∈ RQ (principal-component subspace).
Assume a Gaussian prior distribution p(z),

p(z) = N (z|0, I). (5)

Seek to relate a D-dimensional observation vector x to the corresponding
Q-dimensional Gaussian latent variable z by a linear transformation W:

Include a Gaussian noise variable ε ∼ N
(
0, σ2I

)
x = Wz + µ + ε, (6)

Figure: Probabilistic PCA as a Naive Bayes model -
conditioned on z, the components of the observed vector
x = (x1, . . . , xD)T are assumed to be independent

Tipping, Bishop (1999b)
Bishop (2006)
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Induces a Gaussian distribution

x|z ∼ N
(
Wz + µ, σ2I

)
(7)

To compute the likelihood function, we need an expression for the marginal
distribution p(x) of the observed variable.

⇒ x ∼ N
(
µ,WWT + σ2I

)
, (8)

where we’ve written C = WWT + σ2I, for the covariance

It is worth noting that there is a whole family of W’s, differing by a rotation
of the latent space coordinates, that lead to the same p(x).
For an arbitrary rotation R, set W̃ = WR. Then

W̃W̃T = WRRTWT = WWT,

and p (x) remains unchanged.

Tipping, Bishop (1999b)
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Probabilistic Principal Component Analysis

Figure: Mapping from the latent space to the data space. We assume here 2D data and 1D latent space.
An observed x is generated by drawing a value ẑ from p(z) = N (z|0, 1) and then a value for x from an

isotropic Gaussian distribution (red circles) having mean wẑ + µ and covariance σ2ID (i.e. from
p(x|z) = N (x|wz + µ, σ2). The green ellipses are the density contours of p(x) = N

(
x|µ,wwT + σ2

)
.

Bishop (2006)
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Probabilistic Principal Component Analysis

The log-likelihood of x is:

L
(

x;µ,W, σ2
)

=

N∑
n=1

{
log p

(
xn;µ,W, σ2

)}
= −DN

2
log 2π − N

2
log |C| − 1

2

N∑
n=1

(xn − µ)T C−1 (xn − µ).

(9)

Infer the values of the model parameters W,µ and σ2 by maximum likelihood
estimation to get:

µmle =
1
N

N∑
i=1

xn ≡ x̄, σ2
mle =

1
D− Q

D∑
q=Q+1

λq, Wmle = U
(
Λ − σ2

mleIQ

)1/2
R .

(10)
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σ2
mle is given as the average of the discarded eigenvalues
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the columns of U are the eigenvectors of S corresponding to the Q maximal eigenvalues λq
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Λ = diag (λ1, . . . , λQ)
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R .

(10)

R is an arbitrary rotation matrix
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Probabilistic Principal Component Analysis: Reconstruction of Data

We need to find the expected value of Wzn + µ + ε conditioned on a data
instance xn. i.e. we need to evaluate

WE [zn|xn] + µ . (11)

The posterior predictive distribution p(z|x) can be derived easily from
standard results for Gaussian distributions and using Eqs. (5) and (7). It is
given by

p(z|x) = N (z|M−1WT(x− µ), σ2M−1), (12)

where M = WTW + σ2IQ. So E [zn|xn] = M−1WT (xn − µ).

Compare the above result with the analogous from the PCA model
x̃n = Uzn + x̄.
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Expressing PPCA as an EM-algorithm

PPCA is a latent variable model⇒ can infer the model parameters W and σ2

through an EM algorithm.

EM is computationally more efficient:
though iterative, EM does not require the evaluation of the D× D covariance matrix
(∼ O

(
ND2

)
operations), nor the eigen-decomposition of S (∼ O

(
D3
)

operations),
⇒ computationally faster for D large.

Substitute x̄ for µ. The complete data log likelihood is

L̂
(

x, z;µ,W, σ2
)

=
N∑

n=1

{
log p

(
xn;µ,W, σ2

)
+ log p

(
zn|xn;µ,W, σ2

)}
=− DN

2
log
(

2πσ2
)
− QN

2
log (2π)

− 1
2σ2

N∑
n=1

‖xn −Wzn − µ‖2 − 1
2

N∑
n=1

‖zn‖2.

(13)

Tipping, Bishop (1999b)
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Taking the expectation of the log-likelihood w.r.t the data X and maximising
w.r.t the model parameters W, σ2 gives

E-step equations

E [zn] = M−1WT (xn − µ) ,

E
[
znzT

n
]

= σ2M−1 + E [zn]E [zn]T .
(14)

M-step equations:

Wnew =

N∑
n=1

{
(xn − µ)E [zn]T

}( N∑
n=1

E
[
znzT

n
])−1

,

σ2
new =

1
ND

N∑
n=1

{
‖xn − µ‖2 − 2E [zn]T WT

new (xn − µ)

+tr
(
E
[
znzT

n
]

WT
newWnew

)}
.

(15)

Tipping, Bishop (1999b)
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Expectation-Maximisation algorithm for PPCA

Algorithm 2: EM-PPCA
begin

1 µ =data mean;
2 initialise model parameters W and σ2;

while (until convergence of W) do
/* E step */

3 M =
(
WTW + σ2IQ

)
; M−1 = inv (M);

4 〈zn〉 = M−1WT (xn − µ) ∀n
5

〈
znzT

n
〉

= σ2M−1 + 〈zn〉 〈zn〉T ∀n

/* M step */

6 W =
∑N

n=1 (xn − µ) 〈zn〉T
[∑N

n=1
〈

znzT
n
〉]−1

7 σ2
j = 1

ND

{∑N
n=1 ‖x̂n‖2 − 2

∑N
n=1 〈zn〉T WT (xn − µ)

+
∑N

n=1 tr
[〈

znzT
n
〉

WTW
]}

end

/* update the value of M−1
*/

8 M =
(
WTW + σ2IQ

)
; M−1 = inv (M);

9 Return W, µ, M−1;
end
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EM algorithm for PPCA: schematic
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Mixtures of Probabilistic Principal Component Analysers

Idea: linearise locally the neighbourhood of the datapoints.

We use a fixed number J of PPCA models.
We assume that each data point xn is generated by one of the PPCA models:
assign to xn, a boolean vector rn such that rnj = 1⇔ data point xn is taken from the jth PPCA

model and rnj = 0 otherwise.

For each model p (xn|rnj = 1), we assign a proportion πj = P (rnj = 1) such
that

∑
i πj = 1.

For simplicity we denote the event “rnj = 1” simply by “j”.

The revised likelihood will now be

L
(
X;π,µ,W, σ2) =

N∑
n=1

log [p (xn)] =

N∑
n=1

log


J∑

j=1

πjp (xn|j)

 . (16)

Tipping, Bishop (1999a)
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Mixtures of Probabilistic Principal Component Analysers

Once we have observed the corresponding xn, we obtain the posterior
probability

Rnj = p (j|xn) = πjp (xn|j)/p (xn). (17)

This can be seen as the responsibility for generating data point xn from
mixture j. Taking the expectation of the complete data log-likelihood w.r.t the
data X we get

〈
L̂ (X,Z; θ)

〉
=

N∑
n=1

J∑
j=1

[
Rnj

{
logπj −

Q
2

p log 2π − D
2

log 2πσ2 − 1
2
〈
znjzT

nj

〉
− 1

2σ2 ‖xn − µj‖2 +
1
σ2 (xn − µj)

T Wj 〈znj〉

− 1
2σ2 tr

(
WTW

〈
znjzT

nj

〉)}]
.

(18)
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Mixtures of Probabilistic Principal Component Analysers

Consider a synthetic dataset comprised of points lying on the surface of a unit hemisphere, that

have undergone a random translation sampled from a Gaussian distribution. We fit a mixture of

12 PPCA models to the data. Reconstruction is performed a) by voting, b) by averaging over

all PPCA models.
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Non-linear dimensionality reduction: Manifold Learning

Suppose, the data lie on some compact Q−dimensional smooth submanifold
M of RD.

Instead of their Euclidean distances, take into account the geodesic distances
between points x, z ∈M:

dM (x, z) = inf
γ
{length (γ)} ,

where, γ is any piecewise smooth path from x to z.

This will allow us to construct an embedding of the data in a Q-dimensional
Euclidean spaceM that best describes the manifolds intrinsic geometry.

Since the manifold is not known beforehand, we need to find a way of
approximating the geodesic distances.
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Isomap

We can approximate the geodesic distance from an arbitrary point x to z by
their Euclidean distance if z is near x
summing over Euclidean distances between intermediate points, if z is
far from x

Assumptions:
Assume that X lies on a Q−dimensional Riemannian manifoldM⊂ RD,
where Q� D. Denote the geodesic distance of points onM by dM.
Assume there exists an isometric mapping f :M 7→ RQ from the manifold
M to the Euclidean space of dimensionality Q, so that

‖f (x)− f (z) ‖ = dM (x, z) ∀x, z ∈M.

Seek to find the image of X under f (X ) = Y = {y1, . . . , yN} ∈ RQ.
Y describes the points in X completely, in a space of lower dimensionality Q.

Tenenbaum, Silva, Langford (2000)
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Isomap

Given a definition for a neighbourhood N (x) of x ∈ X , we construct a
weighted graph G = [X ,E] such that edge (xi − xj) ∈ E ⇐⇒ xj ∈ N (xi).
The weights of edges in G are given by dG (xi, xj) = ‖xi − xj‖. If
(xi − xj) /∈ E, we say that dG (xi, xj) =∞.

Let Γ (a,b) be the set of all piecewise linear paths from a to b of the form
γ =

(
xπ(0), . . . , xπ(P−1)

)
where π is some permutation of the (1, . . . ,N) such

that xπ(0) = a and xπ(P−1) = b and P ≤ N some integer.
Define the path distance along γ by dγ =

∑P−1
p=1 dG

(
xπ(p−1), xπ(p)

)
, and the

graph metric:
dΓ (a,b) = inf

γ∈Γ(a,b)
dγ .

It can be shown that providedM is geodesically convex (no holes), dΓ ≈ dM.

Tenenbaum, Silva, Langford (2000)
Bernstein, de Silva, Langford, Tenenbaum (2000)
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Isomap

Typically a neighbourhood is defined as either the open ball of radius ε
centred at x or the set of k−nearest neighbours.

N (x) = {z ∈ X : ‖x− z‖ < ε}
N (x) = the k datapoints z ∈ X \ {x} whose Euclidean distance from x
is the smallest.

To find the shortest paths between points on the graph G we use Dijkstra’s
algorithm, that is computationally efficient on sparse graphs.
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Isomap

Having computed the shortest path distances dΓ (xi, xj) for each pair of
xi, xj ∈ X , and using dΓ ≈ dM, and that ‖yi − yj‖ = dM (xi, xj), we can
construct a matrix S s.t. Sij = ‖yi − yj‖2.
We can find the dot products yT

i yj for each pair yi, yj ∈ Y from
‖yi − yj‖2 = ‖yi‖2 − 2yT

i yj + ‖yj‖2. We summarise this by

Sc = −1
2 HSH,

where Y = (y1, . . . , yN)ᵀ, Sc = YYT and Hij = δij − 1
N .

Need to find the decomposition of Sc into YYT.
Easy to do using an eigen-decomposition of the symmetric Sc, into
Sc = UΛUT (where U has columns the eigenvectors of Sc and Λ is the
diagonal matrix of the eigenvalues).
Then compute Y = U

√
Λ.
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Isomap
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Generative Topographic Mapping

GTM typically assumes Q = 2 (used for visualisation purposes).

The motivation for this algorithm originates from biology and in particular
from the model of self-organisation exhibited by the sensory cortex of the
brain. The idea is that similar stimuli are responsible for the activation of
neighbouring neurons.

Bishop,Svensén, Williams (1998a)
Bishop,Svensén, Williams (1998b)

Svensén (1998)
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Generative Topographic Model

The GTM model assumes the existence of a set of latent variables
Z = {z1, . . . , zK} ⊂ RQ, arranged in latent space in a Q−dimensional regular
grid of nodes and a function y : RQ → RD mapping

z 7→ y (z; W) ∈ RD,

where W is the matrix of governing model parameters.

The data x however only approximately live on a Q-dimensional space⇒
include an additive noise variable ε ∼ N

(
0, β−1ID

)
such that

x = y (z; W) + ε,

and
p (x|z; W, β) =

(
β

2π

)D/2

exp
{
−β

2
‖y (z; W)− x‖2

}
. (19)
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Generative Topographic Mapping

A probability density p (z) over the latent space, is introduced, inducing a
probability distribution in data space

p (x; θ) =

∫
p (x|z; W, β) p (z) dx, (20)

We define a prior over latent space of the form

p (z) =
1
K

K∑
i=1

δ (z− zi) . (21)

⇒ Each node zi will be mapped to a point y (zi; W) in dataspace which will
be the centre of a Gaussian distribution N

(
y (zi; W) , β−1I

)
.

p (x; W, β) =
1
K

K∑
i=1

(
β

2π

)D/2

exp
{
−β

2
‖x− y (zi; W) ‖2

}
. (22)
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Generative Topographic Mapping

constrained Gaussian mixture model [?]: the position of the centres y (zi; W)
is governed by the mapping y.

Smoothness of the mapping y suffices to ensure that the centres y (zi; W) have
the desired “topographic ordering” (i.e. that points in latent space are mapped
to points close in data space).

z1

z2

y (z; W)

x1

x3

x2

Figure: Schematic view of the GTM model: Latent variable points on a regular grid
in latent space (left) are mapped under y (z; W) onto the dataspace (right). Each
latent variable induces a Gaussian distribution in dataspace, centred at y (z; W).
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Typically, we take y to be a generalised linear regression model [?]: Consider
the components yd (z; W), d = 1, . . . ,D. Each will be of the form

yd (z; W) =

M∑
m=1

φm (z) Wmd : (23)

The basis functions φm need only be a non-linear and smooth functions over
z. Typically we use a Radial Basis Network [?]:

φm (z) =


exp

{
− 1

2σ2 ‖z− µm‖2
}

if m ≤ M − Q− 1
zq if m = M − Q + 1 + q ∀q = 1, . . . ,Q
1 if m = M

.

(24)

For simplicity, we write Eq. (23) in matrix form as Y = ΦW.
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Generative Topographic Mapping:an EM algorithm

Gaussian Mixture model: suggestive to use an EM-algorithm to infer the
values of W and β.

Data point xn is generated by node zk with responsibility:

Rkn = p (zk|xn; W, β) =
p (xn|zk; W, β) p (zk)∑K
κ=1 p (xn|zκ; W, β) p (zκ)

=
p (xn|zk; W, β)∑K
κ=1 p (xn|zκ; W, β)

.

(25)

The expected value of the complete data log-likelihood is

〈
L̂ (X ,Z; W, β)

〉
=

N∑
n=1

K∑
k=1

[Rkn {log p (xn|zk; W, β) + log p (〈zk〉)}]

=

N∑
n=1

K∑
k=1

[
Rkn

{
D
2

log
(
β

2π

)
− β

2
‖xn −Wφ (〈zk〉) ‖2

}
+ log p (zn)

]
.

(26)
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Generative Topographic Mapping

Maximising w.r.t to the model parameters W, β gives

The update of W is given as the solution of

ΦᵀGΦWmle = ΦᵀRX, (27)

where G is diagonal matrix with elements Gkk =
∑N

n=1 Rkn.

The update for β is given by

1
βmle =

1
ND

N∑
n=1

K∑
k=1

Rkn‖Wmleφ (zk)− xn‖2. (28)
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Generative Topographic Mapping

To control overfitting, we turn to Bayesian framework, and treat W as a
random variable. We introduce a prior distribution p (W) expressing an initial
belief about the value of the weights W:

p (W) =
( α

2π

)MD/2
exp

{
−α

2
‖W‖2

F

}
. (29)

This leads to the following updating equation for Wmle

(ΦᵀGΦ + λIM) Wmle = ΦᵀRX, (30)

where λ = α/β.
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Generative Topographic Mapping

To visualise the results, we use either:

Posterior-mode projection: the mode of the posterior distribution of the
latent variables

zmode
n = arg max

zk
p (zk|xn) = arg max

zk
Rkn (31)

Posterior-mean projection: the mean of the posterior distribution of the
latent variables

zmean
n =

K∑
k=1

zkp (zk|xn) =

K∑
k=1

Rknzk (32)

Svensén (1998)
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EM algorithm for GTM: schematic
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