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Facilitating adaptation

n the real world,

the adaptive

andscape

fluctuates like a

“‘choppy sea”.



What do organ

* Phenotype: the set of
observable
characteristics of an
organism resulting from
the Interaction of its
genes with other
factors, such as the
environment




How do organisms adapt?

* Natural selection on the
genes

* Developmental plasticity
(within a generation)

* Maternal effects: the
INnfluence of the phenotype
(e.g. body size) of the mother
on her offspring independent
of the inherited genes
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Why are maternal effects important’/

* They may...
—Be implicated in human obesity

—Boost the initial colonisation
abllity of plants

—Increase early survival in insects

—Expand potential for evolution
INn vertebrates

—Provide a flexible way of
maximising fithess in a
changing environment




Bypassing genetic constraints

* Maternal effects are
“epigenetic influences of
parental phenotypes on
offspring”

— Badyaev (2009) Phil. Trans. Roy. Soc. B
364:1125-1141 doi: 10.1098/rstb.2008.0285.

* Enable rapid fine-tuning of
the phenotype In response
to a changing environment.




Questions

* Do maternal effects
INnfluence the rate of
adaptation to environmental
change?

* Can maternal effects be
adaptive?







If a rapid response to environmental
upheaval Is a critical coping mechanism in

evolutionary biology, then WY O
estimates of maternal
Inheritance frequently
suggest It does not accelerate but
retards adaptation?
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Slope of the Adult phenotype after
maternal effect  selection in generation t-1
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A quantitative genetic model

Add fixed maternal effects to Lande’s (2009) reaction norm that describes the
dependence of offspring phenotype on genes and the environment

k
z,=a,+be,__+mz,_ +e,

Gaussian population mean fitness around an optimal phenotype that is a
linear function of the environment

W(8t9zt) = Wmax ywz exp{_g(zt - A - Bgt)z}

y =1/ + of)

Mutation-selection balance: fixed genetic variances Gu. & Gy
Phenotypic variance minimised in the reference environment ¢=0
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The per generation change in population means is determined by fithess
(Lande, 1979):
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Positive maternal effects speed adaptation to rapid
environmental change (or it pays to copy mum)
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So why is m often negative”

Empirical estimates of maternal effect coefficients are often negative

Most thorough evidence comes from red squirrels: m = —-0.3,-0.29 and -0.27 to —-0.21
(Humphries and Boutin, 2000; McAdam and Boutin, 2003, 2004)

To understand this consider a stable stochastic environment without a step
change:

8t=(3+§t

We can show that the expected phenotypic variance at equilibrium is given by
2+m)G, +6°G,,) 0. +G,0;

T 2-md-mY) | 1-m

The covariance between the genetic and maternal phenotypic components of

the offspring phenotype means that the variance is minimised at slightly
negative m

E(o))



expected population mean fitness

variation penalty adaptation
- 1

Ve ,_ 2
W) ~ e —A4+U,_.b U:B +
20 V1+ E(02)/w? § eXp{ 2 (@ t=rbe = UeB 4 mzi ) }

4 2 N
(b2(1 +m?) + B* — 2b,Bp,) ¢

\ /

trend/deterministic \

/ mismatched plasticity
o= U + ¢t

AN

fluctuations

Components of
population mean fitness



Stable environments favour negative m
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Stable environments favour negative m

If your environment is relatively Relative fitness curves
stable, best not to copy mum
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stable, best not to copy mum
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Slightly negative or zero m is
favoured: lower phenotypic
variance outweighs rapid
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If your environment is relatively Relative fitness curves
stable, best not to copy mum
too much

Slightly negative or zero m is

favoured: lower phenotypic
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» m>0 accelerates adaptation to a novel environment.

» m<0 maximises fitness in relatively stable environments.

» Hoyle, R.B. & Ezard, T.H.G. (2012) The benefits of maternal effects in novel
and in stable environments. J. R. Soc. Interface, 9:2403-2413, doi: 10.1098/
rsif.2012.0183

Maternal effects and
environmental change

email: r.hoyle@surrey.ac.uk
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m>>0, no lag effect
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» m>0 accelerates adaptation to a novel environment.

» m<0 maximises fitness in relatively stable environments.

» Hoyle, R.B. & Ezard, T.H.G. (2012) The benefits of maternal effects in novel
and in stable environments. J. R. Soc. Interface, 9:2403-2413, doi: 10.1098/
rsif.2012.0183

» m>0 optimal if environmental change is predictable across generations
(and there is time to adapt)

» T.H.G. Ezard, R. Prizak and R.B. Hoyle [2014] The fitness implications of
adaptation via phenotypic plasticity and maternal effects. Funct. Ecol.,
28:693-701, doi:10.1111/1365-2435.12207.

Maternal effects and
environmental change
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—volving maternal effects

Now let maternal effects vary across the population and be subject to
selection:

*
Z+ = Q¢ T+ tht_T -+ Mi<y 1 —+ €4

Assumptions
e Maternal effects are under offspring control in generation t. (Doesn’t seem
to make much difference if they are under maternal control.)
® Gam=Gpbm=0 and Gmm is constant
e Everything is multivariate normally distributed
e There are costs of both plasticity and maternal effects

Let m; evolve according to

Am = Gmmi In W
om

Fully stochastic simulations (no expectation over distribution of environments)

Details are technically messy, involving updates for Z¢ and its covariances and
variance, but more or less tractable



—xtraordinary new environment (unpredictable)
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e maternal effect coefficient initially negative, evolves to be positive at
environmental shift, and then back to negative at long times
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e fitness returns quicker if both plasticity and maternal effects present, but long-
term fitness is better with plasticity only
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¢ plasticity evolves to larger values if maternal effects also present

e additive genetic component evolves to larger values if maternal effects present
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Sinusoidal environment (predictable)
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e maternal effects larger (and positive) when plasticity also present
¢ plasticity smaller when maternal effects present



Sinusoidal environment (predictable)
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e additive genetic component smaller in presence of plasticity



Sinusoidal environment (predictable)
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¢ mean fitness highest when both plasticity and maternal effects present
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—volving maternal effects summary

Maternal effects evolve to be positive at environmental shift and
then back to negative when the change is complete

When change is predictable, then a mixture of maternal effects and
phenotypic plasticity is optimal

Maternal effects and phenotypic plasticity may each facilitate the
evolution of the other



» m>0 accelerates adaptation to a novel environment.

» m<0 maximises fitness in relatively stable environments.

» Hoyle, R.B. & Ezard, T.H.G. (2012) The benefits of maternal effects in novel
and in stable environments. J. R. Soc. Interface, 9:2403-2413, doi: 10.1098/
rsif.2012.0183

» m>0 optimal if environmental change is predictable across generations
(and there is time to adapt)

» T.H.G. Ezard, R. Prizak and R.B. Hoyle [2014] The fitness implications of
adaptation via phenotypic plasticity and maternal effects. Funct. Ecol.,
28:693-701, doi:10.1111/1365-2435.12207.

» Evolved maternal effects speed up the response to sudden
environmental change, improve fithess when environmental change is
predictable, and may facilitate the evolution of phenotypic plasticity

» B. Kuijper and R.B. Hoyle [2014] An evolutionary model of maternal effects.

Maternal effects and
environmental change
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