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Complex networks 

describe 

 the underlying structure of interacting complex  

Biological, Social and Technological systems. 



Networks 



Because 

NETWORKS 

encode for the  
ORGANIZATION, 

FUNCTION, 
ROBUSTENES 

AND DYNAMICAL BEHAVIOR 
 of the entire complex system 



Types of networks 
 Simple Each link is either existent or non 
existent, the links do not have directionality 

(protein interaction map, Internet,…)   

 Directed  The links have directionality, 
i.e., arrows 
(World-Wide-Web, social networks…) 

 Signed The links have a sign 
(transcription factor networks, epistatic networks…) 



Types of networks 

 Weighted The links are associated to a real number 
indicating their weight 

(airport networks, phone-call networks…) 

 With features of the nodes The nodes might 
have weight or color 

(social networks, diseasome, ect..) 
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Total number of nodes N 
and links L 

The total number of nodes N 
and the total number of links L 

are the most basic characteristics 
of a network 



Adjacency matrix 
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Network: 
A set of labeled 
nodes and links 
between them 

Adjacency matrix: 
The matrix of entries 
a(i,j)=1 if there is a link  
 between node  
 i and j 
a(i,j)=0  otherwise 



Degree distribution 
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ki = aij
j
∑Degree if node i: 

Number of links  of 
node i  
Network: Degree distribution: 

P(k): how many nodes 
have degree k 



Random graphs 

Binomial                  Poisson  
distribution                distribution 
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Universalities: 
Scale-free degree distribution 
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Faloutsos et al. 1999 Barabasi-Albert 1999 
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γ ≈ 2.5

H. Jeong et al. Nature (2001) 





Why this universality? 



€ 

γ > 3

γ−∝ kkP )(

with 

€ 

1 < γ ≤ 2

with 

with 

€ 

2 < γ ≤ 3
€ 

k finite

k 2 finite

€ 

k finite

k 2 →∞

€ 

k →∞

k 2 →∞



Hyppocampus functional  
neural network 
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P(k)∝ k −γ
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γ ∈ (1,2]
k →∞

k 2 →∞

Bonifazi et al . Science 2009 
Dense scale-free  
networks 



Social network of phone 
calls 
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J. P Onnela  
PNAS 2007 

Finite scale network 



Shortest distance 

The shortest distance between two nodes is 
the minimal number of links than a path must 
hop to go from the source to the destination 
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The shortest distance 
 between node 4 and 
node 1 is 3 
 between node 3 and 
node 1 is 2 
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Diameter and average 
distance 

The diameter D   of a 
network is the 
maximal length of the 
shortest distance 
between any pairs of 
nodes in the  network 

  The average 
distance         is the 
average length of the 
shortest distance 
between any pair of 
nodes in the network 
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Clustering coefficient 

€ 

Ci =
|#of trianglesthrough i |

ki(ki −1) /2

€ 

C2 =
1
3

C3 =
2
3

1 

2 3 

4 5 

Definition of local  
clustering 
coefficient 

Network Clustering coefficient  
of nodes 2,3 



Ci = 
# of links between 1,2,…ki neighbors 

ki(ki-1)/2 

Networks are clustered    
(large average Ci, i.e. C)                         

 but have a small 
characteristic path length                            

(small L). 

Network C Crand L N

WWW 0.1078 0.00023 3.1 153127

Internet 0.18-0.3 0.001 3.7-3.76 3015-
6209

Actor 0.79 0.00027 3.65 225226

Coauthorship 0.43 0.00018 5.9 52909

Metabolic 0.32 0.026 2.9 282

Foodweb 0.22 0.06 2.43 134

C. elegance 0.28 0.05 2.65 282

Ki 

i 

Watts and Strogatz (1999) 



Small world in social 
networks 

1967 Milligran experiment 
People from Nebraska and Kansas were asked to 
contact a person in Boston though their network of 

acquaintances 

The strength of weak ties 
(Granovetter 1973) 

Weak ties help navigate the social networks 
Small-world model  
(Watts & Strogatz 1998) 

The model for coexistence of high clustering and small 
distances in complex networks 
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 A connected component of a network is a subgraph such  
that for each pair of nodes in the subgraph there is at least  
one path linking them 
 The giant component is the connected component of the  
network which contains a number of nodes of the same order  
of magnitude of the total number of links  



2
2

≥
><
><

k
k

><+>>=<< kkk 22 1>≥< k

3
3)log(

2/)3(
2

<γ

=γ

⎩
⎨
⎧

>≈< γ− if
if

N
Nk

€ 

γ ≤ 3

Molloy-Reed 1995 

There is 
always a 
giant 
component 
as long as 



Complex systems maintain their basic functions                           
even under errors and failures 

Node failure 
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Attacks 

Failures 
Topological 

error tolerance 

R. Albert et al. 2000 
Cohen et al. 2000 
Cohen et al. 2001 



Failure=Attack Robust against Failure 
Weak against   Attack 

R. Albert et al. 2000  



Betweenness Centrality 
The betweenness centrality of a node v 

is given by 

where σst is the total number of shortest paths between s 
and t 

σst(v) are the number of such paths passing through v 
€ 

B(v) =
s,t≠v
∑ σst (v)

σst

The nodes A and B are also  
called bridges and have high  
betweeness  



In uncorrelated networks the probability 
that  a node i is linked to a node j is given by 
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The map of     

reveals correlations 
in the protein 
interaction map   S. Maslov and K. Sneppen Science 2002 

Link probability between nodes of  
degree classes k and k’  



Specific characteristic of 
networks: Degree correlations 
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of a neighbor of a  
node of degree k 
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α α < 0

Vazquez et al. PRL 2001 
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Average clustering  
coefficient C(k) of  
nodes of degree k 



€ 

C(k) ≈ k −δ

 There are important 
correlations  
in the network! 
 The network is not 
‘random’ 
 Highly connected nodes 
link more “distant” nodes of 
the network 

Ravasz,et al. Science (2002). 



K-core of the Internet 
DIMES Internet data 
Visualization: 
Alvarez-Hamelin et al. 2005 
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K-cores 
on trees with given degree 

distributions 

Scale-free networks 
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S. Dorogovtsev, et al. PRL (2006) Carmi et al. PNAS (2007) 

 Maximal K of 
 the K-cores 

 Size of the  
minimal K-core  



Maslov & Sneppen 2002 



Motifs in the transcriptome         
network of e.coli.  
S.S. Shen-Orr, et al., 2002 

Milo et al. 2002 



Motifs of size 3 in directed 
networks 

The number of distinguishable possible motifs increases  
exponentially with the motif size limiting the extension of this  
method to large subgraphs 



Specific characteristics of a network:  
communities 

A community of a network define a set of nodes  
with similar connectivity pattern. 

Dolphins social network High-school dating networks 

S. Fortunato  Phys. Rep. 2010 



Girvan and Newman 
algorithm 

1.  The betweenness of all existing 
edges in the network is calculated 
first."

2.  The edge with the highest 
betweenness is removed."

3.  The betweenness of all edges 
affected by the removal is 
recalculated."

4.  Steps 2 and 3 are repeated until no 
edges remain."

Girvan and Newman PNAS 2002 

The algorithm 



Modularity 

 Assign a community si=1,2,…K to each 
node,  

 The modularity Q is given by 

 Tight communities can be found by 
maximizing the modularity function € 
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Overlapping set of 
cliques can be 

helpful to identify 
community 

structures in 
different networks 

For this method to work 
systematically networks  
must have many cliques (ex. 
Scale-free networks) 

Palla et al. Nature (2005) 



Loops or cycles of size L 
A loop or a cycle  of size L  
is a path of the network that start at one point  
and ends after hopping L links on the same point   
without crossing the intermediate nodes more  
than one time 
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This network has  
 2 loops of size 3 
 and 1 loop of size 4 



Cliques of size c 

Clique of size c 
is a fully connected subgraph of the network of 

c nodes and c(c-1)/2 links 
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1 
This network contains  
 4 cliques  
of size 3 (triangles) 
 and 1 clique of size 4  
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Small loops in the Internet 
at the AS level 

The number of loops  
of size L= 3,4,5 

grows with the network size N 
as 

In Poisson networks instead 
they are a fixed number  

Independent on N 
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ℵL ∝ Nξ (L )

G. Bianconi et al.PRE 2005 
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Because 

NETWORKS 

encode for the  
ORGANIZATION, 

FUNCTION, 
ROBUSTENES 

AND DYNAMICAL BEHAVIOR 
 of the entire complex system 


