

Complexity Summer School

Warwick, 28 Feb-3 May 2013

Structure of complex networks

Ginestra Bianconi
School of Mathematics, Queen Mary University of London, London UK

Complex networks

describe
the underlying structure of interacting complex

Biological, Social and Technological systems.

Networks

Why working on networks?

Because

Types of networks

$>$ Simple Each link is either existent or non existent, the links do not have directionality (protein interaction map, Internet, ...)
$>$ Directed The links have directionality, i.e., arrows
(World-Wide-Web, social networks...)
$>$ Signed The links have a sign
(transcription factor networks, epistatic networks...)

Types of networks

$>$ Weighted The links are associated to a real number indicating their weight
(airport networks, phone-call networks...)
$>$ With features of the nodes The nodes might have weight or color (social networks, diseasome, ect..)

Bipartite networks: ex. Metabolic network

Reaction pathway

$$
\begin{aligned}
& A+B \longrightarrow C+D \\
& A+D \longrightarrow E \\
& B+C \longrightarrow E
\end{aligned}
$$

Bipartite Graph

Total number of nodes \mathbf{N} and links L

The total number of nodes N and the total number of links L are the most basic characteristics of a network

Adjacency matrix

Network:
 A set of labeled nodes and links between them

Adjacency matrix:
The matrix of entries
$a(i, j)=1$ if there is a link
between node
i and j
$a(i, j)=0$ otherwise

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Degree distribution

Degree if node i:

Number of links of node i

$$
k_{i}=\sum_{j} a_{i j}
$$

Network:

Degree distribution:
$P(k)$: how many nodes
have degree k

Random graphs

$\mathbf{G}(\mathbf{N}, \mathrm{L})$ ensemble
Graphs with exactly
N nodes and
L links
$\mathbf{G}(\mathbf{N}, \mathrm{p})$ ensemble
Graphs with N nodes Each pair of nodes is linked with probability p

Binomial distribution
$P(k)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$
$P(k)=\frac{1}{k!} c^{k} e^{-c}$

Poisson distribution

Universalities: Scale-free degree distribution

Faloutsos et al. 1999
$P(k) \propto k^{-\varphi} \gamma \in(2,3)$
$\langle k\rangle$ finite
$\left\langle k^{2}\right\rangle \rightarrow \infty$

Topology of the yeast protein network

H. Jeong et al. Nature (2001)

Scale-free networks

- Technological networks:
- Internet, World-Wide Web
- Biological networks:
- Metabolic networks,
- protein-interaction networks, - transcription networks
- Transportation networks:
- Airport networks
- Social networks:
- Collaboration networks
- citation networks
- Economical networks:
- Networks of shareholders
in the financial market
- World Trade Web

Why this universality?

- Growing networks:
-Preferential attachment Barabasi \& Albert 1999,
Dorogovtsev Mendes 2000,Bianconi \& Barabasi 2001, etc.
- Static networks:
-Hidden variables mechanism
Chung \& Lu 2002, Caldarelli et al. 2002,
Park \& Newman 2003

Scale-free networks

with

$$
\gamma>3
$$

with

$$
2<\gamma \leq 3 \begin{aligned}
& \langle k\rangle \quad \text { finite } \\
& \left\langle k^{2}\right\rangle \rightarrow \infty
\end{aligned}
$$

with

$$
\begin{array}{ll}
1<\gamma \leq 2 & \\
& \langle k\rangle \rightarrow \infty \\
& \left\langle k^{2}\right\rangle \rightarrow \infty
\end{array}
$$

Hyppocampus functional neural network

Bonifazi et al . Science 2009

Dense scale-free networks
$P(k) \propto k^{-\gamma}$
$\gamma \in(1,2]$
$\langle k\rangle \rightarrow \infty$
$\left\langle k^{2}\right\rangle \rightarrow \infty$

Social network of phone calls

J. P Onnela PNAS 2007

$$
P(k)=\frac{a}{\left(k+k_{0}\right)^{\gamma}} e^{-k / k_{c}}
$$

Finite scale network

Shortest distance

The shortest distance between two nodes is the minimal number of links than a path must hop to go from the source to the destination

The shortest distance $>$ between node 4 and node 1 is 3
$>$ between node 3 and node 1 is 2

Diameter and average distance

The diameter D of a network is the maximal length of the shortest distance between any pairs of nodes in the network

The average distance $\langle\ell\rangle$ is the average length of the shortest distance between any pair of nodes in the network

$$
D \geq\langle\ell\rangle
$$

Clustering coefficient

Definition of local clustering coefficient

$$
C_{i}=\frac{\mid \# \text { of trianglesthrough } i \mid}{k_{i}\left(k_{i}-1\right) / 2}
$$

Network

Clustering coefficient of nodes 2,3

$$
\begin{aligned}
& C_{2}=\frac{1}{3} \\
& C_{3}=\frac{2}{3}
\end{aligned}
$$

Universality: Small world

Networks are clustered (large average C_{i}, i.e. C) but have a small characteristic path length (small L).	Network	C	$\mathrm{C}_{\text {rand }}$	L	N
	WWW	0.1078	0.00023	3.1	153127
	Internet	0.18-0.3	0.001	3.7-3.76	$\begin{gathered} 3015- \\ 6209 \\ \hline \end{gathered}$
	Actor	0.79	0.00027	3.65	225226
	Coauthorship	0.43	0.00018	5.9	52909
	Metabolic	0.32	0.026	2.9	282
	Foodweb	0.22	0.06	2.43	134
Watts and Strogatz (1999)	C. elegance	0.28	0.05	2.65	282

Small world in social

networks
 1967 Milligran experiment

People from Nebraska and Kansas were asked to contact a person in Boston though their network of acquaintances

The strength of weak ties

(Granovetter 1973)
Weak ties help navigate the social networks

Small-world model

(Watts \& Strogatz 1998)
The model for coexistence of high clustering and small distances in complex networks

Diameter and average path length

Diameter

Poisson
networks

$$
D \approx \frac{\log (N)}{\log (<k>)}
$$

Average distance

$$
\langle\ell\rangle \approx \frac{\log (N)}{\log (<\mathrm{k}\rangle)}
$$

Scale-free networks

$$
\langle\ell\rangle \approx\left\{\begin{array}{l}
\frac{\log N}{\log <k>} \text { if } \gamma>3 \\
\frac{\log (N)}{\log (\log (N))} \text { if } \gamma=3 \\
\log (\log (N)) \text { if } \gamma<3
\end{array}\right.
$$

Cohen \&Havlin 2003

Ultra small world property

Giant component

>A connected component of a network is a subgraph such that for each pair of nodes in the subgraph there is at least one path linking them
$>$ The giant component is the connected component of the network which contains a number of nodes of the same order of magnitude of the total number of links

Molloy-Reed principle

A network has a giant component if

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle} \geq 2
$$

Molloy-Reed 1995

Second moment <k²>

$\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$
Poisson
networks
Scale-free $<k^{2}>\approx\left\{\begin{array}{l}\log (N) \text { if } \gamma=3 \\ \text { Networks }\end{array} N^{(3-\gamma) / 2}\right.$ if $\gamma<3$

Molloy-Reed condition
$<k>\geq 1$

There is always a giant component as long as

Robustness

Complex systems maintain their basic functions even under errors and failures

Fraction of removed nodes, f

Robustness of scale-free networks

Robustness

Random

Failure=Attack

Scale-free

Robust against Failure Weak against Attack
R. Albert et al. 2000

Betweenness Centrality

The betweenness centrality of a node v

is given by

$$
B(v)=\sum_{s, t v v} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

where $\sigma_{s t}$ is the total number of shortest paths between s and t
$\sigma_{\text {st }}(v)$ are the number of such paths passing through v

The nodes A and B are also called bridges and have high betweeness

Link probability in uncorrelated networks

In uncorrelated networks the probability that a node i is linked to a node j is given by

$$
p_{i j}=\frac{k_{i} k_{j}}{<k>N}
$$

$$
p_{i j}=2 \frac{3}{\langle k\rangle N}
$$

Degree correlations

$$
P_{R}\left(k, k^{\prime}\right)=\frac{k k^{\prime}}{\langle k\rangle N} P(k) P\left(k^{\prime}\right)
$$

Link probability between nodes of degree classes \mathbf{k} and \mathbf{k}^{\prime}

S. Maslov and K. Sneppen Science 2002

The map of

$$
\frac{P\left(k, k^{\prime}\right)}{P_{R}\left(k, k^{\prime}\right)}
$$

reveals correlations in the protein interaction map

Specific characteristic of networks: Degree correlations

[^0]$$
k_{n n}(k)=\left\langle\frac{1}{k_{i}} \sum_{j \in N} k_{i j} k_{k_{i}}\right\rangle_{k_{i}=k}
$$

Degree-degree correlations in the Internet at the AS level

$$
k_{n n}(k) \approx k^{\alpha} \quad \alpha<0
$$

the network is disassortative

Vazquez et al. PRL 2001

$$
\begin{aligned}
& \begin{array}{l}
\text { Average degree } \\
\text { of a neighbor of a } \\
\text { node of degree } \mathbf{k}
\end{array} \quad k_{n n}(k)=\left\langle\frac{1}{k_{i}} \sum_{j \in N(i)} k_{j}\right\rangle_{k_{i}=k} .
\end{aligned}
$$

Correlations and clustering coefficient

$$
C(k) \approx k^{-\delta}
$$

Uncorrelated networks $\delta=0$ Modular networks $\quad \delta>0$

Average clustering coefficient C(k) of nodes of degree k

$$
C(k)=\left\langle\frac{\sum_{i, j, r} a_{i, j} a_{j r} a_{r, i}}{k(k-1)}\right\rangle_{i \mid\langle k(i)\rangle=k}
$$

Clustering coefficient of metabolic networks

Ravasz,et al. Science (2002).

$$
C(k) \approx k^{-\delta}
$$

$>$ There are important correlations
in the network!
$>$ The network is not 'random'
$>$ Highly connected nodes link more "distant" nodes of the network

K-core of a network

A K-core of a network

is the subgraph of a network obtained by removing the nodes with connectivity $\mathbf{k}_{\mathbf{i}}<K$ iteratively until the network has only nodes with $k_{i} \geq K$

K-core of the Internet DIMES Internet data Visualization:
Alvarez-Hamelin et al. 2005

K-cores
 on trees with given degree distributions

Scale-free networks

>Maximal K of
the K-cores

$$
K_{\max } \approx p m^{\gamma-2} K_{c u t}^{3-\gamma}
$$

$>$ Size of the
minimal K-core

$$
M\left(K_{\max }\right) \approx p\left(\frac{m}{K_{c u t}}\right)^{\gamma-1}
$$

S. Dorogovtsev, et al. PRL (2006) Carmi et al. PNAS (2007)

How to build a null model form a given network: swap of connections

- Choose two random links linking four distinct nodes
> If possible (not already existing links) swap the ends of the links

Maslov \& Sneppen 2002

Motifs

The motifs are subgraphs which appear with higher frequency in real networks than in randomized networks
 In biological networks the motifs are told to be selected by evolution
 and are relevant to understand the function of the network.

Milo et al. 2002

Motifs in the transcriptome network of e.coli.
S.S. Shen-Orr, et al., 2002

Motifs of size 3 in directed networks

The number of distinguishable possible motifs increases exponentially with the motif size limiting the extension of this method to large subgraphs

Specific characteristics of a network: communities

Dolphins social network

A community of a network define a set of nodes with similar connectivity pattern.
S. Fortunato Phys. Rep. 2010

Girvan and Newman algorithm

The algorithm

1. The betweenness of all existing edges in the network is calculated first.
2. The edge with the highest betweenness is removed.
3. The betweenness of all edges affected by the removal is recalculated.
4. Steps 2 and 3 are repeated until no edges remain.
(a)

Modularity

$>$ Assign a community $s_{i}=1,2, \ldots \mathrm{~K}$ to each node,
$>$ The modularity Q is given by

$$
Q=\frac{1}{\langle k\rangle N} \sum_{i j}\left[a_{i j}-\frac{k_{i} k_{j}}{\langle k\rangle N}\right] \delta\left(s_{i}, s_{j}\right)
$$

$>$ Tight communities can be found by maximizing the modularity function

Newman PNAS 2006

Cliques for community detection

Overlapping set of cliques can be helpful to identify community structures in different networks

For this method to work systematically networks must have many cliques (ex

Scale-free networks)

Palla et al. Nature (2005)

Loops or cycles of size L

A loop or a cycle of size L

is a path of the network that start at one point and ends after hopping L links on the same point without crossing the intermediate nodes more than one time

Cliques of size c

Clique of size c

is a fully connected subgraph of the network of c nodes and c(c-1)/2 links

> This network contains >4 cliques of size 3 (triangles) > and 1 clique of size 4

Small subgraphs appear abruptly when we increase the average number of links in the random graphs

$$
c=\frac{L}{N} \approx N^{\alpha}
$$

Subgraph thresholds

Small loops in the Internet at the AS level

The number of loops of size $L=3,4,5$
grows with the network size N as

$$
\aleph_{L} \propto N^{\xi(L)}
$$

In Poisson networks instead
they are a fixed number

G. Bianconi et al.PRE 2005 Independent on N

Smalll subgraphs in SF networks

Why working on networks?

Because

[^0]: Average degree of a neighbor of a node of degree k

