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Complex networks

F 2000

describe

the underlying structure of interacting complex

Biological, Social and Technological systems.



Networks
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Why working on networks?

Because

encode for the
ORGANIZATION,
FUNCTION,
ROBUSTENES

AND DYNAMICAL BEHAVIOR
of the entire complex system




Types of networks

»Simple Each link is either existent or non
existent, the links do not have directionality

(protein interaction map, Internet, . . )

»Directed The links have directionality,

l.e., arrows
(World-Wide-Web, social networks...)

» Signed The links have a sign

(transcription factor networks, epistatic networks...)




Types of networks

»\Weighted The links are associated to a real number
iIndicating their weight
(airport networks, phone-call networks...)

» \With features of the nodes The nodes might
have weight or color

(social networks, diseasome, ect..)
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Bipartite networks:
ex. Metabolic network

Reaction pathway Bipartite Graph
A B C D E
@ O

A+B— C+D 1

A+D——FE 2 5

B+C —FE 3 1 2 3

B

Metabolites 1 Reactions
rojection (enzymes)
rojection
C A E
2 3
D



Total number of nodes N
and links L

The total number of nodes N
and the total number of links L

are the most basic characteristics
of a network




Adjacency matrix

Network:

A set of labeled
nodes and links
between them

Adjacency matrix:
The matrix of entries
a(i,j)=1 if there is a link
between node
I and |
a(l,j))=0 otherwise
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Degree distribution

Degree if node i: (=
. ;= ai'
Number of links of ~
node i
Network: Degree distribution:
P(k): how many nodes
1 have degree k

3-
1- OP(k)
4 0-

1 2 3




Random graphs

G(N,L) ensemble G(N,p) ensemble
Graphs with exactly Graphs with N nodes
N nodes and Each pair of nodes is linked
L links with probability p
Binomial Poisson
. distribution distribution

P(k) =

N -1 k1 N-1-k
L p (1-p)
| :

=k _-c
P(k)—k!ce

P(k)




Universalities:
Scale-free degree distribution
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Topology of the yeast protein
network

H. Jeong et al. Nature (2001)
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Scale-free networks

- Technological networks:
— Internet, World-Wide Web

Biological networks :
— Metabolic networks,

— protein-interaction networks,
— transcription networks

- Transportation networks:
— Airport networks

Social networks:
— Collaboration networks
— citation networks

Economical networks:
— Networks of shareholders
in the financial market
— World Trade Web



Why this universality”?

* Growing networks:

—Preferential attachment

Barabasi & Albert 1999,

Dorogovtsev Mendes 2000,Bianconi & Barabasi 2001,
elc.

e Static networks:

—Hidden variables mechanism

Chung & Lu 2002, Caldarelli et al. 2002,
Park & Newman 2003



Scale-free networks

P(k)

P(k) o< k™
with (k)  finite
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Hyppocampus functional
neural network

Bonifazi et al . Science 2009

Dense scale-free
networks

P(k) o k™7




Social network of phone
calls

-

2. N M ¥4V J. P Onnela
| ‘ PNAS 2007

- “ o -
- ?. ;’_4‘, "
I St g T
10
wTE T,

1

Degron k

a
Pk) = ik,
0= Grr)

v =84 Finite scale network




Shortest distance

The shortest distance between two nodes is
the minimal number of links than a path must
hop to go from the source to the destination

The shortest distance
> between node 4 and
node1is 3

»between node 3 and
5 node 1 is 2




Diameter and average

distance
The diameter D of a The average
network is the distance (/) is the
maximal length of the average length of the
Shortest distance Shortest distance
between any pairs of between any pair of
nodes in the network nodes in the network

D=(/)




Clustering coefficient

Definition of local

C|ustering C - i#of trianglesthrough i |
coefficient ki(k; =1)/2
Network Clustering coefficient
1 of nodes 2,3
|
2 3 C2 _ —

3
2
C. ==
3




Universality: Small world

# of links between 1,2,...k; neighbors

k(k-1)/2
Network C Cian L N
Networks are clustered d
. WWW 0.1078 | 0.00023 3.1 153127
(large average C, 1e. C)
Internet 0.18-0.3 | 0.001 |3.7-3.76 3015-
but have a small o2
o Actor 0.79 0.00027 3.65 225226
characteristic path length ,
Coauthorship 0.43 | 0.00018 5.9 52909
(small L).
Metabolic 0.32 0.026 29 282
Foodweb 0.22 0.06 2.43 134
Watts and Strogatz (1999) C. elegance 0.28 0.05 2.65 282




Small world in social

networks
1967 Milligran experiment

People from Nebraska and Kansas were asked to
contact a person in Boston though their network of
acquaintances

The strength of weak ties
(Granovetter 1973)

Weak ties help navigate the social networks

Small-world model
(Watts & Strogatz 1998)

The model for coexistence of high clustering and small
distances in complex networks



Diameter and average path
length

Diameter Average distance
Poisson 5. logN) ()= log(N)
networks log(<k >) log(<k >)
[ logN ,
ify>3
Scale-free log <k >
D ~ log(N) (=1 log) . .
networks oatoavy 7™
log(log(N) if 7 <3
Chung & Lu 2004 Cohen &Havlin 2003

Small world property  Ultra small world property



Giant component

»A connected component of a network is a subgraph such
that for each pair of nodes in the subgraph there is at least

one path linking them
» The giant component is the connected component of the

network which contains a number of nodes of the same order
of magnitude of the total number of links




Molloy-Reed principle

A network has a giant
component if

Molloy-Reed 1995
Second moment <k2> Molloy-Reed
condition
Poisson 2 2
<k®>=<k>"+<k>
networks <k>=1
_ There is
Scale-free _ |2, log(N) if y=3 iy
Networks NG-Y)/2 jf Y <3 component

as long as y < 3




Robustness

Complex systems maintain their basic functions
even under errors and failures

1I
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Robustness of scale-free networks
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Robustness
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Betweenness Centrality

The betweenness centrality of a node v
IS given by

Boy=3 %

S, t=Vv St

where o is the total number of shortest paths between s
and t

o,(v) are the number of such paths passing through v

e ’ The nodes A and B are also
’ . called bridges and have high
. ' *, betweeness




Link probability In
uncorrelated networks

In uncorrelated networks the probability
that a node i is linked to a node j is given by

kikj
<k>N

pij

ic//‘\
\\%j =2 >
\\/ pl] <k>N




Degree correlations

kk' : -
P.(k,k") = P(k)P(k") Link probability betwee,n nodes of
(k)N degree classes k and k

x0 14
12
00
"
¥ 3

o8
__ 204

Q3

Q

S. Maslov and K. Sneppen Science 2002

! 3 0 B 10 3%0

The map of
P(k,k'")

Py (k,k')

reveals correlations
in the protein
interaction map




Specific characteristic of
networks: Degree correlations

Assortative networks o>0

log(Kn(K))

Knn(K) =K% uUncorrelated networks o=0

Disassortative networks o<0

log (k)

Average degree

1
of a neighborofa  k.(k/= < .E.kj>
node of degree k DSt




Degree-degree correlations In
the Internet at the AS level

k (k)=k® a<0

the network is
disassortative

Vazquez et al. PRL 2001

Average degree
of a neighborofa  « (k) - < Yk, >
l]EN(l) k=

node of degree k




Correlations and
clustering coefficient

Uncorrelated
C(k)=k™
\ ( ) networks 6=0

Modular networks 0>0

log(C(k))

log(k)

Average clustering

- = Eai,jajrar,i
coefficient C(k) of Clk) = L2
i|(k(i))=k

nodes of degree k k(k —1)




Cik)

Clustering coefficient of
metabolic networks
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Ck)=k™

» There are important
correlations

in the network!

» The network is not
‘random’

»Highly connected nodes
link more “distant” nodes of
the network




K-core of a network

A K-core of a network

IS the subgraph of a network obtained by
removing the nodes with connectivity k.<K
iteratively until the network

has only nodes with k. =K

K-core of the Internet
DIMES Internet data
Visualization:
Alvarez-Hamelin et al. 2005

0000000000000 0000OCOLOR0GONRONOMY
AnaN®®

Using LaNet-Vi
http://xavier.informatics.indiana.edu/lanet-vi



K-cores
on trees with given degree
distributions

Scale-free networks |
{—— No. of nodes In the nuclsus 10°

> Maximal K of
the K-cores
3-Y Sloge a-2.6 L

~ =2
Kmax ~ pm Kcut

> Size of the
minimal K-core 1
-
i
M(K_, )= p( Km ) et 10t 10t a0t b el
cut

S. Dorogovtsey, et al. PRL (2006) Carmi et al. PNAS (2007)



How to build a null model
form a given network:
swap of connections

» Choose two
rahdom links
linking four distinct
nodes

» If possible (not

already existing
links) swap the
ends of the links

Maslov & Sneppen 2002



Motifs

feedforward loop

The motifs are [i E:

subgraphs which appear with , -

higher frequency in real E,Lc

networks than in randomized | e

networks ‘ e -
Z4 Z> z,,’ E)

In biological networks the R

motifs are told to be selected gREwEE

by evolution I

and are relevant to [

understand the function of e

the network. sk |/

Motifs in the transcriptome
Milo et al. 2002 network of e.coli.

S.S. Shen-Orr, et al., 2002




Motifs of size 3 in directed
networks

NININA
TN
AYAWAWAY

5 C

N

The number of distinguishable possible motifs increases
exponentially with the motif size limiting the extension of this

method to large subgraphs




Specific characteristics of a network:
communities

Dolphins social network High-school dating networks

A community of a network define a set of nodes
with similar connectivity pattern.

S. Fortunato Phys. Rep. 2010



Girvan and Newman

algorithm
The algorithm

. The betweenness of all existing
edges in the network is calculated
first.

2. The edge with the highest

betweenness is removed.

3. The betweenness of all edges

affected by the removal is

recalculated.

4. Steps 2 and 3 are repeated until no

edges remain.

Girvan and Newman PNAS 2002



Modularity

» Assign a community s=1,2,...K to each
node,

» The modularity Q is given by

I kik,

» Tight communities can be found by
maximizing the modularity function

Newman PNAS 2006



For this method to work
systematically networks
must have
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Loops or cycles of size L

A loop or a cycle of size L
IS a path of the network that start at one point
and ends after hopping L links on the same point

without crossing the intermediate nodes more
than one time

This network has
» 2 loops of size 3
»and 1 loop of size 4




Cligues of size ¢

Clique of size c
Is a fully connected subgraph of the network of

¢ nodes and c(c-1)/2 links

This network contains

2 3 »4cliques
of size 3 (triangles)
»and 1 clique of size 4




Small subgraphs appear
abruptly when we increase
the average number of links

In the random graphs

L a
c=—=N
N



Subgraph thresholds

1/3 1/2

Pek)

|||||||

| Finite average

connectivity

Diverging
average
connectivity




Small loops in the Internet
at the AS level

The number of loops

of size L= 3.4,5 ST
grows with the network size N _» ™ =a»=
as g o o

E(L) 5
NL x N .

3 L J
340 3.50 3.60 3.70 3.80 3.90 4.00
In(N)

In Poisson networks instead
they are a fixed number G. Bianconi et al.PRE 2005

Independent on N



Small subgraphs in SF networks

<k> finite <k> —> 0
A A

VY N [ \
00 3 2 1

OAD (R, ) finite

Small loops

_ L enin R e
<NL> 2LN <xL>~2LN

Of length L
A (3-7)/2 \© (17
Crnax=3 <N>'~“ v ()= C](\;—V))
max C C(C—’)/)
Chi f
Silzqeu(elSo N— N—x > 00

max
G. Bianconi and M. Marsili (2004), (2005)



Why working on networks?

Because

encode for the
ORGANIZATION,
FUNCTION,
ROBUSTENES

AND DYNAMICAL BEHAVIOR
of the entire complex system




