

Bipartite networks:

ex. Metabolic network

Reaction pathway

$A+B \longrightarrow C+D$

$A+D \longrightarrow E \quad 2$
$\mathrm{B}+\mathrm{C} \longrightarrow \mathrm{E} \quad 3$
Bipartite Graph

Total number of nodes \mathbf{N} and links L

The total number of nodes N and the total number of links L are the most basic characteristics of a network

Adjacency matrix

Network:
A set of labeled nodes and links between them
Adjacency matrix:
The matrix of entries $a(i, j)=1$ if there is a link between node i and j $a(i, j)=0$ otherwise

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Degree distribution

| Degree if node i:
 Number of links of
 node $i$$\quad k_{i}=\sum_{j} a_{i j}$ |
| :--- | :--- |

Network: Degree distribution: $P(k)$: how many nodes
 have degree k

Random graphs

Universalities: Scale-free degree distribution

Barabasi-Albert 1999

$$
P(k) \propto k^{-\gamma} \gamma \in(2,3)
$$

$\langle k\rangle$ finite $\left\langle k^{2}\right\rangle \rightarrow \infty$

Topology of the yeast protein network

Why this universality?

- Growing networks:
-Preferential attachment
Barabasi \& Albert 1999,
Dorogovtsev Mendes 2000,Bianconi \& Barabasi 2001, etc.
- Static networks:
-Hidden variables mechanism
Chung \& Lu 2002, Caldarelli et al. 2002,
Park \& Newman 2003

Scale-free networks

- Technological networks:
- Internet, World-Wide Web
- Biological networks :
- Metabolic networks
- protein-interaction networks,
- transcription networks
- Transportation networks:
- Airport networks
- Social networks:
- Collaboration networks
- citation networks
- Economical networks:
- Networks of shareholders in the financial market - World Trade Web

Scale-free networks

$$
P(k) \propto k^{-\gamma}
$$

$\langle k\rangle$ finite
$\left\langle k^{2}\right\rangle$ finite
$\langle k\rangle$ finite
$\left\langle k^{2}\right\rangle \rightarrow \infty$
$\langle k\rangle \rightarrow \infty$
$\left\langle k^{2}\right\rangle \rightarrow \infty$

Hyppocampus functional neural network

Dense scale-free networks
$P(k) \propto k^{-\gamma}$
$\gamma \in(1,2]$
$\langle k\rangle \rightarrow \infty$
$\left\langle k^{2}\right\rangle \rightarrow \infty$

Social network of phone calls

J. P Onnela PNAS 2007
$P(k)=\frac{a}{\left(k+k_{0}\right)^{\gamma}} e^{-k / k_{c}}$
$\gamma=8.4$

Finite scale network

Shortest distance

The shortest distance between two nodes is the minimal number of links than a path must hop to go from the source to the destination

The shortest distance >between node 4 and node 1 is 3
>between node 3 and node 1 is 2

Diameter and average distance

The diameter D of a network is the maximal length of the shortest distance between any pairs of nodes in the network

The average distance $\langle\ell\rangle$ is the average length of the shortest distance between any pair of nodes in the network

$$
D \geq\langle\ell\rangle
$$

Clustering coefficient

Definition of local clustering coefficient	$C_{i}=\frac{\\| \text { of trianglesthrough } i 1}{k_{i}\left(k_{i}-1\right) / 2}$

Clustering coefficient

 of nodes 2,3$$
\begin{aligned}
& C_{2}=\frac{1}{3} \\
& C_{3}=\frac{2}{3}
\end{aligned}
$$

Universality: Small world

Networks are clustered (large average C_{i}, i.e. C)
but have a small characteristic path length (small L).

Watts and Strogatz (1999)

Network	C	$\mathrm{C}_{\text {rand }}$	L	N
www	0.1078	0.00023	3.1	153127
Internet	$0.18-0.3$	0.001	$3.7-3.76$	$3015-$ 6209
Actor	0.79	0.00027	3.65	225226
Coauthorship	0.43	0.00018	5.9	52909
Metabolic	0.32	0.026	2.9	282
Foodweb	0.22	0.06	2.43	134
C. elegance	0.28	0.05	2.65	282

Small world in social networks
1967 Milligran experiment
People from Nebraska and Kansas were asked to contact a person in Boston though their network of acquaintances
The strength of weak ties
(Granovetter 1973)
Weak ties help navigate the social networks
Small-world model
(Watts \& Strogatz 1998)
The model for coexistence of high clustering and small
distances in complex networks

Diameter and average path length

Diameter Average distance

Poisson
networks

Giant component

$>$ A connected component of a network is a subgraph such that for each pair of nodes in the subgraph there is at least one path linking them
$>$ The giant component is the connected component of the network which contains a number of nodes of the same order of magnitude of the total number of links

Robustness

Complex systems maintain their basic functions even under errors and failures

Molloy-Reed principle

A network has a giant component if	$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle} \geq 2$
Molloy-Reed 1995	
Second moment <k ${ }^{2}$ >	Molloy-Reed condition
$\left.\begin{array}{l}\text { Poisson } \\ \text { networks }\end{array} \quad<k^{2}\right\rangle=\left\langle k>^{2}+\langle k\rangle\right.$	$<k>\geq 1$
$\begin{aligned} & \text { Scale-free }<k^{2}>\approx\left\{\begin{array}{l} \log (N) \text { if } \gamma=3 \\ N^{(3-\gamma) / 2} \text { if } \gamma<3 \end{array}\right. \\ & \text { Networks } \end{aligned}$	There is always a giant component as long as $\quad \gamma \leq 3$

Robustness of scale-free networks

Betweenness Centrality

The betweenness centrality of a node v
is given by

$$
B(v)=\sum_{s, t \neq v} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

where $\sigma_{\text {st }}$ is the total number of shortest paths between s and t
$\sigma_{\text {st }}(v)$ are the number of such paths passing through v

The nodes A and B are also called bridges and have high betweeness

Link probability in uncorrelated networks

In uncorrelated networks the probability that a node i is linked to a node j is given by

$$
p_{i j}=\frac{k_{i} k_{j}}{<k>N}
$$

$$
p_{i j}=2 \frac{3}{\langle k\rangle N}
$$

Specific characteristic of networks: Degree correlations

Assortative networks $\alpha>0$
Uncorrelated networks $\alpha=0$
Disassortative networks $\alpha<0$
$\log (k)$

Average degree of a neighbor of a node of degree k

$$
k_{n n}(k)=\left\langle\frac{1}{k_{i}} \sum_{j \in N(i)} k_{j}\right\rangle_{k_{i}=k}
$$

Degree correlations

$P_{R}\left(k, k^{\prime}\right)=\frac{k k^{\prime}}{\langle k| N} P(k) P\left(k^{\prime}\right) \quad$ Link probability between nodes of degree classes k and k

The map of

$$
\frac{P\left(k, k^{\prime}\right)}{P_{R}\left(k, k^{\prime}\right)}
$$

reveals correlations in the protein interaction map

Degree-degree correlations in the Internet at the AS level

$$
k_{n n}(k) \approx k^{\alpha} \quad \alpha<0
$$

the network is disassortative

Vazquez et al. PRL 2001

| Average degree
 of a neighbor of a
 node of degree k |
| :--- |$k_{n n}(k)=\left\langle\frac{1}{k_{i}} \sum_{j \in N(i)} k_{j}\right\rangle_{k_{i}=k}$

Correlations and

 clustering coefficientAverage clustering coefficient C(k) of nodes of degree k

K-core of a network

A K-core of a network
is the subgraph of a network obtained by removing the nodes with connectivity $\mathbf{k}_{\mathbf{i}}<K$ iteratively until the network has only nodes with $k_{i} \geq K$

K-core of the Internet
DIMES Internet data
Visualization:
Alvarez-Hamelin et al. 2005

K-cores on trees with given degree distributions

Scale-free networks
\rightarrow Maximal K of the K-cores
$K_{\max } \approx p m^{\gamma-2} K_{c u t}^{3-\gamma}$
$>$ Size of the

$$
\begin{aligned}
& \text { minimal K-core } \\
& \qquad M\left(K_{\max }\right) \approx p\left(\frac{m}{K_{c u t}}\right)^{\gamma-1}
\end{aligned}
$$

Using Lavet.Vi
Ittop/ravererinto
S. Dorogovtsev, et al. PRL (2006) Carmi et al. PNAS (2007)

Motifs

Maslov \& Sneppen 2002

Choose two
random links linking four distinct nodes
> If possible (not already existing links) swap the ends of the links

The motifs are
subgraphs which appear with higher frequency in real networks than in randomized networks

In biological networks the motifs are told to be selected by evolution
and are relevant to
understand the function of the network.

Milo et al. 2002

Motifs in the transcriptome network of e.coli s.s. Shen-Orr, et al., 2002

Motifs of size 3 in directed networks

${ }^{6} \rightarrow 0 \rightarrow 0{ }^{8} \rightarrow 9$ of
" 4 ABA

The number of distinguishable possible motifs increases exponentially with the motif size limiting the extension of this method to large subgraphs

Specific characteristics of a network: communities

A community of a network define a set of nodes with similar connectivity pattern.
S. Fortunato Phys. Rep. 2010

Girvan and Newman algorithm

The algorithm

1. The betweenness of all existing edges in the network is calculated first.
2. The edge with the highest betweenness is removed.
3. The betweenness of all edges affected by the removal is recalculated.
4. Steps 2 and 3 are repeated until no edges remain.

Modularity

$>$ Assign a community $s_{i}=1,2, \ldots \mathrm{~K}$ to each node,
$>$ The modularity Q is given by

$$
Q=\frac{1}{\langle k\rangle N} \sum_{i j}\left[a_{i j}-\frac{k_{i} k_{j}}{\langle k\rangle N}\right] \delta\left(s_{i}, s_{j}\right)
$$

$>$ Tight communities can be found by maximizing the modularity function

Girvan and Newman PNAS 2002

Cliques for community detection

Overlapping set of

cliques can be
helpful to identify
community
structures in
different networks
For this method to work systematically networks must have many cliques (ex
Scale-free networks)

Loops or cycles of size L

A loop or a cycle of size L

is a path of the network that start at one point and ends after hopping L links on the same point without crossing the intermediate nodes more than one time

Cliques of size c

Clique of size c
is a fully connected subgraph of the network of c nodes and c(c-1)/2 links

Small subgraphs appear abruptly when we increase the average number of links in the random graphs

$$
c=\frac{L}{N} \approx N^{\alpha}
$$

Subgraph thresholds

Small loops in the Internet at the AS level

The number of loops of size $L=3,4,5$
grows with the network size N

Small subgraphs in SF networks

Why working on networks?

