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The function of many complex

technological social and biological
systems

depends on the non-trivial interactions
between

interacting networks



Interacting infrastructure networks

Complex infrastructures are interdependent
and a failure in one network can generate
a cascade of failures in the Interdependent
networks
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Buldyrev et al. Nature 2010



Interacting Transportation networks

Transportation networks
are another major
example of interacting
networks. Here blue
lines represent short-
range commuting flow
by car or train the red
lines indicate airline
flow for few selected
cities

Vespignani Nature 2010

B GONCALVESET AL, INDIANA UNIV.



Interacting and multiplex
Brain networks

The brain function is determined

at the same time by the structural
% ™ prain network and the functional
\A % brain network, in turn depending
on the circulatory system

1 ‘ Recording sites
Histological or

Bullmore Sporns 2009



Interacting
Social networks

Y.Y. Ahn et al. Nature 2010

Social
networks are
interacting and
overlapping
with profound
implications for
community
detection
algorithms



Interacting and multiplex networks

In order to
model, predict and control
complex networks

we need to understand the effect of
iInterdependencies between networks and

we need to fully characterize the evolution and
dynamics of

the
networks of networks



Interacting networks

« Two or more interacting networks are formed by different
nodes (ex. Power-grid network and Internet) but there

might be complex interactions and interdependencies
between the nodes
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Multiplex

« A multiplex is formed by a set of
nodes that are present at the same
time on different networks,

« A multiplex is formed by M layers
(in the figure M=3)

« Each layer is formed by a network




The airport network is a

multiplex

(b) v/ (c) (d)

* (a) Only links belonging to all airline companies are
plotted

* (b) The combined network where only nodes of degree
k>75 have been plotted

* (c) A major airline network
* (d) Low cost airline network

Cardillo et al. Scientific Reports (2013).



Link overlap

The In silico multiplex social social

network of an online game

* In this online game
agents can belong to
different networks
Friendship,
Communication, Trade,
Enmity, Attack and
Bounty networks

I Link overlap
[ Degree correlation
[ Degree rank correlation
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Representation of a multiplex

The straightforward representation a multiplex of N nodes
formed by M layers is by means of the set of M adjacency
matrices

a

A

with a=1,2,...M and matrix elements

{1 if nodei and node j are linked in layer a

0 otherwise




Multiplex Models



Log(<k'|k?>)

Conditional average degree in one
layer (case of a duplex, i.e. two
layers)

Positive degree correlations

No degree correlations

Negative degree correlations

(K'k*) = > K'P(K' k%)

k! degree in network 1,k? degree in network 2
P(k',k?) probability that a node has degree k' in one layer and k?2
in the other layer

log (k?)



Growing multiplex (duplex)

. GROWTH

At each time a new node is added to the multiplex. Every new node has a
copy in each layer and has m links in each layer.

+ PREFERENTIAL ATTACHMENT
The probability that the new link is added to node i in layer a is given by
I1* with
IT o ak; +(1-a)k;
IT" o (1-b)k; +bk;

and a,b < 1.



Case a=b=1 Exact solution

Degree correlations

Nicosia et al arxiv:1302.7126

P(k',k*) = 1 :
L(m)D(m)T(k' = m + DIk* = m +1)
12\ M 2
(k' 1k >—1+m(k +2)

2T + 2m)TKYD(KHT(k' + k% =2m +1)

For general a,b solving in the mean-field
approximation it can be obtained

(k' 1K) o &

From the simulation results it is possible to conclude that the
degree correlations are minimal in the a=b=1 case



Network measures: Overlap

« For two layers a. and o’ of the multiplex we can define the
total overlap O~ as

oo o _a
O _Eaijalj

i<j

« For a node i of the multiplex, we can define the
local overlap o%¢

oo o o
O —Eal.jaij




Uncorrelated and correlated
network ensembles

« Amultiplex G can be seen as a set of graphs G, in

each layer a of the multiplex, i.e. G=(G,.G,..G,,..G,)

 Auncorrelated multiplex ensemble assign to every
multiplex a probability given by

PG = ||P.G)

o=1,M

 [f instead
P(G) = HP (G.)

the multiplex ensemble is correlated



Uncorrelated random
multiplex

 Microcanonical uncorrelated random multiplex
Multiplex where we fix the total number of links L* in every layer o.

The probability that a node i is linked to a node j in layer o is given
by

LO(
NN -1)/2

o
pij=

« Canonical uncorrelated random multiplex

Multiplex in which we fix the average total number of links <L*> in
every layer o,

The probability that a node i is linked to a node j in layer a is given
by <L’ >

Pi = NN -2




Average overlap in an
uncorrelated random
multiplex

We can evaluate the average global overlap in the uncorrelated
microcanonical random multiplex getting

<O >= E < agag‘.' >=E <a; >< ag' >
i<j i<j
, ' r'r
< 0" >= “p% =
;jpﬁp’f NN =1)/2
For sparse networks in which I°« N the global overlap is
negligible

o) o),
L L

We can generalize this result and state that for every sparse
uncorrelated network the global and local overlap are negligible!!



Multilinks and Multiadjacency
matrices

* Consider a vector m = (m,,m,,..m_,..m,, ) with m_ =0,1

. A multilink 77 is the set of links connecting a given pair of
nodes in the different layers of the multiplex and
connecting them in a generic layer a only if m_=1.

« The multiadjacency matrices have elements AZ? =]

only if there is a multilink ;;; between node i and node j
and zero otherwise, i.e.

A = | Jimal + 1 =m)A - a)

o=1,..M




Case of two layers

Multiadjacency matrices

i

0 {1 if node i and node j are linked in layer 1 and not linked in layer 2

0 otherwise

ij =

o1 |1 if nodeiand node j are linked in layer 2 and not linked in layer 1
0 otherwise

ij =

1|1 i nodeiand node j are linked in layer 1 and in layer 2
0 otherwise

Constraints on the multiadjacency matrices

10 01 11 00
Azj +Aij +Al.]. +Al.]. =1




Multidegree

* The multidegree m ~ ~
. _ ~ ~
IS defined as k" = EAz'j

j

* In the case of two k= Dyl -aj)

layers we have @ =S -

J

11 1 2
ki = Eaijaij =0;

J




Configuration model for the correlated
multiplex(microcanonical ensemble)

P(G) = Zi]_[a(k“’i ~ Y AOSK - Y A - A
1 i L z ]

~_

Ensemble of multiplex with given multidegree sequence



Configuration model for the correlated
multiplex (microcanonical ensemble)

P(G) = Zi]_[é(k“’i ~ Y AOSK - Y A - A
1 i L z ]

<7
J]




Canonical network model for the correlated
multiplex

P(G) H(plOAIO +le1A01 +pU1A11 +pl]0A00)

l<]

Constructive algorithm

For every pair of nodes (i,j)

Draw a multilink

@ [
ith babilit m ,
. \‘q with probability  p.

I.e. put a link in every layer

where m_=1.



Percolation phenomena in
interdependent networks



Cascade of failures: Blackout
in Italy (28 September 2003)

—— 8

}’ C ommunication

Cyber
SC ADA

Attacks-
CNN
Simulation
(2010)

._M 4

Rosato et al
Int. J. of Crnit.
Infrastruct. 4,
63 (2008)

From S.
Havlin
slides

CASCADE OF FAILURES




Cascade of failures: Blackout
in Italy (28 September 2003)

SCADA=Supervisory Control And Data Acquisition



Cascade of failures: Blackout
in Italy (28 September 2003)




Cascade of failures: Blackout
in Italy (28 September 2003




Percolation on interdependent networks
The model proposed by Buldyrev et al, Nature (2010).

a c d
Q43 )b71 331C: )bm
) D23 833@—0 b,
) 2y, @—0 by, a5, @0 Dy,
Attack —»
a,, @——— a, ® b, 2y, @—0 b,,
A B Stage 1 Stage 2 Stage 3

Iterative process of cascading failures:

*We start by randomly removing a fraction 1 — p of network A nodes and
all the A-links that are connected to them;

‘We remove the nodes in network B that depend on removed A-nodes
together with the B-links that are connected to them.

*We continue the iterative process until the networks break into different
independent connected components (or clusters).



The percolation transition of interdependent
networks can be first-order!

T a— R —— 5
1 F ]
P . ! Coupled
oo Single |
2nd order I 3
| 1°* order
.
I Cascades,
| Sudden
'brcakdown
0
0 Pe P Pe 1

The fraction of nodes of the giant vs. the probability p that a
node is not randomly removed (Havlin et al. 2010)



In the next slides we will show that the emergence of the
mutually connected giant component can be first order
(case p=1)

To this end first we derive the Molloy Reed criterion



Preliminaries:
probability that following a link we reach
a hode of degree k

In uncorrelated networks the probability
that following a link we reach a node of

degree k is given by I
di = <—k>pk
i o N
> k k
A J qx =WNPI< =@pk
\_




Emergence of the Giant Component
in a network with p, degree distribution

S probability that a node is in the giant component
S’ probability that following a link we reach a node that is in the giant

component

* In alocally tree like network S’ satisfies

SRV e

k

(k)

pk (1 _ S|)k—1




Emergence of the Giant Component
in a network with p, degree distribution

S probability that a node is in the giant component

S’ probability that following a link we reach a node that is in the giant
component

* In a locally tree like network S satisfies

O= .(-I-K.'l'vl' ..... 1_S=2pk(1_S|)k




Using the generating

functions
The equation for S and S’ can be written in terms of the generating
functions
S'=1-G,(1-S")
S=1-G,(1-S")




Molloy Reed condition

* The equation for S’ has always a S'=0
solution

k -1
S'=1—§@pk(l-s')

* The non trivial solution S'>0 emerges for

L

(k)




Poisson network of average
degree z

Generating functions for a Poisson network

k

< -C -z(l—-x

GO(X)=G1(X) == Eﬁe xk =€ (1=x)
k L]

Simplification of the equations for S and S’

S'=1-G,(1-S5")

S=1-G,(1-8)| "~ [ S=5=0-¢
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Mutually connected giant component
of interdependent networks

In the system of interdependent networks, the function or
activity of a node depends on the function or activity of the
linked nodes in the others networks.

We consider a duplex formed by two networks: network A and
network B

A node of the mutually connected giant component must
satisfy the following conditions:

1) at least one of its neighbors in network A should
belong to the mutually connected giant component;

2) at least one of its neighbors in network B should
belong to the mutually connected giant component.



Emergence of the mutually
connected giant component

« S probability that a node is in the mutually connected giant component
« S’,g probability that following a link in network A/B we reach a node that is

in the mutually connected giant component

* On a locally tree-like multiplex the equations for S and S’,, S’y are given by

S=[1-Gja-S)1-GJa-5y)]

S
Sy

1-G(1-S,)

1-G(1-5,)

1-GJ(1-5,).

1-G(1-5,).




Two Poisson networks of
average degree z

Generating functions for the two Poisson networks

k

< -c -z(1-x

Gy (1) = Gy (1) = G (1) = G (x) = Y e™x" =17
-z

Simplification of the equations for S and S’, and S’g

A

\
¢

S

-[1-Gia-sp1-GEa-s,)]

1-GH-S)[1-Gl0-5)] = | g_g 5 (-

1-Gi1-$)[1-6ra-s,)




g(S)

Percolation on two interdependent
Poisson networks with average degree z

g(8§)=8-(1-¢*) =0

|
--7=2.0
— 7=2.455
0oL — 7=2.8 |
01F =TT
O ~\~\. ‘/.
) . | . | . | . |
0'10 0.2 0.4 0.6 0.8 1

The
percolation
transition

at z=2.455...
IS
first-order!

Son S.-W,, et al. EPL(2012)



Emergence of the mutually

connected giant component
1

| ~

1 V4 2.455..



Phase diagram of ER-ER interdepedent
networks

Region II: S>0,
percolating

Son S.-W,, et al. EPL(2012)

Region I: $=0, non-
percolating




Conclusions

Many networks interact, coexist and coevolve with other
networks.

Many networks are also multiplex indicating the fact that
two nodes might interact on different layers at the same
time

Modeling interacting and multiplex networks is only in its
infancy and we need to develop a new series of non-
equilibrium and equilibrium models and to compare their
outcome to real data.

Critical phenomena on multiplex and interacting
networks show new surprising physics as the percolation
first-order phase transitions.



