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The function of many  complex 
technological social and biological 

systems  
depends on the non-trivial interactions  

between  
interacting networks 



Interacting infrastructure networks 

Complex infrastructures are interdependent 
and a failure in one network can generate 
a cascade of failures in the Interdependent 
networks 

Buldyrev et al. Nature 2010 



Interacting Transportation networks 

  Transportation networks 
are another major 
example of interacting 
networks. Here blue 
lines represent short-
range commuting flow 
by car or train the red 
lines indicate airline 
flow for few selected 
cities 

Vespignani Nature 2010 



Interacting and multiplex  
Brain networks 

The brain function is determined  
 at the same time by the structural  
brain network and the functional  
brain network, in turn depending   
on the circulatory system   

Bullmore Sporns 2009 

  



Interacting   
Social networks 

    Social 
networks are 
interacting and 
overlapping 
with profound 
implications for 
community 
detection 
algorithms   

Y.Y. Ahn et al. Nature 2010 



Interacting and multiplex networks 

In order to  
model, predict and control  

complex networks  
we need  to understand the effect of 

interdependencies between networks and  
we need to fully characterize the evolution and 

dynamics of  
the  

networks of networks 



Interacting networks 
•  Two or more interacting networks are formed by different 

nodes (ex. Power-grid network and Internet) but there 
might be complex interactions and interdependencies 
between the nodes 



Multiplex 

•  A multiplex is formed by a set of 
nodes that are present at the same 
time on different networks, 

•  A multiplex is formed by M layers 
(in the figure M=3) 

•  Each layer is formed by a network 



The airport network is a 
multiplex 

•  (a) Only links belonging to all airline companies are 
plotted 

•  (b) The combined network where only nodes of degree 
k>75 have been plotted 

•  (c) A major airline network 
•  (d) Low cost airline network  

Cardillo et al. Scientific Reports (2013).  



The in silico multiplex social social  
network of an online game 

•  In this online game 
agents can belong to 
different networks 
Friendship, 
Communication, Trade, 
Enmity, Attack and 
Bounty networks 

Szell et al. PNAS 2010 



Representation of a multiplex 
The straightforward representation a multiplex of N nodes 

formed by M layers is by means of the set of M adjacency 
matrices 

 with α=1,2,…M and matrix elements 

€ 

aα

€ 

aij
α =

1
0
⎧ 
⎨ 
⎩ 

if node i and node j are linked in layer α
otherwise



Multiplex Models 



Conditional average degree in one 
layer (case of a duplex, i.e. two 

layers) 
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k1 k 2 = k1P(k1,k 2)
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Positive degree correlations  

No degree correlations 

Negative degree correlations 

log (k2) 

k1 degree in network 1,k2 degree in network 2 
P(k1,k2) probability that a node has degree k1 in one layer and k2 

 in the other layer 



Growing multiplex (duplex)  

•  GROWTH  
At each time a new node is added to the multiplex. Every new node has a 

copy in each layer and has m links in each layer. 

•  PREFERENTIAL ATTACHMENT  
The probability that the new link is added to node i in layer α is given by 

Πα with 

and a,b     1. 
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Degree correlations 
•  Case a=b=1 Exact solution 

•  For general a,b solving in the mean-field  
approximation it can be obtained 

•  From the simulation results it is possible to conclude that the 
degree correlations are minimal in the a=b=1 case 

€ 

P(k1,k 2) =
2Γ(2 + 2m)Γ(k1)Γ(k 2)Γ(k1 + k 2 − 2m +1)
Γ(m)Γ(m)Γ(k1 −m +1)Γ(k 2 −m +1)

k1 | k 2 =
m

1+m
(k 2 + 2)
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k1 | k 2 ∝ k 2

Nicosia et al arxiv:1302.7126 
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Network measures: Overlap 
•  For two layers α and α’ of the multiplex we can define the  
    total overlap Oαα’ as 

•  For a node i of the multiplex, we can define the  
    local overlap oi

α,α’ 
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Oα,α ' = aij
αaij

α '
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Uncorrelated and correlated 
network ensembles 

•  A multiplex      can be seen as a set of graphs Gα in 
each layer a of the multiplex, i.e.                         

•  A uncorrelated multiplex ensemble assign to every 
multiplex a probability given by 

•  If instead   

the multiplex ensemble is correlated  € 

P(G) = Pα (Gα )
α=1,M
∏€ 

G

€ 

G = (G1,G2,...Gα ,....GM )

€ 

P(G) ≠ Pα (Gα )
α=1,M
∏



Uncorrelated random 
multiplex 

•  Microcanonical uncorrelated random multiplex 
Multiplex where we fix the total number of links Lα in every layer α 
The probability that a node i is linked to a node j in layer α is given 

by  

•  Canonical uncorrelated random multiplex 
Multiplex in which we fix the average total number of links <Lα> in 

every layer α	



The probability that a node i is linked to a node j in layer α is given 
by  

€ 

pij
α =

Lα

N(N −1) /2

€ 

pij
α =

< Lα >
N(N −1) /2



Average overlap in an 
uncorrelated random 

multiplex 
•  We can evaluate the average global overlap in the uncorrelated 

microcanonical random multiplex getting 

•  For sparse networks in which                   the global overlap is 
negligible 

•  We can generalize this result and state that for every sparse 
uncorrelated network the global and local overlap are negligible!!   
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Multilinks and Multiadjacency 
matrices 

•  Consider a vector 

•  A multilink        is the set of links connecting a given pair of 
nodes in the different layers of the multiplex and 
connecting them in a generic layer α only if mα=1. 

•   The multiadjacency matrices have  elements  
      only if there is a multilink          between node i and node j 

and zero otherwise, i.e.  

€ 

m = (m1,m2,...mα ,...mM ) with mα = 0,1

€ 

m

€ 

Aij
m =1

€ 

m

€ 

Aij
m = [mαaij

α + (1−mα )(1− aij
α )]

α=1,...M
∏



Case of two layers 

€ 

Aij
01 =

1
0
⎧ 
⎨ 
⎩ 

if node i and node j are linked in layer 2 and not linked in layer 1
otherwise€ 

Aij
10 =

1
0
⎧ 
⎨ 
⎩ 

if node i and node j are linked in layer 1 and not linked in layer 2
otherwise

€ 

Aij
11 =

1
0
⎧ 
⎨ 
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if node i and node j are linked in layer 1 and in layer 2
otherwise

€ 

Aij
10 + Aij

01 + Aij
11 + Aij

00 =1

Multiadjacency matrices 

Constraints on the  multiadjacency matrices 



Multidegree 

•  The multidegree     
is defined as 

•  In the case of two 
layers we have  € 

ki
m = Aij

m

j
∑

€ 

m

€ 

ki
10 = aij

1 (1− aij
0 )

j
∑

ki
01 = (1− aij

1 )aij
0

j
∑

ki
11 = aij

1 aij
2 = oi

j
∑



€ 

P(G) =
1
Σ1

δ(k10i − Aij
10

j
∑ )

i
∏ δ(k 01i − Aij

01

j
∑ )δ(k11i − Aij

11

j
∑ )

  

Ensemble of multiplex with given multidegree sequence 
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Canonical network model for the correlated 
multiplex 

€ 

P(G) = (pij
10Aij

10 + pij
01Aij

01 + pij
11Aij

11 + pij
00Aij

00)
i< j
∏

Constructive algorithm 

For every pair of nodes (i,j) 

Draw a multilink 

with probability           , 

i.e. put a link in every layer 

where mα=1. 

€ 

pij
m

€ 

m



Percolation phenomena in 
interdependent networks 



Cascade of failures: Blackout 
in Italy (28 September 2003) 

From S. 
Havlin 
slides 



Cascade of failures: Blackout 
in Italy (28 September 2003) 



Cascade of failures: Blackout 
in Italy (28 September 2003) 



Cascade of failures: Blackout 
in Italy (28 September 2003) 



Percolation on interdependent networks 
The model proposed by Buldyrev et al, Nature (2010). 

Iterative process of cascading failures:   

• We start by randomly removing a fraction 1 − p of network A nodes and 
all the A-links that are connected to them; 
• We remove the nodes in network B that depend on removed A-nodes 
together with the B-links that are connected to them.  
• We continue the iterative process until the networks break into different 
independent connected components (or clusters). 



The fraction of nodes of the giant vs. the probability p that a 
node is not randomly removed (Havlin et al. 2010) 

The percolation transition of interdependent  
networks can be first-order! 



In the next slides we will show that the emergence of the 
mutually connected giant component can be first order 

(case p=1) 

To this end first we derive the Molloy Reed criterion 



In uncorrelated networks the probability 
that  following a link we reach a node of 
degree k is given by 

€ 

qk =
k
k
pk

i 

j 

€ 

qk =
k
k N

Npk =
k
k
pk



Emergence of the Giant Component 
in a network with pk degree distribution 

•  S probability that a node is in the giant component 
•  S’ probability that following a link we reach a node that is in the giant 

component 

•  In a locally tree like network S’ satisfies 

=        +       +          + ….. 

€ 

1− S'= k
k
pk (1− S')

k−1

k
∑



•  S probability that a node is in the giant component 
•  S’ probability that following a link we reach a node that is in the giant 

component 

•  In a locally tree like network S satisfies 

=        +       +          + ….. 

€ 

1− S = pk (1− S')
k

k
∑

Emergence of the Giant Component 
in a network with pk degree distribution 



Using the generating 
functions 

€ 

S'=1−G1(1− S')
S =1−G0(1− S')

€ 

G0(x) = pkx
k

k
∑

G1(x) =
k
kk

∑ pkx
k−1

The equation for S and S’ can be written in terms of the generating 
functions  



Molloy Reed condition 

•  The equation for S’ has always a S’=0 
solution 

•  The non trivial solution S’>0 emerges for  
€ 

S'=1− k
k
pk (1− S')

k−1

k
∑

€ 

k 2

k
≥ 2



 Poisson network of average 
degree z 

€ 

G0(x) =G1(x) ==
zk

k!
e−c x k =

k
∑ e−z(1−x )

€ 

S = S'= (1− e−zS )

Generating functions for  a Poisson network 

Simplification of the equations for S and S’ 

€ 

S'=1−G1(1− S')
S =1−G0(1− S')



z=<k> 

disconnected nodes !    ! ! ! NETWORK. !

! !              1 !
Network Science: Random Graphs  2012!

Evolution of a random graph 



In the system of interdependent networks, the function or 
activity of a node depends on the function or activity of the 
linked nodes in the others networks. 

We consider a duplex formed by two networks: network A and 
network B 

Mutually connected giant component 
of  interdependent networks 

A node of the mutually connected giant component must 
satisfy the following conditions: 

1) at least one of its neighbors in network A should 
belong to the mutually connected giant component; 

2) at least one of its neighbors in network B should 
belong to the mutually connected giant component. 



Emergence of the mutually 
connected giant component 

•  S probability that a node is in the mutually connected  giant component 
•  S’A/B probability that following a link in network A/B we reach a node that is 

in the mutually connected  giant component 

•  On a locally tree-like multiplex the equations for S and S’A, S’B are given by  
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A (1− SA
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Two Poisson networks of 
average degree z 
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G0
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B (x) =
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k
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Generating functions for the two  Poisson networks 

Simplification of the equations for S and S’A and S’B 
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Percolation on two interdependent 
Poisson networks with average degree z 

€ 

g(S) = S − 1− e−zS( )2 = 0

The 
percolation 
transition  
at z=2.455… 
is  
first-order! 

Son S.-W., et al. EPL(2012) 



Emergence of the mutually 
connected giant component 

    1 
 S 

  

 0  
z ! !                1! !            2.455.. !



Son S.-W., et al. EPL(2012) 

Region I: S=0, non-
percolating 

Region II: S>0, 
percolating 

Phase diagram of ER-ER interdepedent 
networks 



Conclusions 
•  Many networks  interact, coexist and coevolve with other 

networks. 
•  Many networks are also multiplex indicating the fact that 

two nodes might interact on different layers at the same 
time 

•  Modeling interacting and multiplex networks is only in its 
infancy and we need  to develop a new series of non-
equilibrium and equilibrium models and to compare their 
outcome to real data. 

•  Critical phenomena on multiplex and interacting 
networks show new surprising physics as the percolation 
first-order phase transitions. 


