Multifractal inference

Ola Løvsletten

joint work with Martin Rypdal

Spring, 2012

About our project

■ Phd student at UiT with M. Rypdal as supervisor
■ Employed at a local bank, a co-operation project supported by the national research council.
■ In the bank I work in the risk management group which counts $5+\frac{1}{4}$ positions. (I am the $\frac{1}{4}$).
■ Specfically I work with market risk (losses due to changes in observerable variables).

- Topic of research: Modern statistical methods in finance, which translates into multifractals.

Overview and outline

- 'Approximated maximum likelihood estimation in multifractal random walks' , Løvsletten and Rypdal 2012, Physical Review E.
- Start with recalling what MLE is, and some simpler examples, fractional Brownian motions:
- Computation of the likelihood (pdf)
- Some practical information
- A small Monte Carlo study, MLE vs. moment estimator

■ Multifractals

- Motivation in finance
- Properties
- Different models and inference
- Monte Carlo and practical info

■ Current research

Overview and outline

- 'Approximated maximum likelihood estimation in multifractal random walks' , Løvsletten and Rypdal 2012, Physical Review E.
- Start with recalling what MLE is, and some simpler examples, fractional Brownian motions:
- Computation of the likelihood (pdf)
- Some practical information
- A small Monte Carlo study, MLE vs. moment estimator

■ Multifractals

- Motivation in finance
- Properties
- Different models and inference.
- Monte Carlo and practical info

■ Current research

Preliminary

Situation: We have some data $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, a model density $p(\mathbf{x} \mid \theta): \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$and wish to estimate the parameter vector θ. One popular method is maximum likelihood estimatation (MLE) :

$$
\hat{\theta}=\arg \max _{\theta} L(\theta \mid \mathbf{x})
$$

where $L(\theta \mid \mathbf{x})=p(\mathbf{x} \mid \theta)$ with \mathbf{x} fixed (the data plugged into the pdf).

Example 1: Brownian motion with drift

■ Model:

$$
d X(t)=\mu d t+\sigma d B(t)
$$

- Define $x_{t}=X(t)-X(t-1)$
- The random variables x_{1}, \ldots, x_{n} are independent $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- Analytical expression for the likelihood from which we can find the maximum by differentiation.
■ ML estimates: $\hat{\mu}=n^{-1} \sum x_{i} \quad, \hat{\sigma}^{2}=n^{-1} \sum\left(x_{i}-\bar{x}\right)^{2}$
- Sidenote: Louis Bachelier, in his study of financial prices, suggested this model as early as ~ 1900. It was later realized that it was the logarithmic prices, rather than the prices themselves, that should be modeled as a Brownian motion.

Example 1: Brownian motion with drift

- Model:

$$
d X(t)=\mu d t+\sigma d B(t)
$$

- Define $x_{t}=X(t)-X(t-1)$
- The random variables x_{1}, \ldots, x_{n} are independent $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- Analytical expression for the likelihood from which we can find the maximum by differentiation.
■ ML estimates: $\hat{\mu}=n^{-1} \sum x_{i} \quad, \hat{\sigma}^{2}=n^{-1} \sum\left(x_{i}-\bar{x}\right)^{2}$
- Sidenote: Louis Bachelier, in his study of financial prices, suggested this model as early as ~ 1900. It was later realized that it was the logarithmic prices, rather than the prices themselves, that should be modeled as a Brownian motion.

Example 2: fractional Brownian motion

- Model:

$$
d X(t)=\mu d t+\sigma d B_{H}(t)
$$

- $B_{H}(t)$ a fractional Brownian motion:

■ a Gaussian process with longe-range dependent increments
■ $x_{t}=X(t)-X(t-1)$ a fractional Gaussian noise.

- The Hurst-exponent H is a measure of the dependence between x_{t} and x_{s} :
- $H<0.5$, anti-correlated
- $H=0.5$, uncorrelated (and independent-why?)
- $H>0.5$, positive correlation
- Let Σ_{n} to be the covariance-matrix of $\left(x_{1}, \ldots, x_{n}\right)$.
- The pdf:

Example 2: fractional Brownian motion

- Model:

$$
d X(t)=\mu d t+\sigma d B_{H}(t)
$$

- $B_{H}(t)$ a fractional Brownian motion:

■ a Gaussian process with longe-range dependent increments
■ $x_{t}=X(t)-X(t-1)$ a fractional Gaussian noise.

- The Hurst-exponent H is a measure of the dependence between x_{t} and x_{s} :
- $H<0.5$, anti-correlated
- $H=0.5$, uncorrelated (and independent-why?)
- $H>0.5$, positive correlation

■ Let Σ_{n} to be the covariance-matrix of $\left(x_{1}, \ldots, x_{n}\right)$.

- The pdf:

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{n}\right|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma_{n}^{-1}(\mathbf{x}-\mu)\right)
$$

Example 2: fractional Gaussian noise

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{n}\right|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma_{n}^{-1}(\mathbf{x}-\mu)\right)
$$

■ Problem: Inversion of the covariance matrix Σ_{n}.

- Consider the structure of the covariance matrix:

$$
\begin{equation*}
\Sigma_{n}(i, j)=\mathbb{E}\left(x_{i} x_{j}\right)-\mu^{2}=\gamma(|i-j|) \tag{1}
\end{equation*}
$$

so all the entries at a specific diagonal are equal.

- Reduces the computational cost of evaluating the likelihood to $\mathcal{O}\left(n^{2}\right)$ by the Durbin Levinson algorithm.
- The DL algorithm can also be used to simulate stationary Gaussian processes.

Example 2: fractional Gaussian noise

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{n}\right|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma_{n}^{-1}(\mathbf{x}-\mu)\right)
$$

■ Problem: Inversion of the covariance matrix Σ_{n}.
■ Consider the structure of the covariance matrix:

$$
\begin{equation*}
\Sigma_{n}(i, j)=\mathbb{E}\left(x_{i} x_{j}\right)-\mu^{2}=\gamma(|i-j|) \tag{1}
\end{equation*}
$$

so all the entries at a specific diagonal are equal.

- Reduces the computational cost of evaluating the likelihood to $\mathcal{O}\left(n^{2}\right)$ by the Durbin Levinson algorithm.
- The DL algorithm can also be used to simulate stationary Gaussian processes.

Example 2: fractional Gaussian noise

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{n}\right|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma_{n}^{-1}(\mathbf{x}-\mu)\right)
$$

■ Problem: Inversion of the covariance matrix Σ_{n}.

- Consider the structure of the covariance matrix:

$$
\begin{equation*}
\Sigma_{n}(i, j)=\mathbb{E}\left(x_{i} x_{j}\right)-\mu^{2}=\gamma(|i-j|) \tag{1}
\end{equation*}
$$

so all the entries at a specific diagonal are equal.

- Reduces the computational cost of evaluating the likelihood to $\mathcal{O}\left(n^{2}\right)$ by the Durbin Levinson algorithm.
- The DL algorithm can also be used to simulate stationary Gaussian processes.

Example 2: fractional Gaussian noise

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{n}\right|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma_{n}^{-1}(\mathbf{x}-\mu)\right)
$$

■ Problem: Inversion of the covariance matrix Σ_{n}.

- Consider the structure of the covariance matrix:

$$
\begin{equation*}
\Sigma_{n}(i, j)=\mathbb{E}\left(x_{i} x_{j}\right)-\mu^{2}=\gamma(|i-j|) \tag{1}
\end{equation*}
$$

so all the entries at a specific diagonal are equal.

- Reduces the computational cost of evaluating the likelihood to $\mathcal{O}\left(n^{2}\right)$ by the Durbin Levinson algorithm.
■ The DL algorithm can also be used to simulate stationary Gaussian processes.

Some practical information

- I use the freely available software R.
- There is written a package (add-on) called LTSA, Linear Time Series Analysis, which contains the aforementioned Durbin-Levinson algorithm.
- Another interesting package is FGN (which uses LTSA).

■ Simulating fractional Gaussian noise and using MLE is two lines of code:
$\mathrm{x}<-\operatorname{SimulateFGN}(\mathrm{n}=10 \wedge 4, \mathrm{H}=0.9)$
FitFGN(x)
■ McLeod et.al (2007) Algorithms for Linear Time Series Analysis: With R Package, Journal of statistical software

A small Monte Carlo study

fractional Brownian motion (fBm)

■ For a $\mathrm{fBm} B_{H}(t)$ we have that

$$
\mathbb{E}\left|B_{H}(t+\delta t)-B_{H}(t)\right|^{q} \propto \delta t^{\zeta(q)}
$$

with $\zeta(q)=H q$.

- As an alternative to MLE we consider the moment-estimator $\hat{H}_{\zeta}=\hat{\zeta}(2) / 2$
- $\hat{\zeta}(2)$ found by a least square fit to the second order sample moments of $B_{H}(t+\delta t)$.

A small Monte Carlo study

fractional Brownian motion (fBm)

Simulated $n_{M C}=500$ sample paths, each with $n=2500$ and $H=0.7$. For each realization the Hurst exponent is estimated by the two estimators.

Overview and outline

- 'Approximated maximum likelihood estimation in multifractal random walks' , Løvsletten and Rypdal 2012, Physical Review E.
- Start with recalling what MLE is, and some simpler examples, fractional Brownian motions:
- Computation of the likelihood (pdf)
- Some practical information
- A small Monte Carlo study, MLE vs. moment estimator

■ Multifractals

- Motivation in finance
- Properties
- Different models and inference.
- Monte Carlo and practical info

■ Current research

Time-varying volatility

An empirical look

Time-varying volatility

An empirical look

Multifractal processes

Definition

A stochastic prosess $\{X(t), t \in[0, T]\}$ is multifractal if

$$
\mathbb{E}|X(t)|^{q} \sim t^{\zeta(q)}
$$

and $\zeta(q)$ is strictly concave.

Multifractal processes

Properties

$$
p_{X(\Delta t)}(0) \sim \Delta t^{-\nu}
$$

Multifractal processes

Properties

$\Delta t^{\nu} p_{X(\Delta t)}\left(x \Delta t^{\nu}\right)$

Multifractal models

Definition

A stochastic prosess $\{X(t), t \in[0, T]\}$ is multifractal if

$$
\mathbb{E}|X(t)|^{q} \sim t^{\zeta(q)}
$$

and $\zeta(q)$ is strictly concave.

■ Multifractal model of asset return, Mandelbrot, Calvet and Fisher, 1997
■ Markov switching multifractal, Calvet and Fisher 2001
■ Multifractal random walk, Bacry et al. 2001

All of this models can be written as

\square
where $B(t)$ is a Brownian motion and m is a multifractal random measure. Note: $\mathbb{E}|X(t)|^{q}=c_{q} \mathbb{E}|m([0, t])|^{q / 2}$

Multifractal models

Definition

A stochastic prosess $\{X(t), t \in[0, T]\}$ is multifractal if

$$
\mathbb{E}|X(t)|^{q} \sim t^{\zeta(q)}
$$

and $\zeta(q)$ is strictly concave.

■ Multifractal model of asset return, Mandelbrot, Calvet and Fisher, 1997
■ Markov switching multifractal, Calvet and Fisher 2001
■ Multifractal random walk, Bacry et al. 2001
All of this models can be written as

$$
X(t)=B(m([0, t]))
$$

where $B(t)$ is a Brownian motion and m is a multifractal random measure. Note: $\mathbb{E}|X(t)|^{q}=c_{q} \mathbb{E}|m([0, t])|^{q / 2}$.

Multifractal models

Definition

The (log-normal) multifractal measure m defining the multifractal random walk is given by

$$
m([0, t])=\exp (h(t))
$$

where $h(t)$ is a 'Gaussian' centered process with covariances

$$
\operatorname{Cov}(h(t), h(s))=\lambda^{2} \log ^{+} \frac{R}{|t-s|}
$$

To verify the multifractality one can show the realation

$$
h(a t) \stackrel{d}{=} h(t)+Y(a)
$$

where $Y(a) \stackrel{d}{\sim} N\left(0,-\lambda^{2} \log a\right)$ independent of $h(t)$.

Multifractal random walk

For the discrete time MRW model the observation equations are given by

$$
\begin{equation*}
x_{t}=\sigma \exp \left(h_{t} / 2\right) \varepsilon_{t} \tag{2}
\end{equation*}
$$

where h_{t} is a Gaussian process with covariances

$$
\operatorname{Cov}\left(h_{t}, h_{s}\right)=\lambda^{2} \log ^{+} \frac{R}{|t-s|+1} .
$$

In the basic stochastic volatility model (Taylor, 1986) the observation equations are the same, but h_{t} follows an $\operatorname{AR}(1)$ process:

$$
h_{t}=\phi h_{t-1}+\sigma_{u} u_{t}
$$

Multifractal random walk

For the discrete time MRW model the observation equations are given by

$$
\begin{equation*}
x_{t}=\sigma \exp \left(h_{t} / 2\right) \varepsilon_{t} \tag{2}
\end{equation*}
$$

where h_{t} is a Gaussian process with covariances

$$
\operatorname{Cov}\left(h_{t}, h_{s}\right)=\lambda^{2} \log ^{+} \frac{R}{|t-s|+1}
$$

In the basic stochastic volatility model (Taylor, 1986) the observation equations are the same, but h_{t} follows an $\operatorname{AR}(1)$ process:

$$
h_{t}=\phi h_{t-1}+\sigma_{u} u_{t}
$$

The likelihood

The observation equations:

$$
x_{t}=\sigma \exp \left(h_{t} / 2\right) \varepsilon_{t}
$$

The pdf of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is given by the integral

$$
p(\mathbf{x})=\int_{\mathbb{R}^{n}} p(\mathbf{h}, \mathbf{x}) d \mathbf{h}=\int_{\mathbb{R}^{n}} p(\mathbf{h}) p(\mathbf{x} \mid \mathbf{h}) d \mathbf{h} .
$$

■ No closed-form solution for the integral
■ Laplace approximation:

$$
\begin{equation*}
p(\mathbf{x}) \approx b_{n}|\operatorname{det} \Omega|^{-1 / 2} p\left(\mathbf{h}^{*}\right) p\left(\mathbf{x} \mid \mathbf{h}^{*}\right) \tag{3}
\end{equation*}
$$

with \mathbf{h}^{*} the maximum of $\mathbf{h} \mapsto \log p(\mathbf{x}, \mathbf{h})$, and Ω the corresponding Hessian matrix.

The likelihood

■ The Laplace approximation:

$$
p(\mathbf{x}) \approx b_{n}|\operatorname{det} \Omega|^{-1 / 2} p\left(\mathbf{h}^{*}\right) p\left(\mathbf{x} \mid \mathbf{h}^{*}\right)
$$

with \mathbf{h}^{*} the maximum of $\mathbf{h} \mapsto \log p(\mathbf{x}, \mathbf{h})$, and Ω the corresponding Hessian matrix.

- The form of the first order derivatives:

$$
\frac{\partial \log p(x, h)}{\partial h_{i}}=b_{i}+\sum_{j} A_{i j} h_{j}+g_{i}\left(x_{i}, h_{i}\right)
$$

- For the basic SV model the Markov property of h_{t} implies that the matrices A and Ω are tri-diagonal \rightsquigarrow computational ok.

The likelihood

- The Laplace approximation:

$$
p(\mathbf{x}) \approx b_{n}|\operatorname{det} \Omega|^{-1 / 2} p\left(\mathbf{h}^{*}\right) p\left(\mathbf{x} \mid \mathbf{h}^{*}\right)
$$

with \mathbf{h}^{*} the maximum of $\mathbf{h} \mapsto \log p(\mathbf{x}, \mathbf{h})$, and Ω the corresponding Hessian matrix.

- The form of the first order derivatives:

$$
\frac{\partial \log p(\mathbf{x}, h)}{\partial h_{i}}=b_{i}+\sum_{j} A_{i j} h_{j}+g_{i}\left(x_{i}, h_{i}\right)
$$

■ For the mrw we suggest a second approximation

$$
\begin{equation*}
p\left(h_{t} \mid \mathbf{h}_{t-1}\right) \approx p\left(h_{t} \mid h_{t-1}, \ldots, h_{t-\tau}\right) \tag{4}
\end{equation*}
$$

which makes the matrices A and Ω band-diagonal with bandwidth τ.

Some practical information

Multifractal random walk

- We have implemented the MLE procedure for the mrw model in a R package.
■ Version 0.2 of this package is hopefully soon to come, with smoothing, filtering and volatility forecasting, together with density forecast.
- We have also implemented utility functions for the MSM (part of my master) and the basic SV model.

A small Monte Carlo study

Multifractal random walk

(d) PDF of ML estimate for λ with $\tau=100$. Sample length $n=2500$.

(b) PDF of GMM estimate for λ.

Sample length $n=5000$.

(e) PDF of ML estimate for λ with $\tau=100$. Sample length $n=5000$.

(f) PDF of ML estimate for λ with $\tau=100$. Sample length $n=10000$.

n	$\operatorname{sd}\left(\hat{\lambda}_{\mathrm{ML}}\right)$	$\operatorname{sd}\left(\hat{\lambda}_{\mathrm{GMM}}\right)$
2500	0.03	0.08
5000	0.02	0.05
10000	0.01	0.04

Concluding remarks

- We are not saying 'always use ML'.
- For the use of the approximated likelihood method for other inference problems:
- A multifractal approach towards inference in finance, Løvsletten O. and Rypdal M. 2012, arxiv
- A generalization of the (discrete-time) mrw to fractional MRW and multifractal Ornstein-Uhlenbeck processes:
- Modeling electricity spot prices using mean-reverting multifractal processes, Rypdal M. and Løvsletten O. 2012, submitted
- These models are also relevant in e.g. turbulence and magnetospheric physics.
- We are very much open for collaboration!

Current research

Forecasts based on the MRW model.

固 Bacry E．，Muzy J．F．and Delour J．（2012）
Multifractal random walk
Physical Review E
围 Calvet L．and Fisher，A．（2001）
Forecasting multifractal volatility．
Journal of Econometrics．
（ Calvet，L．and Fisher，A．（2003）
Regime－switching and the estimation of multifractal processes．
NBER working paper series．
击 Løvsletten O．and Rypdal M．（2012）
Approximated maximum likelihood estimation in multifractal random walks
Physical Review E
© Mandelbrot B．，Fisher A．and Calvet L（1997）．
A Multifractal Model of Asset Returns．
Cowles Foundation for Research in Economics．
國 McLeod et．al（2007）

Algorithms for Linear Time Series Analysis: With R Package Journal of statistical software.

