Multifractal inference

Ola Løvsletten

joint work with Martin Rypdal

Spring, 2012

About our project

- Phd student at UiT with M. Rypdal as supervisor
- Employed at a local bank, a co-operation project supported by the national research council.
- In the bank I work in the risk management group which counts $5 + \frac{1}{4}$ positions. (I am the $\frac{1}{4}$).
- Specfically I work with market risk (losses due to changes in observerable variables).
- Topic of research: Modern statistical methods in finance, which translates into multifractals.

Overview and outline

- 'Approximated maximum likelihood estimation in multifractal random walks', Løvsletten and Rypdal 2012, Physical Review E.
- Start with recalling what MLE is, and some simpler examples, fractional Brownian motions:
 - Computation of the likelihood (pdf)
 - Some practical information
 - A small Monte Carlo study, MLE vs. moment estimator

Multifractals

- Motivation in finance
- Properties
- Different models and inference.
- Monte Carlo and practical info

Current research

Overview and outline

- 'Approximated maximum likelihood estimation in multifractal random walks', Løvsletten and Rypdal 2012, Physical Review E.
- Start with recalling what MLE is, and some simpler examples, fractional Brownian motions:
 - Computation of the likelihood (pdf)
 - Some practical information
 - A small Monte Carlo study, MLE vs. moment estimator
- Multifractals
 - Motivation in finance
 - Properties
 - Different models and inference.
 - Monte Carlo and practical info

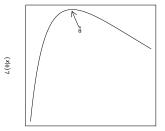
Current research

Preliminary

Situation: We have some data $\mathbf{x} = (x_1, \dots, x_n)$, a model density $p(\mathbf{x}|\theta) : \mathbb{R}^n \to \mathbb{R}_+$ and wish to estimate the parameter vector θ . One popular method is maximum likelihood estimatation (MLE) :

$$\hat{\theta} = \arg \max_{\theta} L(\theta | \mathbf{x}),$$

where $L(\theta|\mathbf{x}) = p(\mathbf{x}|\theta)$ with \mathbf{x} fixed (the data plugged into the pdf).



Example 1: Brownian motion with drift

Model:

$$dX(t) = \mu dt + \sigma dB(t)$$

• Define $x_t = X(t) - X(t-1)$

- The random variables x_1, \ldots, x_n are independent $\mathcal{N}(\mu, \sigma^2)$.
- Analytical expression for the likelihood from which we can find the maximum by differentiation.
- ML estimates: $\hat{\mu} = n^{-1} \sum x_i$, $\hat{\sigma}^2 = n^{-1} \sum (x_i \bar{x})^2$

Sidenote: Louis Bachelier, in his study of financial prices, suggested this model as early as \sim 1900. It was later realized that it was the logarithmic prices, rather than the prices themselves, that should be modeled as a Brownian motion.

Example 1: Brownian motion with drift

Model:

$$dX(t) = \mu dt + \sigma dB(t)$$

• Define
$$x_t = X(t) - X(t-1)$$

- The random variables x_1, \ldots, x_n are independent $\mathcal{N}(\mu, \sigma^2)$.
- Analytical expression for the likelihood from which we can find the maximum by differentiation.
- ML estimates: $\hat{\mu} = n^{-1} \sum x_i$, $\hat{\sigma}^2 = n^{-1} \sum (x_i \bar{x})^2$
- Sidenote: Louis Bachelier, in his study of financial prices, suggested this model as early as \sim 1900. It was later realized that it was the logarithmic prices, rather than the prices themselves, that should be modeled as a Brownian motion.

Example 2: fractional Brownian motion

Model:

$$dX(t) = \mu dt + \sigma dB_H(t)$$

• $B_H(t)$ a fractional Brownian motion:

a Gaussian process with longe-range dependent increments

• $x_t = X(t) - X(t-1)$ a fractional Gaussian noise.

- The Hurst-exponent H is a measure of the dependence between x_t and x_s:
 - H < 0.5, anti-correlated
 - H = 0.5, uncorrelated (and independent-why?)
 - *H* > 0.5, positive correlation

Let Σ_n to be the covariance-matrix of (x₁,...,x_n).
The pdf:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma_n|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma_n^{-1}(\mathbf{x}-\mu)\right)$$

Example 2: fractional Brownian motion

Model:

$$dX(t) = \mu dt + \sigma dB_H(t)$$

• $B_H(t)$ a fractional Brownian motion:

a Gaussian process with longe-range dependent increments

• $x_t = X(t) - X(t-1)$ a fractional Gaussian noise.

- The Hurst-exponent H is a measure of the dependence between x_t and x_s:
 - H < 0.5, anti-correlated
 - H = 0.5, uncorrelated (and independent-why?)
 - *H* > 0.5, positive correlation
- Let Σ_n to be the covariance-matrix of (x_1, \ldots, x_n) .

The pdf:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma_n|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma_n^{-1}(\mathbf{x}-\mu)\right)$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}_n|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \boldsymbol{\Sigma}_n^{-1}(\mathbf{x}-\mu)\right)$$

Problem: Inversion of the covariance matrix Σ_n .

$$\Sigma_n(i,j) = \mathbb{E}(x_i x_j) - \mu^2 = \gamma(|i-j|), \qquad (1)$$

- Reduces the computational cost of evaluating the likelihood to $\mathcal{O}(n^2)$ by the Durbin Levinson algorithm.
- The DL algorithm can also be used to simulate stationary Gaussian processes.

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma_n|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma_n^{-1}(\mathbf{x}-\mu)\right)$$

- Problem: Inversion of the covariance matrix Σ_n .
- Consider the structure of the covariance matrix:

$$\Sigma_n(i,j) = \mathbb{E}(x_i x_j) - \mu^2 = \gamma(|i-j|), \qquad (1)$$

- Reduces the computational cost of evaluating the likelihood to $\mathcal{O}(n^2)$ by the Durbin Levinson algorithm.
- The DL algorithm can also be used to simulate stationary Gaussian processes.

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma_n|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma_n^{-1}(\mathbf{x}-\mu)\right)$$

- Problem: Inversion of the covariance matrix Σ_n .
- Consider the structure of the covariance matrix:

$$\Sigma_n(i,j) = \mathbb{E}(x_i x_j) - \mu^2 = \gamma(|i-j|), \qquad (1)$$

- Reduces the computational cost of evaluating the likelihood to $\mathcal{O}(n^2)$ by the Durbin Levinson algorithm.
- The DL algorithm can also be used to simulate stationary Gaussian processes.

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}_n|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \boldsymbol{\Sigma}_n^{-1}(\mathbf{x}-\mu)\right)$$

- Problem: Inversion of the covariance matrix Σ_n .
- Consider the structure of the covariance matrix:

$$\Sigma_n(i,j) = \mathbb{E}(x_i x_j) - \mu^2 = \gamma(|i-j|), \qquad (1)$$

- Reduces the computational cost of evaluating the likelihood to *O*(n²) by the Durbin Levinson algorithm.
- The DL algorithm can also be used to simulate stationary Gaussian processes.

Some practical information

• I use the freely available software R.

- There is written a package (add-on) called LTSA, Linear Time Series Analysis, which contains the aforementioned Durbin-Levinson algorithm.
- Another interesting package is FGN (which uses LTSA).
- Simulating fractional Gaussian noise and using MLE is two lines of code:

```
x<-SimulateFGN(n=10<sup>4</sup>,H=0.9)
FitFGN(x)
```

 McLeod et.al (2007) Algorithms for Linear Time Series Analysis: With R Package, Journal of statistical software

A small Monte Carlo study

fractional Brownian motion (fBm)

• For a fBm $B_H(t)$ we have that

$$\mathbb{E}|B_H(t+\delta t)-B_H(t)|^q\propto \delta t^{\zeta(q)}$$

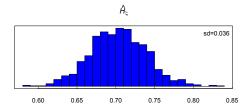
with $\zeta(q) = Hq$.

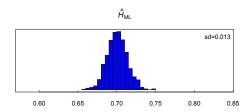
- As an alternative to MLE we consider the moment-estimator $\hat{H}_{\zeta} = \hat{\zeta}(2)/2$
- ^ˆ(2) found by a least square fit to the second order sample moments of B_H(t + δt).

A small Monte Carlo study

fractional Brownian motion (fBm)

Simulated $n_{MC} = 500$ sample paths, each with n = 2500 and H = 0.7. For each realization the Hurst exponent is estimated by the two estimators.





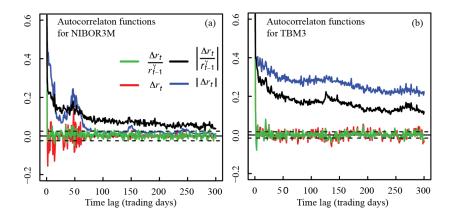
Overview and outline

- 'Approximated maximum likelihood estimation in multifractal random walks', Løvsletten and Rypdal 2012, Physical Review E.
- Start with recalling what MLE is, and some simpler examples, fractional Brownian motions:
 - Computation of the likelihood (pdf)
 - Some practical information
 - A small Monte Carlo study, MLE vs. moment estimator
- Multifractals
 - Motivation in finance
 - Properties
 - Different models and inference.
 - Monte Carlo and practical info

Current research

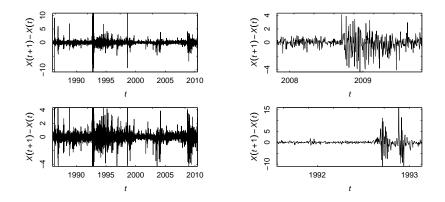
Time-varying volatility

An empirical look



Time-varying volatility

An empirical look



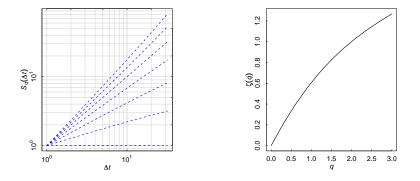
Multifractal processes

Definition

A stochastic prosess $\{X(t), t \in [0, T]\}$ is multifractal if

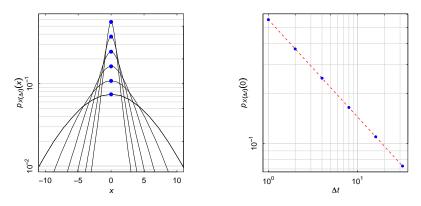
 $\mathbb{E}|X(t)|^q \sim t^{\zeta(q)},$

and $\zeta(q)$ is strictly concave.



Multifractal processes

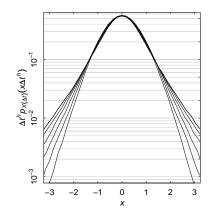
Properties



 $p_{X(\Delta t)}(0)\sim \Delta t^{u}$

Multifractal processes

Properties



 $\Delta t^{\nu} p_{X(\Delta t)}(x \Delta t^{\nu})$

Multifractal models

Definition

A stochastic prosess $\{X(t), t \in [0, T]\}$ is multifractal if

 $\mathbb{E}|X(t)|^q \sim t^{\zeta(q)},$

and $\zeta(q)$ is strictly concave.

- Multifractal model of asset return, Mandelbrot, Calvet and Fisher, 1997
- Markov switching multifractal, Calvet and Fisher 2001
- Multifractal random walk, Bacry et al. 2001

All of this models can be written as

X(t) = B(m([0,t]))

where B(t) is a Brownian motion and m is a multifractal random measure. Note: $\mathbb{E}|X(t)|^q = c_q \mathbb{E}|m([0, t])|^{q/2}$.

Multifractal models

Definition

A stochastic prosess $\{X(t), t \in [0, T]\}$ is multifractal if

 $\mathbb{E}|X(t)|^q \sim t^{\zeta(q)},$

and $\zeta(q)$ is strictly concave.

- Multifractal model of asset return, Mandelbrot, Calvet and Fisher, 1997
- Markov switching multifractal, Calvet and Fisher 2001
- Multifractal random walk, Bacry et al. 2001

All of this models can be written as

$$X(t) = B(m([0,t]))$$

where B(t) is a Brownian motion and m is a multifractal random measure. Note: $\mathbb{E}|X(t)|^q = c_q \mathbb{E}|m([0, t])|^{q/2}$.

Multifractal models

Definition

The (log-normal) multifractal measure m defining the multifractal random walk is given by

$$m([0,t]) = \exp(h(t))$$

where h(t) is a 'Gaussian' centered process with covariances

$$Cov(h(t), h(s)) = \lambda^2 \log^+ rac{R}{|t-s|}$$

To verify the multifractality one can show the realation

$$h(at) \stackrel{\mathrm{d}}{=} h(t) + Y(a)$$

where $Y(a) \stackrel{d}{\sim} N(0, -\lambda^2 \log a)$ independent of h(t).

Multifractal random walk

For the discrete time MRW model the observation equations are given by

$$x_t = \sigma \exp(h_t/2)\varepsilon_t \tag{2}$$

where h_t is a Gaussian process with covariances

$$Cov(h_t, h_s) = \lambda^2 \log^+ \frac{R}{|t-s|+1}.$$

In the basic stochastic volatility model (Taylor, 1986) the observation equations are the same, but h_t follows an AR(1) process:

$$h_t = \phi h_{t-1} + \sigma_u u_t.$$

Multifractal random walk

For the discrete time MRW model the observation equations are given by

$$x_t = \sigma \exp(h_t/2)\varepsilon_t \tag{2}$$

where h_t is a Gaussian process with covariances

$$Cov(h_t, h_s) = \lambda^2 \log^+ \frac{R}{|t-s|+1|}$$

In the basic stochastic volatility model (Taylor, 1986) the observation equations are the same, but h_t follows an AR(1) process:

$$h_t = \phi h_{t-1} + \sigma_u u_t.$$

The likelihood

The observation equations:

$$x_t = \sigma \exp(h_t/2)\varepsilon_t.$$

The pdf of $\mathbf{x} = (x_1, \dots, x_n)$ is given by the integral

$$p(\mathbf{x}) = \int_{\mathbb{R}^n} p(\mathbf{h}, \mathbf{x}) d\mathbf{h} = \int_{\mathbb{R}^n} p(\mathbf{h}) p(\mathbf{x}|\mathbf{h}) d\mathbf{h}.$$

- No closed-form solution for the integral
- Laplace approximation:

$$p(\mathbf{x}) \approx b_n |\det \Omega|^{-1/2} p(\mathbf{h}^*) p(\mathbf{x}|\mathbf{h}^*), \qquad (3)$$

with \mathbf{h}^* the maximum of $\mathbf{h} \mapsto \log p(\mathbf{x}, \mathbf{h})$, and Ω the corresponding Hessian matrix.

The likelihood

The Laplace approximation:

$$p(\mathbf{x}) \approx b_n |\det \Omega|^{-1/2} p(\mathbf{h}^*) p(\mathbf{x}|\mathbf{h}^*),$$

with \mathbf{h}^* the maximum of $\mathbf{h} \mapsto \log p(\mathbf{x}, \mathbf{h})$, and Ω the corresponding Hessian matrix.

The form of the first order derivatives:

$$rac{\partial \log p(x,h)}{\partial h_i} = b_i + \sum_j A_{ij} h_j + g_i(x_i,h_i) \,,$$

■ For the basic SV model the Markov property of h_t implies that the matrices A and Ω are tri-diagonal → computational ok.

The likelihood

The Laplace approximation:

$$p(\mathbf{x}) \approx b_n |\det \Omega|^{-1/2} p(\mathbf{h}^*) p(\mathbf{x}|\mathbf{h}^*),$$

with \mathbf{h}^* the maximum of $\mathbf{h} \mapsto \log p(\mathbf{x}, \mathbf{h})$, and Ω the corresponding Hessian matrix.

The form of the first order derivatives:

$$rac{\partial \log p(\mathbf{x},h)}{\partial h_i} = b_i + \sum_j A_{ij} h_j + g_i(x_i,h_i) \,,$$

For the mrw we suggest a second approximation

$$p(h_t|\mathbf{h}_{t-1}) \approx p(h_t|h_{t-1},\ldots,h_{t-\tau}), \qquad (4)$$

which makes the matrices A and Ω band-diagonal with bandwidth $\tau.$

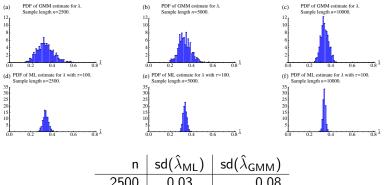
Some practical information

Multifractal random walk

- We have implemented the MLE procedure for the mrw model in a R package.
- Version 0.2 of this package is hopefully soon to come, with smoothing, filtering and volatility forecasting, together with density forecast.
- We have also implemented utility functions for the MSM (part of my master) and the basic SV model.

A small Monte Carlo study

Multifractal random walk



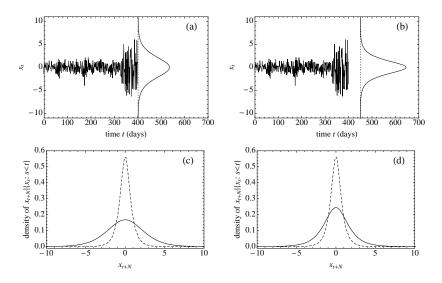
n	$sd(\lambda_ML)$	$sd(\lambda_GMM)$
2500	0.03	0.08
5000	0.02	0.05
10000	0.01	0.04

Concluding remarks

- We are not saying 'always use ML'.
- For the use of the approximated likelihood method for other inference problems:
 - A multifractal approach towards inference in finance, Løvsletten O. and Rypdal M. 2012, arxiv
- A generalization of the (discrete-time) mrw to fractional MRW and multifractal Ornstein-Uhlenbeck processes:
 - Modeling electricity spot prices using mean-reverting multifractal processes, Rypdal M. and Løvsletten O. 2012, submitted
 - These models are also relevant in e.g. turbulence and magnetospheric physics.
- We are very much open for collaboration!

Current research

Forecasts based on the MRW model.



Algorithms for Linear Time Series Analysis: With R Package *Journal of statistical software*.