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Basic concepts in ergodic theory

Y (t), t ∈ R, stationary stochastic process

system is in thermal equilibrium

classical ergodic theorems apply
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Basic concepts in ergodic theory

Y (t), t ∈ R, stationary stochastic process

system is in thermal equilibrium

classical ergodic theorems apply

Corresponding dynamical system (canonical representation of Y )

(RR,B,P,St)

where

R
R – space of all functions f : R → R

B – Borel sets
P – probability measure

St – shift transformation, St(f )(s) = f (t + s)
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Ergodicity

Definition

The stationary process Y (t) is ergodic if for every invariant set A we have
P(A) = 0 or P(Ac) = 0.

The set A is invariant if St(A) = A for all t.
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Ergodicity

Definition

The stationary process Y (t) is ergodic if for every invariant set A we have
P(A) = 0 or P(Ac) = 0.

The set A is invariant if St(A) = A for all t.

Interpretation of ergodicity:

the space cannot be divided into two regions such that a point
starting in one region will always stay in that region

the point will eventually visit all nontrivial regions of the space
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Mixing

Definition

The stationary process Y (t) is mixing if

lim
t→∞

P(A ∩ St(B)) = P(A)P(B)

for all A,B ∈ B.
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Mixing

Definition

The stationary process Y (t) is mixing if

lim
t→∞

P(A ∩ St(B)) = P(A)P(B)

for all A,B ∈ B.

Interpretation of mixing:

it can be viewed as an asymptotic independence of the sets A and B
under the transformation St

the fraction of points starting in A that ended up in B after long time
t, is equal to the product of probabilities of A and B

Remark. Mixing is stronger property than ergodicity
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Birkhoff ergodic theorem (Boltzmann’s hypothesis)

Theorem

If the stationary process Y (t) is ergodic, then

lim
T→∞

1

T

∫ T

0

g(Y (t))dt = E(g(Y (0))),

provided that E(|g(Y (0))|) < ∞.
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Ergodic properties of Gaussian processes

Y (t) – stationary Gaussian process

G. Maruyama, Mem. Fac. Sci. Kyushu Univ. (1949)
U. Grenander, Ark. Mat. (1950)
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Ergodic properties of Gaussian processes

Y (t) – stationary Gaussian process

autocorrelation function of Y (t) is given by

r(t) =
E[(Y (0)−m)(Y (t)−m)]

E[Y 2(0)]
,

where m = E (Y (0)).

G. Maruyama, Mem. Fac. Sci. Kyushu Univ. (1949)
U. Grenander, Ark. Mat. (1950)
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Ergodic properties of Gaussian processes

Y (t) – stationary Gaussian process

autocorrelation function of Y (t) is given by

r(t) =
E[(Y (0)−m)(Y (t)−m)]

E[Y 2(0)]
,

where m = E (Y (0)).

Theorem

Y (t) is ergodic if and only if its autocorrelation function satisfies

limT→∞
1
T

∫ T
0
r(t)dt = 0

G. Maruyama, Mem. Fac. Sci. Kyushu Univ. (1949)
U. Grenander, Ark. Mat. (1950)
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Ergodic properties of Gaussian processes

Theorem

Y (t) is mixing if and only if its autocorrelation function satisfies

lim
t→∞
r(t) = 0. (1)

K. Itô, Proc. Imp. Acad. (1944)
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Ergodic properties of Gaussian processes

Theorem

Y (t) is mixing if and only if its autocorrelation function satisfies

lim
t→∞
r(t) = 0. (1)

Corollary (Khinchin Theorem)

If the autocorrelation function of Y (t) satisfies (1) then Y (t) is ergodic.

K. Itô, Proc. Imp. Acad. (1944)
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Examples – fractional Brownian motion

Fractional Brownian motion (FBM) BH(t) is the mean-zero
Gaussian process with autocovariance function

E[BH(s)BH(t)] =
1

2

(
s2H + t2H − |t − s|2H

)
, t, s ≥ 0.

Here, 0 < H < 1 is the Hurst index.
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Fractional Brownian motion (FBM) BH(t) is the mean-zero
Gaussian process with autocovariance function

E[BH(s)BH(t)] =
1

2

(
s2H + t2H − |t − s|2H

)
, t, s ≥ 0.

Here, 0 < H < 1 is the Hurst index.

Mean-square dispacement of FBM equals E(B2H(t)) = t
2H .
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2

(
s2H + t2H − |t − s|2H

)
, t, s ≥ 0.

Here, 0 < H < 1 is the Hurst index.

Mean-square dispacement of FBM equals E(B2H(t)) = t
2H .

The stationary sequence of FBM increments

bH(j) = BH(j + 1)− BH(j)
is called fractional Gaussian noise
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Examples – fractional Brownian motion

Fractional Brownian motion (FBM) BH(t) is the mean-zero
Gaussian process with autocovariance function

E[BH(s)BH(t)] =
1

2

(
s2H + t2H − |t − s|2H

)
, t, s ≥ 0.

Here, 0 < H < 1 is the Hurst index.

Mean-square dispacement of FBM equals E(B2H(t)) = t
2H .

The stationary sequence of FBM increments

bH(j) = BH(j + 1)− BH(j)
is called fractional Gaussian noise

The autocorrelation function of bH(j) satisfies

r(j) ∼ H(2H − 1)j2H−2

as j → ∞. This implies
r(j) → 0 as j → ∞.

Thus, bH(j) is ergodic and mixing.
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Examples – Langevin equation with fractional Gaussian
noise

Langevin equation with fractional Gaussian noise has the form

dWH(t) = −λWH(t)dt + σdBH(t), λ, σ > 0. (2)
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Examples – Langevin equation with fractional Gaussian
noise

Langevin equation with fractional Gaussian noise has the form

dWH(t) = −λWH(t)dt + σdBH(t), λ, σ > 0. (2)

The stationary solution of (2) is given by

WH(t) = σ

∫ t

−∞
e−λ(t−s)dBH(s).
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Examples – Langevin equation with fractional Gaussian
noise

Langevin equation with fractional Gaussian noise has the form

dWH(t) = −λWH(t)dt + σdBH(t), λ, σ > 0. (2)

The stationary solution of (2) is given by

WH(t) = σ

∫ t

−∞
e−λ(t−s)dBH(s).

The autocorrelation function of WH(t) satisfies

r(t) ∝ t2H−2

as t → ∞. This implies that WH(t) is ergodic and mixing.
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Examples – fractional Langevin equation

Fractional Langevin equation for a single particle of mass m in the
absence of external force has the form

m
dV

dt
= −γ

∫ t

0

1

(t − u)β V (u)du + σ
dBH(t)

dt
, (3)

where γ > 0 is the friction constant, β = 2− 2H, H > 1/2.
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Examples – fractional Langevin equation

Fractional Langevin equation for a single particle of mass m in the
absence of external force has the form

m
dV

dt
= −γ

∫ t

0

1

(t − u)β V (u)du + σ
dBH(t)

dt
, (3)

where γ > 0 is the friction constant, β = 2− 2H, H > 1/2.

Solution to (3) is a stationary Gaussian process, whose
autocovariance function c(t) in the Laplace space yields

c̃(ω) =
1

ω + cωβ−1
.

From Tauberian theorem, c(t) → 0 as t → ∞. Thus, the process
V (t) is ergodic and mixing.
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Ergodic properties of Lévy flights

Problem: How to verify ergodic properties of α-stable processes
(Lévy flights)?
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Ergodic properties of Lévy flights

Problem: How to verify ergodic properties of α-stable processes
(Lévy flights)?

Main difficulty: the second moment is infinite – autocorrelation
function is not defined
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Ergodic properties of Lévy flights

Problem: How to verify ergodic properties of α-stable processes
(Lévy flights)?

Main difficulty: the second moment is infinite – autocorrelation
function is not defined

Examples of Lévy flight dynamics: animal foraging patterns,
transport of light in special optical materials, bulk mediated surface
diffusion, transport in micelle systems or heterogeneous rocks, single
molecule spectroscopy, wait-and-switch relaxation, etc.
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Lévy autocorrelation function

Y (t) – stationary α-stable process (Lévy flight) of the form

Y (t) =

∫ ∞

−∞
K (t, x)dLα(x), t ∈ R. (4)

Here, K (t, x) is the kernel function and Lα(x) is the α-stable Lévy
motion with the Fourier transform Ee izLα(x) = e−x |z |

α

, 0 < α < 2.

I. Eliazar, J. Klafter, Physica A (2007); J. Phys. A: Math. Theor. (2007)
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Lévy autocorrelation function

Y (t) – stationary α-stable process (Lévy flight) of the form

Y (t) =

∫ ∞

−∞
K (t, x)dLα(x), t ∈ R. (4)

Here, K (t, x) is the kernel function and Lα(x) is the α-stable Lévy
motion with the Fourier transform Ee izLα(x) = e−x |z |

α

, 0 < α < 2.

Definition (Lévy autocorrelation function)

Lévy autocorrelation function corresponding to Y (t) is defined as

R(t) =

∫ ∞

−∞
min{|K (0, x)|, |K (t, x)|}αdx (5)

I. Eliazar, J. Klafter, Physica A (2007); J. Phys. A: Math. Theor. (2007)
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Lévy autocorrelation function

Interpretation: For every l > 0 we have

R(t) = lα · ν0t{(x , y) : min{|x |, |y |} > l},

where ν0t is the Lévy measure of the vector (Y (0),Y (t)).

l

OY

OXl−l

−l

Remark: Y (0) and Y (t) are independent if and only if ν0t is concentrated
on the axes OX and OY.
Marcin Magdziarz (Wrocław) Verification of ergodicity and mixing Warwick 14 / 40



Maruyama’s mixing theorem and its refinement

Theorem (Maruyama, 1970)

An i.d. stationary process Yt is mixing if and only if

(i) correlation function r(t) of Gaussian part converges to 0 as t → ∞,
(ii) limt→∞ ν0t(|xy | > δ) = 0 for every δ > 0,

(iii) limt→∞

∫
0<x2+y2≤1 xyν0t(dx , dy) = 0,

where ν0t is the Lévy measure of (Y0,Yt).

G. Maruyama, Theory Probab. Appl. (1970)
M. Magdziarz, Theory Probab. Appl. (2010)
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An i.d. stationary process Yt is mixing if and only if

(i) correlation function r(t) of Gaussian part converges to 0 as t → ∞,
(ii) limt→∞ ν0t(|xy | > δ) = 0 for every δ > 0,

(iii) limt→∞

∫
0<x2+y2≤1 xyν0t(dx , dy) = 0,

where ν0t is the Lévy measure of (Y0,Yt).

Theorem (Magdziarz, 2010)

An i.d. stationary process Yt is mixing if and only if

(i) correlation function r(t) of Gaussian part converges to 0 as t → ∞,
(ii) limt→∞ ν0t(|xy | > δ) = 0 for every δ > 0,

where ν0t is the Lévy measure of (Y0,Yt).

G. Maruyama, Theory Probab. Appl. (1970)
M. Magdziarz, Theory Probab. Appl. (2010)
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Ergodic properties of Lévy flights

Theorem

The stationary Lévy flight process Y (t) is ergodic if and only if its Lévy
autocorrelation function satisfies

lim
T→∞

1

T

∫ T

0

R(t)dt = 0.

M. Magdziarz, Stoch. Proc. Appl. (2009)
M. Magdziarz, A. Weron, Ann. Phys. (2011)
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Ergodic properties of Lévy flights

Theorem

The stationary Lévy flight process Y (t) is ergodic if and only if its Lévy
autocorrelation function satisfies

lim
T→∞

1

T

∫ T

0

R(t)dt = 0.

Theorem

The stationary Lévy flight process Y (t) is mixing if and only if its Lévy
autocorrelation function satisfies

lim
t→∞
R(t) = 0.

M. Magdziarz, Stoch. Proc. Appl. (2009)
M. Magdziarz, A. Weron, Ann. Phys. (2011)
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Ergodic properties of Lévy flights

Corollary (Khinchin Theorem for Lévy flights)

If the autocorrelation function of Lévy flight Y (t) satisfies

lim
t→∞
R(t) = 0.

then Y (t) is ergodic.
Moreover, the temporal and ensemble averages coincide

lim
T→∞

1

T

∫ T

0

g(Y (t))dt = E[g(Y (0))],

provided that E[|g(Y (0))|] < ∞.

A. Weron, M. Magdziarz, Phys. Rev. Lett. (2010)
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Examples - α-stable Ornstein-Uhlenbeck process

α-stable Ornstein-Uhlenbeck process is defined as

Y1(t) = σ

∫ t

−∞
e−λ(t−x)dLα(x), λ, σ > 0.
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Examples - α-stable Ornstein-Uhlenbeck process

α-stable Ornstein-Uhlenbeck process is defined as

Y1(t) = σ

∫ t

−∞
e−λ(t−x)dLα(x), λ, σ > 0.

The Lévy autocorrelation function corresponding to Y1(t) satisfies

R(t) ∝ e−αλt

as t → ∞. Thus, Y1(t) is ergodic and mixing.
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Examples - α-stable Ornstein-Uhlenbeck process
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Figure: Lévy autocorrelation function corresponding to the α-stable
Ornstein-Uhlenbeck process Y1(t).
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Examples - α-stable Ornstein-Uhlenbeck process

Figure: Top panel: simulated trajectory of the 1.2-stable Ornstein-Uhlenbeck
process Y1(t). Bottom panel: the temporal average corresponding to Y1(t).

Clearly limT→∞

1
T

∫ T
0
Y1(t)dt = 0 = E(Y1(0)).
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Examples - α-stable Lévy noise

α-stable Lévy noise is defined as

lα(t) = Lα(t + 1)− Lα(t).

It is a stationary sequence of independent and identically distributed
α-stable random variables.
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Examples - α-stable Lévy noise

α-stable Lévy noise is defined as

lα(t) = Lα(t + 1)− Lα(t).

It is a stationary sequence of independent and identically distributed
α-stable random variables.

The Lévy autocorrelation function of lα(t) satisfies

R(t) = 0

This corresponds to the well known property that independent random
variables are uncorrelated. Thus, lα(t) is ergodic and mixing.
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Examples - fractional α-stable Lévy motion

Fractional α-stable Lévy motion is defined as

Lα,H(t) =

∫ ∞

−∞

[
(t − x)H−1/α+ − (−x)H−1/α+

]
dLα(x).

Here x+ = max{x , 0}.
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Examples - fractional α-stable Lévy motion

Fractional α-stable Lévy motion is defined as

Lα,H(t) =

∫ ∞

−∞

[
(t − x)H−1/α+ − (−x)H−1/α+

]
dLα(x).

Here x+ = max{x , 0}.
For α = 2 it reduces to the fractional Brownian motion.
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∫ ∞

−∞

[
(t − x)H−1/α+ − (−x)H−1/α+

]
dLα(x).

Here x+ = max{x , 0}.
For α = 2 it reduces to the fractional Brownian motion.

The stationary process of increments

lα,H(t) = Lα,H(t + 1)− Lα,H(t)

t ∈ N, is called the fractional α-stable Lévy noise.
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Examples - fractional α-stable Lévy motion

Fractional α-stable Lévy motion is defined as

Lα,H(t) =

∫ ∞

−∞

[
(t − x)H−1/α+ − (−x)H−1/α+

]
dLα(x).

Here x+ = max{x , 0}.
For α = 2 it reduces to the fractional Brownian motion.

The stationary process of increments

lα,H(t) = Lα,H(t + 1)− Lα,H(t)

t ∈ N, is called the fractional α-stable Lévy noise.

The Lévy autocorrelation function of lα,H(t) yields

lim
t→∞
R(t) = 0.

Therefore, the fractional α-stable Lévy noise is ergodic and mixing.
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Summary for Lévy autocorrelation function

Lévy autocorrelation function seems to be a perfect tool for
verification of ergodic properties of Lévy flights

it works also for the whole family of infinitely divisible processes
(α-stable, tempered α-stable, Pareto, exponential, gamma, Poisson,
Linnik, Mittag-Leffler, etc.)
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Generalized diffusion equation (GDE)

Definition (I.M. Sokolov, J. Klafter, Phys. Rev. Lett. (2006))

∂w(x , t)

∂t
= Φt

∂2

∂x2
w(x , t)
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∂w(x , t)
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Figure: Typical trajectories of the process corresponding to GDE
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Generalized diffusion equation (GDE)

Definition (I.M. Sokolov, J. Klafter, Phys. Rev. Lett. (2006))

∂w(x , t)

∂t
= Φt

∂2

∂x2
w(x , t)

Here

Φt f (t) =
d

dt

∫ t

0

M(t − y)f (y)dy

and

M̃(u) =

∫ ∞

0

e−utM(t)dt =
1

Ψ(u)
.
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Generalized diffusion equation (GDE)
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∫ t

0

M(t − y)f (y)dy

and

M̃(u) =

∫ ∞

0

e−utM(t)dt =
1

Ψ(u)
.

Ψ(u) is the Laplace exponent of the underlying waiting time T > 0,
i.e. E

(
e−uT

)
= e−Ψ(u)
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1

Ψ(u)
.

Ψ(u) is the Laplace exponent of the underlying waiting time T > 0,
i.e. E

(
e−uT

)
= e−Ψ(u)

T – any infinitely divisible distribution
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Generalized diffusion equation (GDE)

Definition (I.M. Sokolov, J. Klafter, Phys. Rev. Lett. (2006))

∂w(x , t)

∂t
= Φt

∂2

∂x2
w(x , t)

Here

Φt f (t) =
d

dt

∫ t

0

M(t − y)f (y)dy

and

M̃(u) =

∫ ∞

0

e−utM(t)dt =
1

Ψ(u)
.

Ψ(u) is the Laplace exponent of the underlying waiting time T > 0,
i.e. E

(
e−uT

)
= e−Ψ(u)

T – any infinitely divisible distribution

for Ψ(u) = uα we have Φt = 0D
1−α
t and we recover the celebrated

fractional diffusion equation
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GDE – ergodicity and mixing

Theorem (M. Magdziarz (2010))

The PDF of the process X (t) = B(SΨ(t)) is the solution of GDE. Here, B
is the Brownian motion and SΨ is the inverse subordinator corresponding

to T .
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GDE – ergodicity and mixing

Theorem (M. Magdziarz (2010))

The PDF of the process X (t) = B(SΨ(t)) is the solution of GDE. Here, B
is the Brownian motion and SΨ is the inverse subordinator corresponding

to T .

Theorem (M. Magdziarz (2012))

Let E(T ) < ∞. Then the increments of the process X (t) = B(SΨ(t))
corresponding to GDE are ergodic and mixing.
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GDE – ergodicity and mixing

Theorem (M. Magdziarz (2010))

The PDF of the process X (t) = B(SΨ(t)) is the solution of GDE. Here, B
is the Brownian motion and SΨ is the inverse subordinator corresponding

to T .

Theorem (M. Magdziarz (2012))

Let E(T ) < ∞. Then the increments of the process X (t) = B(SΨ(t))
corresponding to GDE are ergodic and mixing.

Consequences:
Recently, in J-H. Jeon et al., Phys. Rev. Lett (2010), GDE with
tempered stable waiting times was used to model the dynamics of
lipid granules in fission yeast cells. The above theorem implies that
this dynamics is ergodic and mixing.
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Testing ergodicity and mixing in experimental data

Problem: How to verify ergodicity and mixing in experimental data?
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Testing ergodicity and mixing in experimental data

Problem: How to verify ergodicity and mixing in experimental data?

Y (1), Y (2), Y (3), ..., Y (N) – experimentally measured one
realization of some random process Y (n)
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Testing ergodicity and mixing in experimental data

Problem: How to verify ergodicity and mixing in experimental data?

Y (1), Y (2), Y (3), ..., Y (N) – experimentally measured one
realization of some random process Y (n)

we assume that Y (n) is stationary and infinitely divisible (Gaussian,
α-stable, tempered α-stable, Pareto, exponential, gamma, Poisson,
Linnik, Mittag-Leffler, etc.)
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Dynamical Functional

Definition (A. Weron et al. (1994))

The dynamical functional D(n) corresponding to the process Y (n) is
defined as

D(n) = E(exp{i [Y (n)− Y (0)]})
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Dynamical Functional

Definition (A. Weron et al. (1994))

The dynamical functional D(n) corresponding to the process Y (n) is
defined as

D(n) = E(exp{i [Y (n)− Y (0)]})

Remark 1: D(n) is just the Fourier transform of Y (n)− Y (0) evaluated
for the Fourier-space variable k = 1.
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Dynamical Functional

Definition (A. Weron et al. (1994))

The dynamical functional D(n) corresponding to the process Y (n) is
defined as

D(n) = E(exp{i [Y (n)− Y (0)]})

Remark 1: D(n) is just the Fourier transform of Y (n)− Y (0) evaluated
for the Fourier-space variable k = 1.

Remark 2: If Y (n) is Gaussian, then the dynamical functional is equal to

D(n) = exp{σ2[r(n)− 1]},

where r(n) is the autocorrelation function of Y (n) and σ2 is the variance
of Y (0).
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Dynamical Functional – main results

Theorem

Y (n) is mixing if and only if

lim
n→∞
D(n) = |E(exp{iY (0)})|2.

Equivalently,

lim
n→∞
E (n) = 0,

where E (n) = D(n)− |E(exp{iY (0)})|2.
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Dynamical Functional – main results

Theorem

Y (n) is mixing if and only if

lim
n→∞
D(n) = |E(exp{iY (0)})|2.

Equivalently,

lim
n→∞
E (n) = 0,

where E (n) = D(n)− |E(exp{iY (0)})|2.

Theorem

Y (n) is ergodic if and only if

lim
n→∞

1

n

n−1∑

k=0

E (k) = 0.
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Applications: the case of many realizations of Y (n)

Suppose that the number of experimental realizations of Y (n) is
large enough to calculate ensemble averages
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Applications: the case of many realizations of Y (n)

Suppose that the number of experimental realizations of Y (n) is
large enough to calculate ensemble averages

ALGORITHM of testing mixing and ergodicity:

1. Calculate the ensemble averages D(n) = E(exp{i [Y (n)− Y (0)]}) for
various n
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Applications: the case of many realizations of Y (n)

Suppose that the number of experimental realizations of Y (n) is
large enough to calculate ensemble averages

ALGORITHM of testing mixing and ergodicity:

1. Calculate the ensemble averages D(n) = E(exp{i [Y (n)− Y (0)]}) for
various n

2. Calculate the ensemble average E(exp{iY (0)})
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Applications: the case of many realizations of Y (n)

Suppose that the number of experimental realizations of Y (n) is
large enough to calculate ensemble averages

ALGORITHM of testing mixing and ergodicity:

1. Calculate the ensemble averages D(n) = E(exp{i [Y (n)− Y (0)]}) for
various n

2. Calculate the ensemble average E(exp{iY (0)})
3. If the convergence

lim
n→∞
E (n) = lim

n→∞
(D(n)− |E(exp{iY (0)})|2) = 0

holds for large n, then Y (n) is mixing, otherwise it is not mixing
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Applications: the case of many realizations of Y (n)

Suppose that the number of experimental realizations of Y (n) is
large enough to calculate ensemble averages

ALGORITHM of testing mixing and ergodicity:

1. Calculate the ensemble averages D(n) = E(exp{i [Y (n)− Y (0)]}) for
various n

2. Calculate the ensemble average E(exp{iY (0)})
3. If the convergence

lim
n→∞
E (n) = lim

n→∞
(D(n)− |E(exp{iY (0)})|2) = 0

holds for large n, then Y (n) is mixing, otherwise it is not mixing

4. If the convergence

lim
n→∞

1

n

n−1∑

k=0

E (k) = 0

holds for large n, then Y (n) is ergodic, otherwise we have ergodicity
breaking
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Example: ergodicity of Ornstein-Uhlenbeck process
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Figure: Verification of ergodicity for the Ornstein-Uhlenbeck process given by the
Langevin equation dY (n) = −Y (n)dt + dB(n).

Marcin Magdziarz (Wrocław) Verification of ergodicity and mixing Warwick 31 / 40



Example: mixing of Ornstein-Uhlenbeck process
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Figure: Verification of mixing property for the Ornstein-Uhlenbeck process given
by the Langevin equation dY (n) = −Y (n)dt + dB(n).
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Example: Mixing breaking and ergodicity breaking of a
Gaussian process

0 100 200
−0.5

0

0.5

1

R
e(

E
(n

))

0 100 200
0

0.2

0.4

R
e(

∑
n
−

1

k
=

0
E

(k
)/

n
)

nn

Figure: Verification of mixing breaking and ergodicity breaking for the Gaussian
stationary process of the form Y (n) =

√
T cos(0.5n + θ). Here, T is

exponentially distributed random variable.

Marcin Magdziarz (Wrocław) Verification of ergodicity and mixing Warwick 33 / 40



Example: Ergodicity breaking of a α-stable process
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Figure: Verification of ergodicity breaking for the α-stable stationary process of
the form Y (n) = A1/2(G1 cos(n) + G2 sin(n)). Here, A > 0 is the one-sided
α-stable random variable, G1 and G2 are standard normal random variables.

Marcin Magdziarz (Wrocław) Verification of ergodicity and mixing Warwick 34 / 40



Applications: the case of one realization of Y (n)

Suppose that we have only one realization of Y (n). Then, only
necessary conditions for ergodicity and mixing can be checked
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Applications: the case of one realization of Y (n)

Suppose that we have only one realization of Y (n). Then, only
necessary conditions for ergodicity and mixing can be checked

ALGORITHM:

1. Approximate the dynamical functional D(n) by

D̂(n) =
1

N − n + 1

N−n∑

k=0

exp{i [Y (n + k)− Y (k)]},
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Applications: the case of one realization of Y (n)

Suppose that we have only one realization of Y (n). Then, only
necessary conditions for ergodicity and mixing can be checked

ALGORITHM:

1. Approximate the dynamical functional D(n) by

D̂(n) =
1

N − n + 1

N−n∑

k=0

exp{i [Y (n + k)− Y (k)]},

2. Approximate a = |E(exp{iY (0)})|2 by
â =

∣∣∣ 1N+1
∑N
k=0 exp{iY (k)}

∣∣∣
2
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Applications: the case of one realization of Y (n)

Suppose that we have only one realization of Y (n). Then, only
necessary conditions for ergodicity and mixing can be checked

ALGORITHM:

1. Approximate the dynamical functional D(n) by

D̂(n) =
1

N − n + 1

N−n∑

k=0

exp{i [Y (n + k)− Y (k)]},

2. Approximate a = |E(exp{iY (0)})|2 by
â =

∣∣∣ 1N+1
∑N
k=0 exp{iY (k)}

∣∣∣
2

3. Check if
Ê (n) ≈ 0

for large n. Here Ê (n) = D̂(n)− â. The above condition is necessary
for mixing. Therefore, its violation implies that Y (n) does not have
the mixing property. This condition is not sufficient for mixing.
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Applications: the case of one realization of Y (n)

4. Check if
1

n

n−1∑

k=0

Ê (k) ≈ 0.

for large n. The above condition is necessary for ergodicity.
Therefore, its violation implies ergodicity breaking of Y (n). This
condition is not sufficient for ergodicity.
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Example: Mixing breaking of a α-stable process – one
trajectory case
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Figure: Verification of mixing breaking from one trajectory of the α-stable
stationary process of the form Y (n) = A1/2(G1 cos(n) + G2 sin(n)). Here, A > 0
is the one-sided α-stable random variable, G1 and G2 are standard normal random
variables.

Marcin Magdziarz (Wrocław) Verification of ergodicity and mixing Warwick 37 / 40



Golding-Cox experimental data – ergodicity
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Ê

(k
)/

n
)

nn

Figure: The real and imaginary parts of the function
∑n−1
k=0 Ê (k)/n corresponding

to the longest trajectory of the Golding-Cox data (X coordinate). The necessary
condition for ergodicity is clearly satisfied.
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Golding-Cox experimental data – mixing
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Figure: The real and imaginary parts of the function Ê(n) corresponding to the
longest trajectory of the Golding-Cox data (X coordinate). The necessary
condition for mixing is satisfied.
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The end
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