
complex systems group 

Information theory for 
complex systems 

Kristian Lindgren
Complex systems group, Department of Energy and Environment
Chalmers University of Technology, Gothenburg, Sweden

1: Cellular automata 2: Pattern formation 3: Spinn systems and Baker’s map
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Cellular automata and information

• 1-dimensional CA
• Elementary CA rules 

- Binary state (0 or 1, ”white” or ”black”) 

- Nearest neighbour interaction

- CA state: bi-infinite sequence (... 0 1 1 1 0 0 1 1 ...)

• Dynamics given by deterministic local rule, updating all 
cells in parallel 
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Rule table

• Example: Rule 110

111 110 101 100 011 010 001 000

0 1 1 0 1 1 1 0

(01101110)2=110
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Rule table

• Example: Rule 110

111 110 101 100 011 010 001 000

0 1 1 0 1 1 1 0

(01101110)8=110
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CA classes

Four classes of dynamics:
(I) Towards homogenous 

fixed point.
(II) Towards inhomogenous 

fixed point, shift, and/or 
periodic behavior.

(III) Irregular behavior – 
”chaotic”

(IV) In between (II) and (III); 
long transients, ”complex”.
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Class III example: R22

”Chaotic”
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Difference pattern

A single cell state at the centered is changed, and the 
difference pattern illustrates how the disturbance is spread.



complex systems group 

Class IV example: R110

Computationally universal
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Information characteristics?
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Information in a symbol sequence

. . . 0 1 0 0 1 0 1 1 0 1 ?

Basic information 

Statistics of the sequence give probabilities...

With probability p of the event, this is generalized to 
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Information in a symbol sequence

. . . 0 1 0 0 1 0 1 1 0 1 ?

Probability of xm given x1, x2, ..., xm–1

Information gained when observing a symbol — local 
information
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Symmetric local information

Use probabilities that depend on either m–1 symbols to the 
left or to the right, pL or pR,

Local symmetric information combines ”left” and ”right”

? 1 0 1 1 1 0 0 0 0 1 0 . . .. . . 0 1 0 0 1 0 1 1 0 1 ?
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Regularity filter

• ”Local” information I applied to pattern of R110 (row-by-row)
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Regularity filter

• Applied to pattern of R110 (row-by-row)
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Regularity filter

• Applied to pattern of R110 (row-by-row)

m = 2
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Regularity filter

• Applied to pattern of R110 (row-by-row)

m = 3
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Regularity filter

• Applied to pattern of R110 (row-by-row)

m = 4
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Regularity filter

• Applied to pattern of R110 (row-by-row)

m = 5
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Regularity filter

• Applied to pattern of R110 (row-by-row)

m = 6
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Regularity filter

• Applied to pattern of R110 (row-by-row)

m = 7
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Regularity filter

• Applied to pattern of R110 (row-by-row)
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Regularity filter

• Applied to space-time pattern of R18 (row-by-row)
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 1
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 2
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 3
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 4
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 5
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 6
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 7
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Regularity filter

• Applied to pattern of R18 (row-by-row)

m = 8
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Average of the information quantity

• Average of the information quantity (here the ”Left” one):

• Two interpretations...
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Entropy

For a probability distribution P = {p(k)}k=1,...,n

quantifies 

- the expected gain of information, or

- the lack of information — uncertainty about the state
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Entropy of a stochastic process

• The entropy per symbol, s, is the average uncertainty 
about the next symbol xm given the previously read ones 
x1...xm–1 in the limit of infinite m

• The entropy s quantifies the degree of ”randomness” of the 
sequence.
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Change of entropy in CA time evolution

• How does the entropy s change from one time step to the 
next in a CA?

In general, for deterministic rules, as entropy characterizes 
”randomness”, entropy cannot increase,
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Relative information

• How does the information about the next symbol change 
when we extend the number of preceding symbols step-by-
step?

• Correlation information
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Relative information

• Relative information or Kullback-Liebler information — 
quantifies how much information is gained when one 
distribution P0={p0(k)} is replaced by a new one 
P= {p(k)},
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Density information

• Without looking at preceding symbols, how does the 
information about the next symbol change when we learn 
the frequencies?

• Density information
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Decomposition of information

• The total information of 1 bit per cell can be decomposed 
into the entropy s and the redundant information kcorr,

• and the redundant information further into density 
information k1 and correlation information km (m=2, 3, ...)
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Information characteristics of CA time evolution

• Example: rule R110
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Regularity filter
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• ”Local” information I applied to pattern of R60 (row-by-row)
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 1
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 2
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 3
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 4
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 5
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 6
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 7
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 8
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Regularity filter

• Applied to pattern of R60 (row-by-row)

m = 12
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Regularity filter

• R60 up to t = 21.
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Regularity filter

• R60 up to length 15 blocks
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Regularity filter

• R60 up to length 15 blocks
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Regularity filter

• R60 up to length 15 blocks
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Regularity filter

• R60 up to length 15 blocks
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Analytic solution
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Space-time diagram for rule R60 Local information, infinite m limit 
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”Additive” CA rule R60
The rule that adds two neighbouring states 
mod 2 (XOR operation) has a certain degree of 
reversibility.

An additive CA has a finite number of 
preimages to any state, and they define a class 
of ”almost reversible” CA. For these CA one 
can show that entropy is conserved in time,

This means that if one starts with a completely 
random state (with maximum entropy s = 1), 
the state at any time will also be completely 
random.

! 

" x i = f (xi#1,xi) = xi#1 + xi    (mod 2)
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”Additive” CA rule R60

Slightly ordered initial state: low density 
of 1’s, p(1) = 0.1, results in
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”Additive” CA rule R60 with noise

Noise added to the CA rule: with probability 
q a cell state is flipped (here q = 0.005). The 
noise destroys all long-range correlations.

The noise serves as an inflow of 
random information which leads to a 
steady increase in entropy until the 
state is completely random (s(t) = 1),
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Complexity quantities

• How to quantify ”complexity” in a symbol sequence?

• Entropy?

• How correlation information is distributed?

• How much information is there in the preceding symbols about 
the ones not yet read?
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Effective measure complexity or Excess entropy

• Information in the past (    ) about the future (    ), 
expressed by the relative information,

• The distribution of correlation information over block 
lengths,
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Excess entropy for rule R60

Assume an initial state (at t = 0) without correlations

• If s = 1 (maximum; equal densities of 0’s and 1’), 
then km = 0 all m ≥ 2 and 

• If s < 1 (unequal densities of 0’s and 1’), then
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Excess entropy for R60

s = 1 s < 1
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More information...

• Lecture notes (draft) available on course web site:

http://studycas.com/node/114

(Several papers can be provided on request.)


