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3 One-dimensional maps

Here we study a class of dynamical systems in which time is discrete rather than continuous (i.e.

difference equations or iterated maps).

Consider a one-dimensional map

xn+1 = f(xn),

where f is a smooth function from the real line to itself. The sequence x0, x1, x2, ... is called

the orbit starting from x0. Maps are useful in various ways:

• Tools for analysing differential equations (e.g., Poincaré maps, the Lorenz map).

• Models of natural phenomena (where discrete time is better to be considered, e.g., digitals

electronics, in parts of economics and finance theory).

• Simple examples of chaos (Maps show a much wilder behaviour than differential equations).

Fixed points and linear stability

If f(x∗) = x
∗
, then x

∗
is a fixed point. The orbit remains at x

∗
for all future iterations (xn = x

∗

⇒ xn+1 = f(xn) = f(x∗) = x
∗
).

To determine the stability of x
∗
, we consider a nearby orbit xn = x

∗ + ηn. Then we have

x
∗ + ηn+1 = f(x∗ + ηn) = f(x∗) + f

�(x∗)ηn +O(η2

n
).

This equation reduces to the equation of the linearised map

ηn+1 = f
�(x∗)ηn

with multiplier λ = f
�(x∗). The solution of the linear map can be found explicitly by writing a

few terms: η1 = λη0, η2 = λη1 = λ
2
η0, ... , ηn = λ

n
η0.

If |λ| = |f �(x∗)| < 1, ηn → 0 as n → ∞ ⇒ x
∗
is linearly stable

If |λ| > 1 ⇒ x
∗
is unstable

If |λ| = 1 ⇒ marginal case (the neglected O(η2

n
) terms determine the local stability)

Fixed points with multiplier λ = 0 are called superstable (perturbations decay much faster)
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Cobwebs

Example 1. A cobweb for the map xn+1 = sin(xn) helps to show that x
∗ = 0 is globally stable
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Example 2. Given xn+1 = cos(xn) we can show that a typical orbit spirals into the fixed point

x
∗ = 0.739... as n → ∞ (x = 0.739... is the unique solution of x = cos(x)).
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The spiral motion implies that xn converges to x
∗
through damped oscillations (typically if λ < 0).

If λ > 0 the convergence is monotonic.
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Logistic map

Consider the logistic map

xn+1 = rxn(1− xn),

a discrete time analog of the logistic equation for population growth studied earlier. xn ≥ 0 is a

dimensionless measure of the population in the nth generation and r ≥ 0 is the intrinsic growth

rate. The graph of the logistic map is a parabola with a maximum value of r/4 at x = 0.5. Here

we restrict the control parameter 0 ≤ r ≤ 4 so that the equation maps the interval 0 ≤ x ≤ 1

into itself.

If r < 1, xn → 0 as n → ∞
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If 1 < r < 3 the population grows and eventually reaches a nonzero steady state:

For larger r we observe oscillations in which xn repeats every two iterations, i.e. a period-2

cycle:

3



At still larger r, a cycle repeats every four generations, i.e. a period-4 cycle:

For many values of r, the sequence xn never settles down to a fixed point or a periodic orbit, i.e.

the long-term behaviour is aperiodic
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To see the long-term behaviour for all values of r at once, we can plot the orbit diagram (the

system’s attractor as a function of r).
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We observe a cascade of period-doublings until at r ≈ 3.57, where the map becomes chaotic.

For r > 3.57 the orbit diagram reveals a mixture of order and chaos. The large periodic window

beginning near r ≈ 3.83 contains a stable period-3 cycle. A blow-up of part of the period-3

window is shown below (a copy of the orbit diagram reappears in miniature):
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Some analysis of logistic map

The fixed points satisfy x
∗ = f(x∗) = rx

∗(1 − x
∗). Hence x

∗ = 0 for all r and x
∗ = 1 − 1/r for

r ≥ 1 (from the condition 0 ≤ x
∗ ≤ 1). Stability depends on multiplier f

�(x∗) = r− 2rx
∗
.

• f
�(0) = r ⇒ x

∗
- stable if r < 1 and unstable if r > 1

• f
�(1− 1/r) = 2− r ⇒ x

∗ = 1− 1/r is stable if |2− r| < 1, i.e. 1 < r < 3 and unstable if

r > 3
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x
∗
bifurcates from the origin in a transcritical bifurcation at r = 1. As r increases beyond 1, the

slope at x
∗
gets steeper. The critical slope f

�(x∗) = −1 is attained when r = 3. The resulting

bifurcation is called a flip bifurcation (often associated with period-doubling).
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Here we will show that the logistic map has a 2-cycle for r > 3. A 2-cycle exists if and only if

there are two points p and q such that f(p) = q and f(q) = p. Equivalently, such a p must

satisfy f(f(p)) = p ⇒ p is a fixed point of the second-iterate map f
2(x) ≡ f(f(x)).

To find p and q we have to solve f
2(x) = x, i.e. r

2
x(1 − x)[1 − rx(1 − x)] − x = 0. Since the

fixed points x
∗ = 0 and x

∗ = 1 − 1/r are solutions of this equation we can reduce the equation

to a quadratic one by factoring out the fixed points. Solving the resulting quadratic equation we

get

p, q =
r+ 1±

�
(r− 3)(r+ 1)

2r
.

For r > 3 the roots p and q are real and we have a 2-cycle. For r < 3 the roots are complex

and a 2-cycle doesn’t exist.

For analysing the stability of a cycle we can reduce the problem to a question about the stability

of a fixed point. Both p and q are solutions of f
2(x) = x ⇒ p and q are fixed points of the

second-iterate map f
2(x). The original 2-cycle is stable if p and q are stable fixed points. To

determine whether p is a stable fixed point of f
2
we compute the multiplier

λ =
d

dx
(f(f(x))) |

x=p
= f

�(f(p))f �(p) = f
�(q)f �(p).

The multiplier is the same at x = q. After carrying out the differentiations and substituting for

p and q we obtain

λ = r(1− 2q)r(1− 2p) = 4+ 2r− r
2
.

The 2-cycle is linearly stable if |4+ 2r− r
2| < 1, i.e. for 3 < r < 1+

√
6.
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Lyapunov exponent

To be called chaotic, a system should also show sensitive dependence on initial conditions, in

the sense that neighbouring orbits separate exponentially fast. The definition of the Lyapunov

exponent for a chaotic differential equation can be extended to one-dimensional maps.

Given some initial condition x0, consider a nearby point x0 + δ0, where δ0 � 1. Let δn be the

separation after n iterates. If |δn| ≈ |δ0|e
nλ
, then λ is called the Lyapunov exponent. A positive

Lyapunov exponent is a signature of chaos.

A more precise and computationally useful formula for λ can be derived. We note that δn =
f
n(x0 + δ0)− f

n(x0). Then by taking logarithms

λ ≈ 1

n
ln

����
δn

δ0

���� =
1

n
ln

����
f
n(x0 + δ0)− f

n(x0)

δ0

���� =
1

n
ln |(fn) �(x0)|

in the limit δ0 → 0. Using the chain rule we have

(fn) �(x0) =
n−1�

i=0

f
�(xi)

and

λ ≈ 1

n
ln

�����

n−1�

i=0

f
�(xi)

����� =
1

n

n−1�

i=0

ln |f �(xi)| .
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Then the Lyapunov exponent for the orbit starting at x0 is defined as

λ = lim
n→∞

�
1

n

n−1�

i=0

ln |f �(xi)|

�

The Lyapunov exponent for the logistic map found numerically:
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The bifurcation diagram of the logistic map xn+1 = rxn(1 − xn) demonstrates the presence

of the period-3 window near 3.8284... ≤ r ≤ 3.8415.... The third-iterate map f
3(x) is the

key to understand the birth of the period-3 cycle (note that the notation f
3(x) here means

xn+3 = f
3(xn)). Any point p in a period-3 cycle repeats every three iterates, so such points

satisfy p = f
3(p), and are therefore fixed points of the third-iterate map. Consider f

3(x) for

r = 3.835:
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The black dots correspond to a stable period-3 cycle (can see by the slope) and the open dots

correspond to an unstable 3-cycle (the slope exceeds 1).

If we decrease r the graph changes shape and the marked intersections have vanished (see the

figure for r = 3.8):

At some critical r the graph f
3(x) must have become tangent to the diagonal (the stable and

unstable period-3 cycle coalesce and annihilate in a tangent bifurcation).
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