Complexity Science Doctoral Training Centre

CO903 Complexity and Chaos in Dynamical Systems

3 One-dimensional maps

Here we study a class of dynamical systems in which time is discrete rather than continuous (i.e. difference equations or iterated maps).
Consider a one-dimensional map

$$
x_{n+1}=f\left(x_{n}\right),
$$

where f is a smooth function from the real line to itself. The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is called the orbit starting from x_{0}. Maps are useful in various ways:

- Tools for analysing differential equations (e.g., Poincaré maps, the Lorenz map).
- Models of natural phenomena (where discrete time is better to be considered, e.g., digitals electronics, in parts of economics and finance theory).
- Simple examples of chaos (Maps show a much wilder behaviour than differential equations).

Fixed points and linear stability

If $f\left(x^{*}\right)=x^{*}$, then x^{*} is a fixed point. The orbit remains at x^{*} for all future iterations $\left(x_{n}=x^{*}\right.$ $\left.\Rightarrow x_{n+1}=\mathrm{f}\left(x_{\mathrm{n}}\right)=\mathrm{f}\left(x^{*}\right)=x^{*}\right)$.

To determine the stability of x^{*}, we consider a nearby orbit $x_{n}=x^{*}+\eta_{n}$. Then we have

$$
x^{*}+\eta_{n+1}=f\left(x^{*}+\eta_{n}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) \eta_{n}+O\left(\eta_{n}^{2}\right)
$$

This equation reduces to the equation of the linearised map

$$
\eta_{n+1}=f^{\prime}\left(x^{*}\right) \eta_{n}
$$

with multiplier $\lambda=f^{\prime}\left(x^{*}\right)$. The solution of the linear map can be found explicitly by writing a few terms: $\eta_{1}=\lambda \eta_{0}, \eta_{2}=\lambda \eta_{1}=\lambda^{2} \eta_{0}, \ldots, \eta_{n}=\lambda^{n} \eta_{0}$.

If $|\lambda|=\left|f^{\prime}\left(x^{*}\right)\right|<1, \eta_{n} \rightarrow 0$ as $n \rightarrow \infty \Rightarrow x^{*}$ is linearly stable
If $|\lambda|>1 \Rightarrow x^{*}$ is unstable
If $|\lambda|=1 \Rightarrow$ marginal case (the neglected $\mathrm{O}\left(\eta_{n}^{2}\right)$ terms determine the local stability)
Fixed points with multiplier $\lambda=0$ are called superstable (perturbations decay much faster)

Cobwebs

Example 1. A cobweb for the map $x_{n+1}=\sin \left(x_{n}\right)$ helps to show that $x^{*}=0$ is globally stable

Example 2. Given $x_{n+1}=\cos \left(x_{n}\right)$ we can show that a typical orbit spirals into the fixed point $x^{*}=0.739 \ldots$ as $n \rightarrow \infty(x=0.739 \ldots$ is the unique solution of $x=\cos (x))$.

The spiral motion implies that x_{n} converges to x^{*} through damped oscillations (typically if $\lambda<0$). If $\lambda>0$ the convergence is monotonic.

Logistic map

Consider the logistic map

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

a discrete time analog of the logistic equation for population growth studied earlier. $x_{n} \geq 0$ is a dimensionless measure of the population in the nth generation and $r \geq 0$ is the intrinsic growth rate. The graph of the logistic map is a parabola with a maximum value of $r / 4$ at $x=0.5$. Here we restrict the control parameter $0 \leq r \leq 4$ so that the equation maps the interval $0 \leq x \leq 1$ into itself.

If $r<1, x_{n} \rightarrow 0$ as $n \rightarrow \infty$

If $1<r<3$ the population grows and eventually reaches a nonzero steady state:

For larger r we observe oscillations in which x_{n} repeats every two iterations, i.e. a period- $\mathbf{2}$ cycle:

At still larger r, a cycle repeats every four generations, i.e. a period-4 cycle:

For many values of r, the sequence x_{n} never settles down to a fixed point or a periodic orbit, i.e. the long-term behaviour is aperiodic

To see the long-term behaviour for all values of r at once, we can plot the orbit diagram (the system's attractor as a function of r).

We observe a cascade of period-doublings until at $\mathrm{r} \approx 3.57$, where the map becomes chaotic. For $r>3.57$ the orbit diagram reveals a mixture of order and chaos. The large periodic window beginning near $\mathrm{r} \approx 3.83$ contains a stable period-3 cycle. A blow-up of part of the period-3 window is shown below (a copy of the orbit diagram reappears in miniature):

Some analysis of logistic map

The fixed points satisfy $x^{*}=f\left(x^{*}\right)=r x^{*}\left(1-x^{*}\right)$. Hence $x^{*}=0$ for all r and $x^{*}=1-1 / r$ for $r \geq 1$ (from the condition $0 \leq x^{*} \leq 1$). Stability depends on multiplier $f^{\prime}\left(x^{*}\right)=r-2 r x^{*}$.

- $f^{\prime}(0)=r \Rightarrow x^{*}$ - stable if $r<1$ and unstable if $r>1$
- $f^{\prime}(1-1 / r)=2-r \Rightarrow x^{*}=1-1 / r$ is stable if $|2-r|<1$, i.e. $1<r<3$ and unstable if $r>3$

x^{*} bifurcates from the origin in a transcritical bifurcation at $r=1$. As r increases beyond 1 , the slope at χ^{*} gets steeper. The critical slope $f^{\prime}\left(x^{*}\right)=-1$ is attained when $r=3$. The resulting bifurcation is called a flip bifurcation (often associated with period-doubling).

Here we will show that the logistic map has a 2-cycle for $r>3$. A 2-cycle exists if and only if there are two points p and q such that $f(p)=q$ and $f(q)=p$. Equivalently, such a p must satisfy $f(f(p))=p \Rightarrow p$ is a fixed point of the second-iterate map $f^{2}(x) \equiv f(f(x))$.

To find p and q we have to solve $f^{2}(x)=x$, i.e. $r^{2} x(1-x)[1-r x(1-x)]-x=0$. Since the fixed points $x^{*}=0$ and $x^{*}=1-1 / r$ are solutions of this equation we can reduce the equation to a quadratic one by factoring out the fixed points. Solving the resulting quadratic equation we get

$$
p, q=\frac{r+1 \pm \sqrt{(r-3)(r+1)}}{2 r}
$$

For $r>3$ the roots p and q are real and we have a 2 -cycle. For $r<3$ the roots are complex and a 2-cycle doesn't exist.

For analysing the stability of a cycle we can reduce the problem to a question about the stability of a fixed point. Both p and q are solutions of $f^{2}(x)=x \Rightarrow p$ and q are fixed points of the second-iterate map $f^{2}(x)$. The original 2-cycle is stable if p and q are stable fixed points. To determine whether p is a stable fixed point of f^{2} we compute the multiplier

$$
\lambda=\left.\frac{d}{d x}(f(f(x)))\right|_{x=p}=f^{\prime}(f(p)) f^{\prime}(p)=f^{\prime}(q) f^{\prime}(p)
$$

The multiplier is the same at $x=\mathrm{q}$. After carrying out the differentiations and substituting for p and q we obtain

$$
\lambda=r(1-2 q) r(1-2 p)=4+2 r-r^{2}
$$

The 2-cycle is linearly stable if $\left|4+2 r-r^{2}\right|<1$, i.e. for $3<r<1+\sqrt{6}$.

Lyapunov exponent

To be called chaotic, a system should also show sensitive dependence on initial conditions, in the sense that neighbouring orbits separate exponentially fast. The definition of the Lyapunov exponent for a chaotic differential equation can be extended to one-dimensional maps.
Given some initial condition x_{0}, consider a nearby point $x_{0}+\delta_{0}$, where $\delta_{0} \ll 1$. Let δ_{n} be the separation after \mathfrak{n} iterates. If $\left|\delta_{n}\right| \approx\left|\delta_{0}\right| \mathrm{e}^{\mathrm{n} \lambda}$, then λ is called the Lyapunov exponent. A positive Lyapunov exponent is a signature of chaos.
A more precise and computationally useful formula for λ can be derived. We note that $\delta_{n}=$ $f^{n}\left(x_{0}+\delta_{0}\right)-f^{n}\left(x_{0}\right)$. Then by taking logarithms

$$
\lambda \approx \frac{1}{n} \ln \left|\frac{\delta_{n}}{\delta_{0}}\right|=\frac{1}{n} \ln \left|\frac{f^{n}\left(x_{0}+\delta_{0}\right)-f^{n}\left(x_{0}\right)}{\delta_{0}}\right|=\frac{1}{n} \ln \left|\left(f^{n}\right)^{\prime}\left(x_{0}\right)\right|
$$

in the limit $\delta_{0} \rightarrow 0$. Using the chain rule we have

$$
\left(f^{n}\right)^{\prime}\left(x_{0}\right)=\prod_{i=0}^{n-1} f^{\prime}\left(x_{i}\right)
$$

and

$$
\lambda \approx \frac{1}{n} \ln \left|\prod_{i=0}^{n-1} f^{\prime}\left(x_{i}\right)\right|=\frac{1}{n} \sum_{i=0}^{n-1} \ln \left|f^{\prime}\left(x_{i}\right)\right|
$$

Then the Lyapunov exponent for the orbit starting at x_{0} is defined as

$$
\lambda=\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{i=0}^{n-1} \ln \left|f^{\prime}\left(x_{i}\right)\right|\right]
$$

The Lyapunov exponent for the logistic map found numerically:

The bifurcation diagram of the logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$ demonstrates the presence of the period- 3 window near $3.8284 \ldots \leq r \leq 3.8415 \ldots$. The third-iterate map $f^{3}(x)$ is the key to understand the birth of the period- 3 cycle (note that the notation $f^{3}(x)$ here means $\left.x_{n+3}=f^{3}\left(x_{n}\right)\right)$. Any point p in a period-3 cycle repeats every three iterates, so such points satisfy $p=f^{3}(p)$, and are therefore fixed points of the third-iterate map. Consider $f^{3}(x)$ for $\mathrm{r}=3.835$:

The black dots correspond to a stable period- 3 cycle (can see by the slope) and the open dots correspond to an unstable 3-cycle (the slope exceeds 1).
If we decrease r the graph changes shape and the marked intersections have vanished (see the figure for $r=3.8$):

At some critical r the graph $f^{3}(x)$ must have become tangent to the diagonal (the stable and unstable period- 3 cycle coalesce and annihilate in a tangent bifurcation).

