
Complexity Science Doctoral Training Centre

CO903 Complexity and Chaos in Dynamical Systems

4 Chaos in continuous-time dynamical systems

4.1 Lorenz equations

Consider the Lorenz equations

ẋ = σ(y− x)

ẏ = rx− y− xz

ż = xy− bz

Here σ, r, b > 0 are parameters. Ed Lorenz derived this three-dimensional system from a
simplified model of convection rolls in the atmosphere (E. Lorenz (1963) Deterministic nonperiodic
flow, Journal of Atmospheric Sciences, Vol. 20).

A chaotic waterwheel

A mechanical model of the Lorenz equations was invented by W. Malkus and L. Howard at MIT
in the 1970s.

Properties of the Lorenz equations

• Nonlinearity
The Lorenz equations have two nonlinearities.
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• Symmetry
If we replace (x, y) → (−x,−y), the equations stay the same. Hence if (x(t), y(t), z(t))
is a solution, so is (−x(t),−y(t), z(t)).

• Volume contraction
The Lorenz system is dissipative: volumes in phase-space contract under the flow.

Consider any three-dimensional system ẋ = f(x), x ∈ R3. Consider an arbitrary closed
surface S(t) of volume V(t) in phase space. After dt time, S evolves into a new surface
S(t+ dt). What is its volume V(t+ dt)?

Let n denote the outward normal on S. Then f · n is the outward normal component of
velocity (since f is the instantaneous velocity of the points). Therefore in time dt a patch
of area dA sweeps out a volume (f · n dt)dA. Hence

V(t+ dt) = V(t) +

∫
S

(f · n dt)dA

⇒ V̇ =
V(t+ dt) − V(t)

dt
=

∫
S

f · n dA.

By the divergence theorem we have

V̇ =

∫
V

∇ · f dV.

For the Lorenz system

∇ · f = ∂

∂x
[σ(y− x)] +

∂

∂y
[rx− y− xz] +

∂

∂z
(xy− bz) = −σ− 1− b < 0.

Since the divergence is constant we have V̇ = −(σ + 1 + b)V with solution V(t) =
V(0)e−(σ+1+b)t. Thus volumes in phase space shrink exponentially fast.

• The Lorenz equations cannot have repelling fixed points or repelling closed orbits, since
repellers are incompatible with volume contraction. Thus all fixed points must be sinks or
saddles and closed orbits (if they exist).
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• Fixed points
Two types of fixed points: (x∗, y∗, z∗) = (0, 0, 0) for all values of the parameters and a
symmetric pair of fixed points

C+ ≡ (x∗ = y∗ =
√
b(r− 1), z∗ = r− 1)

C− ≡ (x∗ = y∗ = −
√
b(r− 1), z∗ = r− 1)

when r > 1. At r = 1 2 fixed pints coalesce with (0, 0, 0).

• Linear stability of the origin
The linearisation at the origin gives

ẋ = σ(y− x)

ẏ = rx− y

ż = −bz

The equation for z(t) is decoupled and show that z(t) → 0 exponentially fast.(
ẋ

ẏ

)
=

(
−σ σ

r −1

)(
x

y

)
≡ A

(
x

y

)
with tr(A) = −σ− 1 < 0 and det(A) = σ(1− r).

r > 1 ⇒ the origin is a saddle point because det(A) < 0 (one outgoing and two
incoming directions)

r < 1 ⇒ all directions are incoming, tr(A)2 − 4det(A) = (σ − 1)2 + 4σr > 0 and
(0, 0, 0) is a stable node

• Global stability of the origin
We can show for r < 1 that the origin is globally stable (no limit cycles or chaos) by
constructing a Lyapunov function. Consider L(x, y, z) = x2/σ+y2+ z2. We have to show
that if r < 1 and (x, y, z) 6= (0, 0, 0), then V̇ < 0.

1

2
V̇ = xẋ/σ+ yẏ+ zż = −

[
x−

r+ 1

2

]2
−

[
1−

(
r+ 1

2

)2]
y2 − bz2

We can show that V̇ = 0 only at (0, 0, 0), otherwise V̇ < 0. Therefore the origin is globally
stable.

• Stability of C+ and C−

Assume r > 1 so that C+ and C− exist. We can find that they are linearly stable for

1 < r < rH =
σ(σ+ b+ 3)

σ− b− 1

(assuming σ− b− 1 > 0). At r = rH - subcritical Hopf bifurcation
When r < rH
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saddle cycle

unstable m
anifo

ld of saddle cycle

A saddle cycle - a new type of unstable limit cycle that is possible in phase space of three
or more dimensions.

unstable cycle

Chaos on a strange attractor

Lorenz used numerical integration to see what the trajectories would do in the long run. Param-
eters σ = 10, b = 8/3, r = 28. The motion is aperiodic.
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A schematic picture of the strange attractor in the Lorenz system

Exponential divergence

Consider x(t) and x(t) + δ(t) with a vector of initial length ||δ0|| = 10
−15.

It can be found numerically that
||δ(t)|| ∝ ||δ0||e

λt

where λ = 0.9.

slope

In general an n-dimensional system has n different Lyapunov exponents

δk(t) ∝ δk(0)eλkt

Our λ is the largest Lyapunov exponent.
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If a measures our tolerance, then our prediction becomes intolerable (when ||δ(t)|| ≥ a) after a
time

t ≈ 1
λ

ln
a

||δ0||

Defining chaos

Chaos is aperiodic long-term behaviour in a deterministic system that exhibits sensitive depen-
dence on initial conditions.

1. Aperiodic long-term behaviour means that there are trajectories which do not settle down
to fixed points, periodic orbits, or quasi-periodic orbits as t→ ∞.

2. Deterministic means no noise.

3. Sensitive dependence on initial conditions means that nearby trajectories separate expo-
nentially fast (the Lyapunov exponent λ > 0).

Defining attractor and strange attractor

An attractor Λ is a closed set A with the following properties

1. A is an invariant set: any trajectory x(t) that starts in A stays in A for all time.

2. A attracts an open set of initial conditions: there is an open set U containing A such that
if x(0) ∈ U, then the distance from x(t) to A tends to zero as t → ∞. This means that
A attracts all trajectories that start sufficiently close to it. The largest such U is called the
basin of attraction of A.

3. A is minimal : there is no proper subset of A that satisfies conditions 1 and 2.

Attractors with positive Lyapunov exponents are called strange attractors, and trajectories are
called chaotic if at least one Lyapunov exponent is positive (i.e. there is sensitive dependence
upon initial conditions). In a strange chaotic attractor the positive Lyapunov exponent indicates
exponential spreading within the attractor in the direction transverse to the flow and the negative
exponent indicates exponential contraction onto the attractor.

In nonlinear systems it is possible for more than one attractor to exist. To which attractor a
trajectory ends up in depends upon initial conditions. The closure of the set of initial conditions
which approach a given attractor is called a basin of attraction. In many nonlinear systems the
boundary between basins is not smooth and has a fractal structure.

Lorenz map

The main idea behind it is to show that zn should predict zn+1. The Lorenz equations can be
integrated for a long time, then the local maxima of z(t) are measured and plotted zn+1 vs. zn
to get the Lorenz map zn+1 = f(zn).
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Exploring parameter space

stable origin

stable !xed points              and

transient chaos

strange attractor
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Parameters: σ = 10, b = 8/3, r = 21:
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Parameters: σ = 10, b = 8/3, r = 350:
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