Complexity Science Doctoral Training Centre
 CO903 Complexity and Chaos in Dynamical Systems

Bifurcations

The qualitative structure of a flow can change as a parameter is varied. These qualitative changes are called bifurcations and the parameter values at which they occur are called bifurcation points.

Saddle-Node bifurcation

$$
\dot{x}=\mu-x^{2}
$$

Transcritical bifurcation

$$
\dot{x}=\mu x-x^{2}
$$

Example 1.

$$
\dot{x}=r \ln x+x-1
$$

Fixed point at $x=1$. Let $u=x-1$, then

$$
\begin{aligned}
\dot{u} & =r \ln (1+u)+u \approx r\left(u-\frac{u^{2}}{2}+\ldots\right)+u \\
& =(r+1) u-\frac{1}{2} r u^{2}
\end{aligned}
$$

Rescale $(v=(r / 2) u)$:

$$
\dot{v}=(r+1) v-v^{2}
$$

By a near identity change of co-ords we have found the normal form for the dynamics (valid close to the bifurcation point).

Pitchfork bifurcation: supercritical

$$
\dot{x}=\mu x-x^{3}
$$

Shows critical slowing down at $\mu=0$:

$$
\int \frac{\mathrm{d} x}{x^{3}}=-\int \mathrm{d} t \Rightarrow x=\sqrt{\frac{1}{2(t+C)}}, \quad C=\frac{1}{2 x_{0}^{2}}\left(x_{0} \neq 0\right)
$$

For large $t, x \sim t^{-1 / 2}$: power law decay rather than exponential $\mathrm{e}^{\mu t}$.

Pitchfork bifurcation: subcritical

$$
\dot{x}=\mu x+x^{3}
$$

Example 2.

$$
\dot{x}=\mu x+x^{3}-x^{5}
$$

Fixed points

$$
-\left(\mu+x^{2}\right)+x^{4}=0 \quad \text { and } \quad x=0
$$

roots:

$$
x^{2}=\frac{1 \pm \sqrt{1+4 \mu}}{2}
$$

If $\mu>0$ then $x^{2}=(1+\sqrt{1+4 \mu}) / 2$: total of three fixed points. If $-1 / 4<\mu<0, x^{2}=$ $(1 \pm \sqrt{1+4 \mu}) / 2$: total of five fixed points. Define $\mu_{c}=-1 / 4$.

1. In range $\mu_{c}<\mu<0$ there co-exist 3 stable fixed points (and 2 unstable). There is multi-stability. (Local not global stability). Initial conditions determine the final state.
2. Bifurcation at μ_{c} is a saddle-node bifurcation.
3. System exhibits hysteresis and jump phenomenon.
4. If x^{5} term was absent then blow up could occur.

$$
\mu<1 / 4
$$

$$
1 / 4<\mu<0
$$

Cusp singularity

The pitchfork bifurcation is common in problems with reflection symmetry. Imperfections break this symmetry.

$$
\dot{x}=h+\mu x-x^{3}
$$

Co-dimension 2 rather than co-dimension 1.

Critical case: horizontal line is tangent to \min or \max of $f(x)=\mu x-x^{3}$. Local max/min at $x= \pm \sqrt{\mu / 3}$.

$$
h_{c}(\mu)=\frac{2 \mu}{3} \sqrt{\frac{\mu}{3}}
$$

At $h= \pm h_{c}(\mu)$ there is a saddle-node bifurcation. There are two bifurcation curves $\pm h_{c}(\mu)$.

Jump phenomenon and catastrophe theory.
Example 3. Budworm population dynamics:

$$
\dot{N}=R N\left(1-\frac{N}{K}\right)-\frac{B N^{2}}{A^{2}+N^{2}}, \quad A, B, R>0
$$

The budworm population $N(t)$ grows logistically (first term) in the absence of predators. The second term describes mortality due to predation (mainly by birds).

Non-dimensionalise: $x=N / A$.

$$
\frac{A}{B} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{R}{B} A x\left(1-\frac{A x}{K}\right)-\frac{x^{2}}{1+x^{2}} \equiv f(x)
$$

Introduce

$$
\tau=\frac{B t}{A}, \quad r=\frac{R A}{B}, \quad k=\frac{K}{A}
$$

so that

$$
\frac{\mathrm{d} x}{\mathrm{~d} \tau}=r x\left(1-\frac{x}{k}\right)-\frac{x^{2}}{1+x^{2}}
$$

Fixed point at

$$
\bar{x}=0, \quad r\left(1-\frac{\bar{x}}{k}\right)-\frac{\bar{x}}{1+\bar{x}^{2}}=0
$$

Linearisation:

$$
f^{\prime}(x)=r-\frac{2 r x}{k}-\frac{2 x}{\left(1+x^{2}\right)^{2}}
$$

so $f^{\prime}(0)=r>0$, so $\bar{x}=0$ is unstable. Other roots may be found graphically by finding the intercepts of $x /\left(1+x^{2}\right)$ and $r(1-x / k)$:

Hence there can be either 1 , 2 or 3 interceptions depending upon the choice of (k, r). For example when there are three fixed points $c>b>a>0$, then since $x=0$ is unstable a is stable, b unstable and c stable. We compute the details of the bifurcation in the following manner:
Saddle-node occurs when $r(1-x / k)$ intersects $x /\left(1+x^{2}\right)$ tangentially. Thus we require \bar{x} (given by $f(\bar{x})=0$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[r\left(1-\frac{x}{k}\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{x}{1+x^{2}}\right]
$$

or that

$$
\begin{equation*}
-\frac{r}{k}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}, \quad x=\bar{x} \tag{1}
\end{equation*}
$$

Substitution of r / k into the fixed point equation gives

$$
r=\frac{2 \bar{x}^{3}}{\left(1+\bar{x}^{2}\right)^{2}}
$$

Substitution into (1) gives

$$
k=\frac{2 \bar{x}^{3}}{\bar{x}^{2}-1}
$$

Since $k>0$, we require $x>1$. The bifurcation curve is defined by $(k(\bar{x}), r(\bar{x}))$ Challenge: plot the bifurcation curve ($r=r(k)$). In Matlab you could try
ezplot3('2*x.^3./(x.^2-1)', '2*x.^3./(1+x.^2)^2', '0', [1, 15]); view (0,90);
In Mathematica you could try
ParametricPlot[\{2 x x x / (x x -1), $2 \mathrm{xx} \mathrm{x} /(1+\mathrm{x} \mathrm{x}) \wedge 2\},\{\mathrm{x}, 1,40\}]$

Basic model of an oscillator:

$$
\dot{\theta}=f(\theta), \quad \theta \in[0,2 \pi)
$$

where $f(\theta)=f(\theta+2 \pi)$.

Uniform oscillator

$$
\dot{\theta}=\omega, \quad \theta=\theta_{0}+\omega t
$$

Period $T=2 \pi / \omega$.
Non-uniform oscillator

$$
\dot{\theta}=\omega-a \sin \theta
$$

Consider here $\omega>0, a \geq 0$ (similar results for negative ω and a).
$a<\omega$: Nonuniform flow which is fastest at $\theta=-\pi / 2$ and slowest at $\pi / 2$. When a is only slightly less than ω the system takes a long time to pass through the bottleneck at $\theta=\pi / 2$ after which it quickly traverses the rest of the circle.
$a>\omega$: There exists a stable-unstable pair of fixed points at $\sin ^{-1}[\omega / a]$ born via a saddle-node bifurcation. Oscillations do not exist.

Period:

$$
T=\int \mathrm{d} t=\int_{0}^{2 \pi} \frac{\mathrm{~d} t}{\mathrm{~d} \theta} \mathrm{~d} \theta=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{\omega-a \sin \theta}=\frac{2 \pi}{\sqrt{\omega^{2}-a^{2}}}
$$

[Hint: use the substitution $u=\tan \theta / 2$].

Close to $a=\omega$

$$
T=\frac{2 \pi}{\sqrt{\omega+a}} \frac{1}{\sqrt{\omega-a}} \approx \frac{\sqrt{2} \pi}{\sqrt{\omega}} \frac{1}{\sqrt{\omega-a}}
$$

so that we have a square root scaling law.

