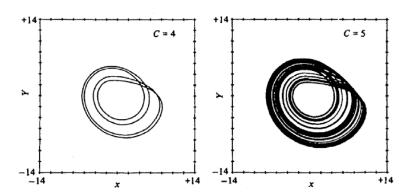
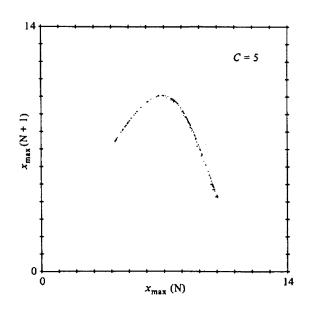
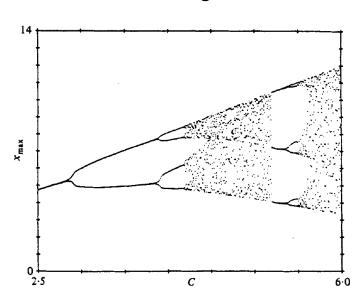
1D maps and continuous dynamics



Rossler system

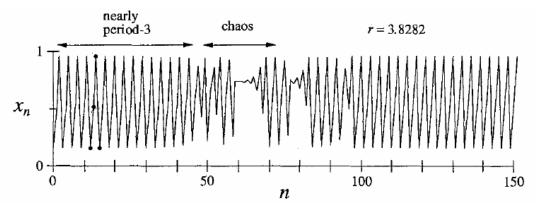
$$\dot{x} = -y - z$$

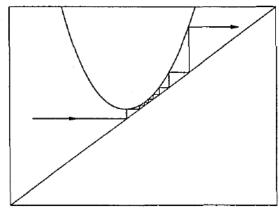

$$\dot{y} = x + ay$$


$$\dot{z} = b + z(x - c)$$

Local maxima (like in Lorenz map)

Orbit diagram

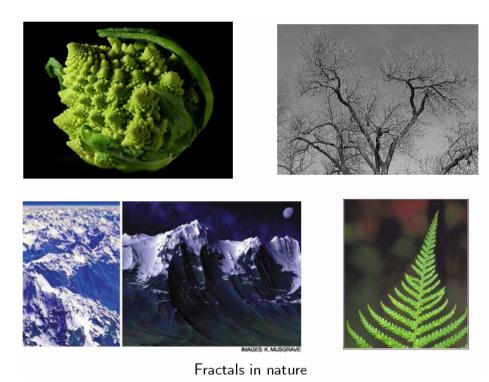

Routes to chaos

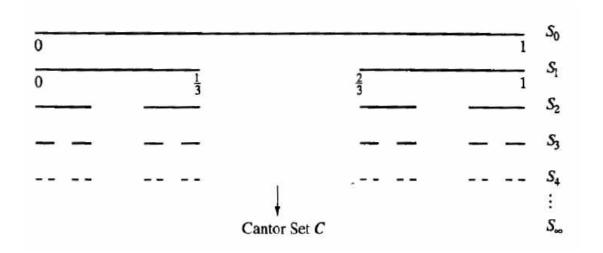

Period-doubling

$$\begin{array}{lll} r_1 = 3 & \text{period 2} \\ r_2 = 3.449... & 4 \\ r_3 = 3.54409... & 8 \\ r_4 = 3.5644... & 16 \\ r_5 = 3.568759... & 32 \\ & ... \\ r_{\infty} = 3.569946... & \infty \end{array}$$

$$\lim_{n\to\infty}\frac{r_n-r_{n-1}}{r_{n+1}-r_n}=\delta\approx 4.66920$$

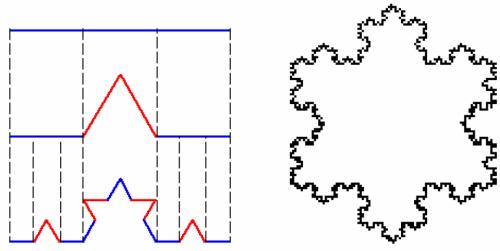
Intermittency




Nearly periodic motion interrupted by occasional irregular bursts

Fractals and fractal dimensions

A fractal is a complex geometric object with fine structure at arbitrarily small scales, perhaps with some degree of self-similarity



Cantor set

- 1. C has structure at arbitrarily small scales.
- 2. C is self-similar eg. the left half of S_2 is a scaled version of S_1 .
- 3. C has noninteger dimension ($\ln 2 / \ln 3 \approx 0.63$).

Koch curve

$$L_n = (4/3)^n L_0 \to \infty$$
 as $n \to \infty$

Similarity dimension (for self-similar fractals)

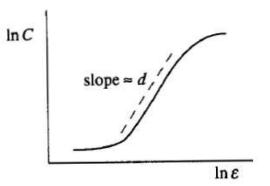
Suppose that a self-similar set is composed of m copies of itself scaled down by a factor of r

$$d = \frac{\ln m}{\ln r}$$

Box dimension

Let S be a subset of \mathbb{R}^D

let $N(\epsilon)$ be the minimum number of D-dimensional boxes of side ϵ needed to cover S


$$d_{\mathsf{box}} = \lim_{\epsilon o 0} rac{\mathsf{In} \; \mathsf{N}(\epsilon)}{\mathsf{In}(1/\epsilon)}$$

Correlation dimension

$$N_{\mathbf{x}}(\varepsilon) \propto \varepsilon^d$$

average $N_{\mathbf{x}}(\varepsilon)$ over many $\mathbf{x}-C(\varepsilon)\propto\varepsilon^{d}$

For Lorenz attractor (for fixed parameters) d = 2.05 ± 0.01

The fractal dimension is a statistical quantity that gives an indication of how completely a fractal appears to fill space