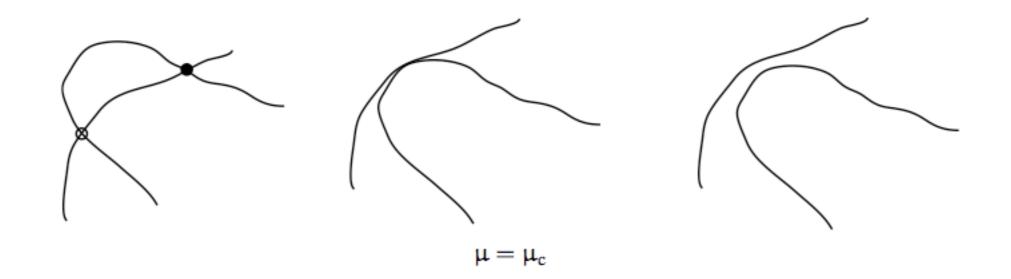
Local and Global bifurcations

Local bifurcation

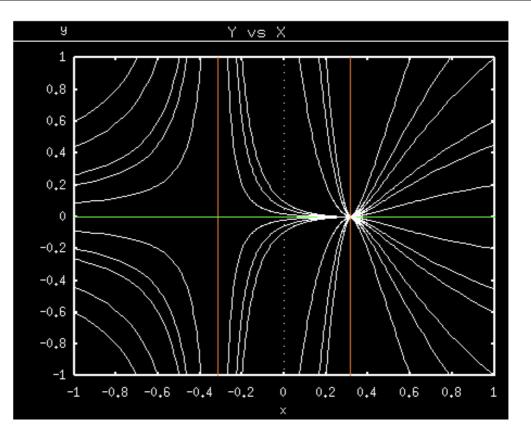
Saddle-node bifurcation

 $\dot{x} = f(x, y)$ $\dot{y} = g(x, y)$



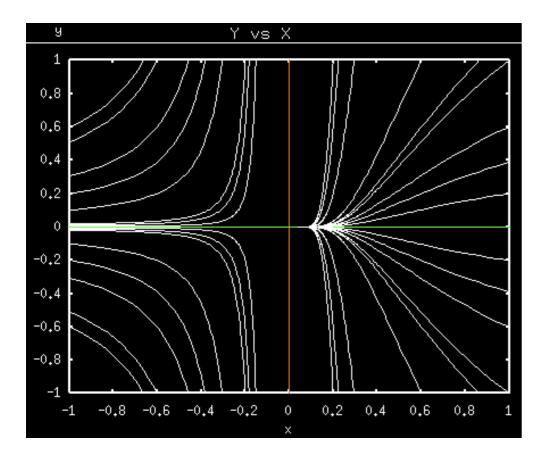
Saddle-node bifurcation

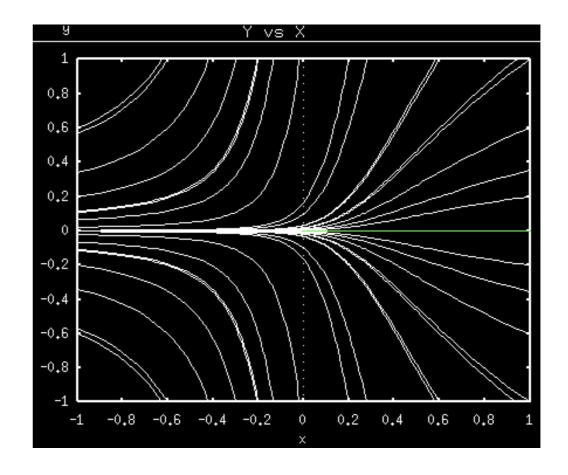
$$\dot{x} = \mu - x^2$$
$$\dot{y} = -y$$



 $\mu > 0$

$\mu = 0$

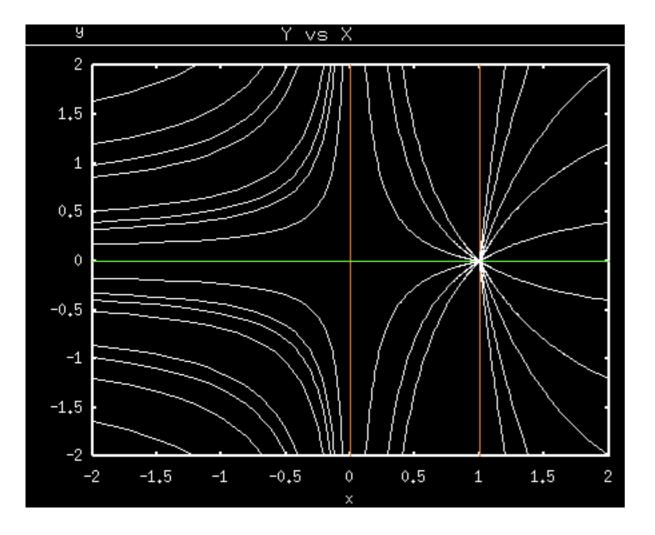


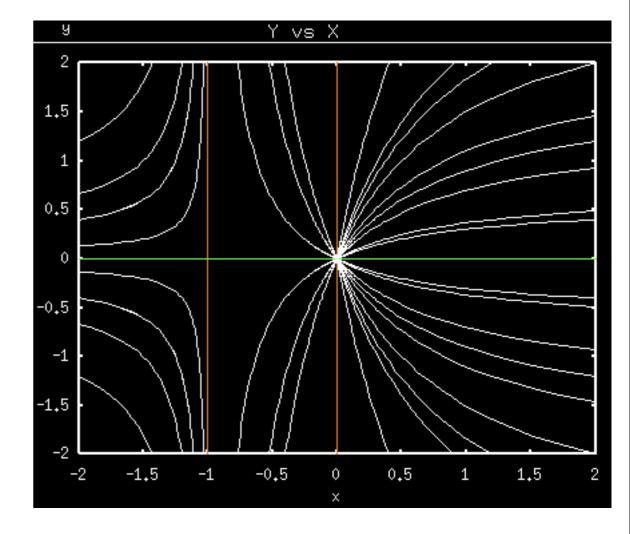


 $\mu < 0$

Transcritical bifurcation

$$\dot{x} = \mu x - x^2$$
$$\dot{y} = -y$$



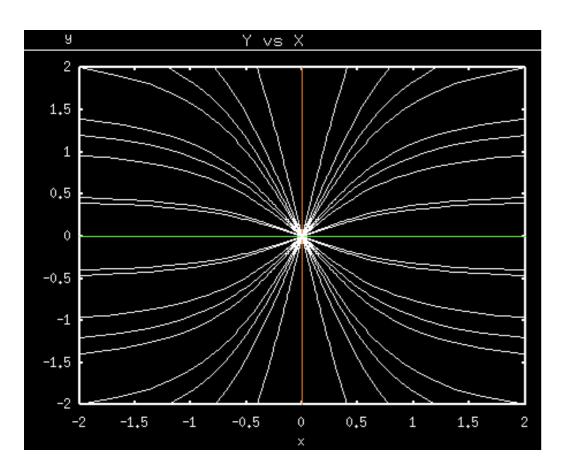


 $\mu < 0$

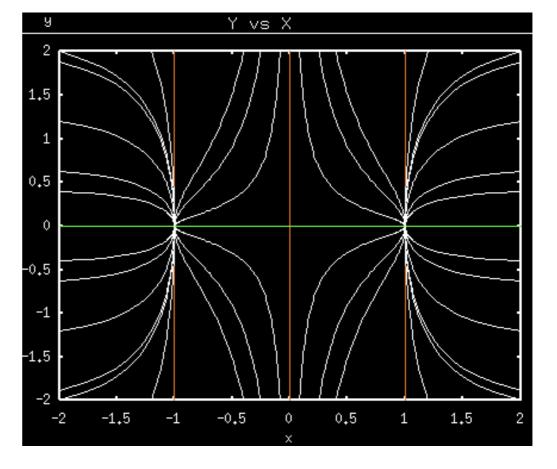
 $\mu > 0$

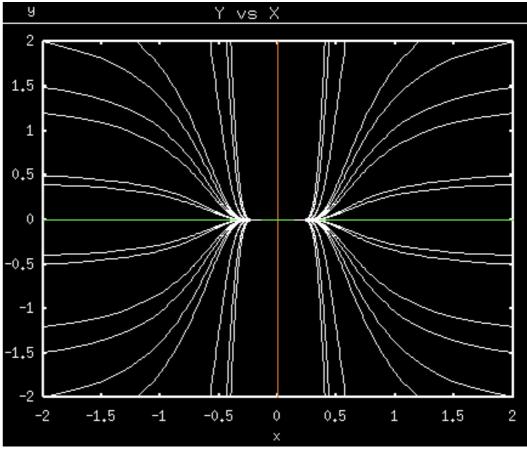
Supercritical pitchfork bifurcation

$$\dot{x} = \mu x - x^3$$
$$\dot{y} = -y$$



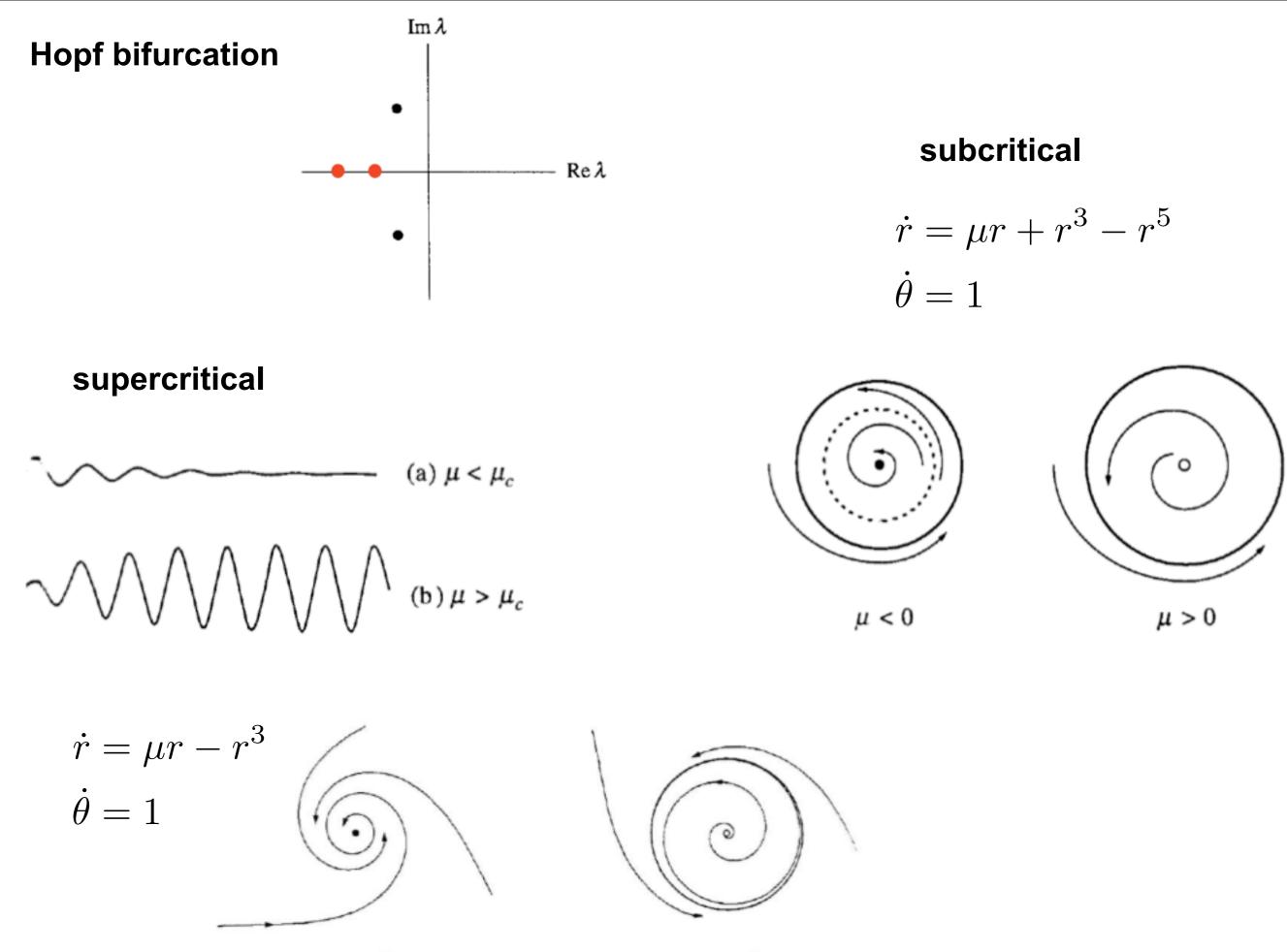
 $\mu < 0$





 $\mu = 0$

 $\mu > 0$



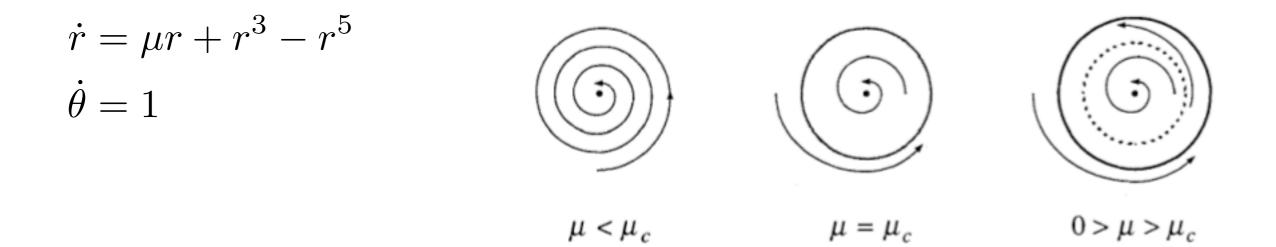
 $\mu < 0$

 $\mu > 0$

Global bifurcations

Saddle-node bifurcation of cycles

A bifurcation in which two limit cycles coalesce and annihilate



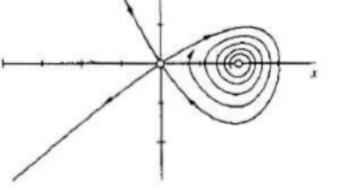
Homoclinic bifurcation

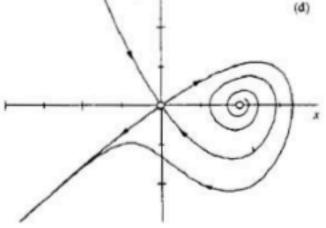
 $T \to \infty$

Part of a limit cycle moves closer and closer to a saddle point. At the bifurcation the cycle touches the saddle point and becomes a homoclinic orbit

(a)

 $\dot{x} = y$ $\dot{y} = \mu y + x - x^2 + xy$ (a) (b)





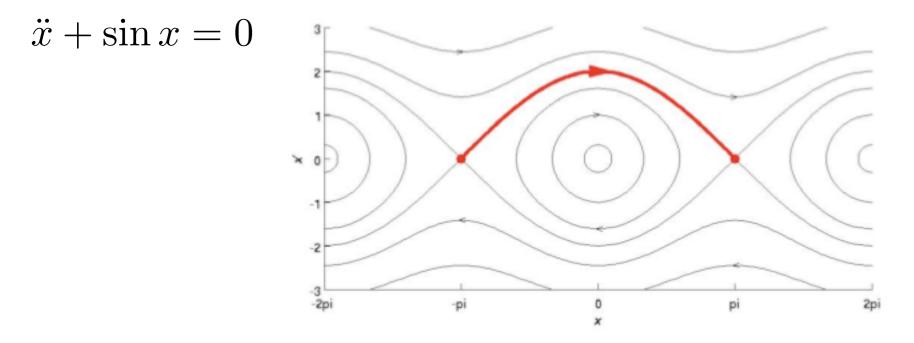
(b)

Heteroclinic bifurcation

A heteroclinic orbit (connection) is a path in phase-space which joins two different equilibrium points.

 $\dot{x} = f(x)$ Fixed points $x_0 \& x_1$

 $\phi(t)$ - a heteroclinic orbit from x_0 to x_1 if $\phi(t) \to x_0, \quad t \to -\infty$ $\phi(t) \to x_1, \quad t \to +\infty$



A heteroclinic bifurcation is a global bifurcation involving a heteroclinic cycle.

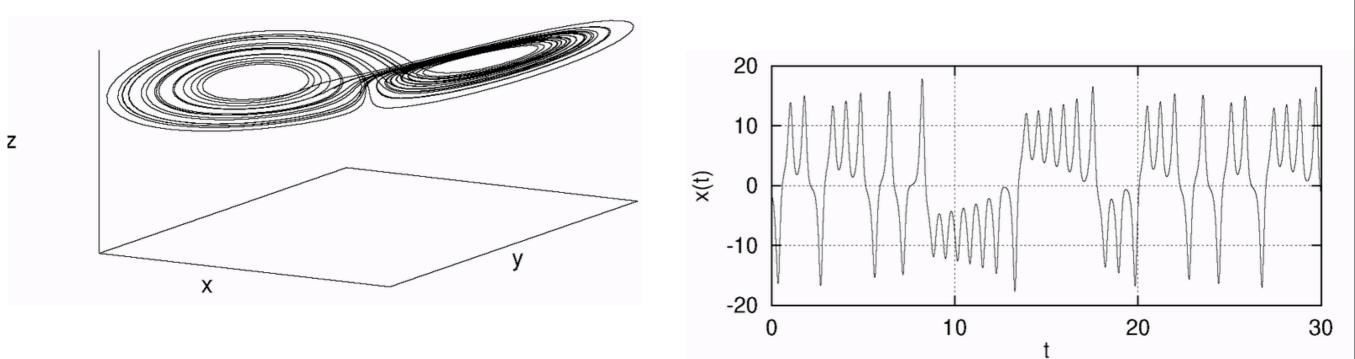
State-space reconstruction

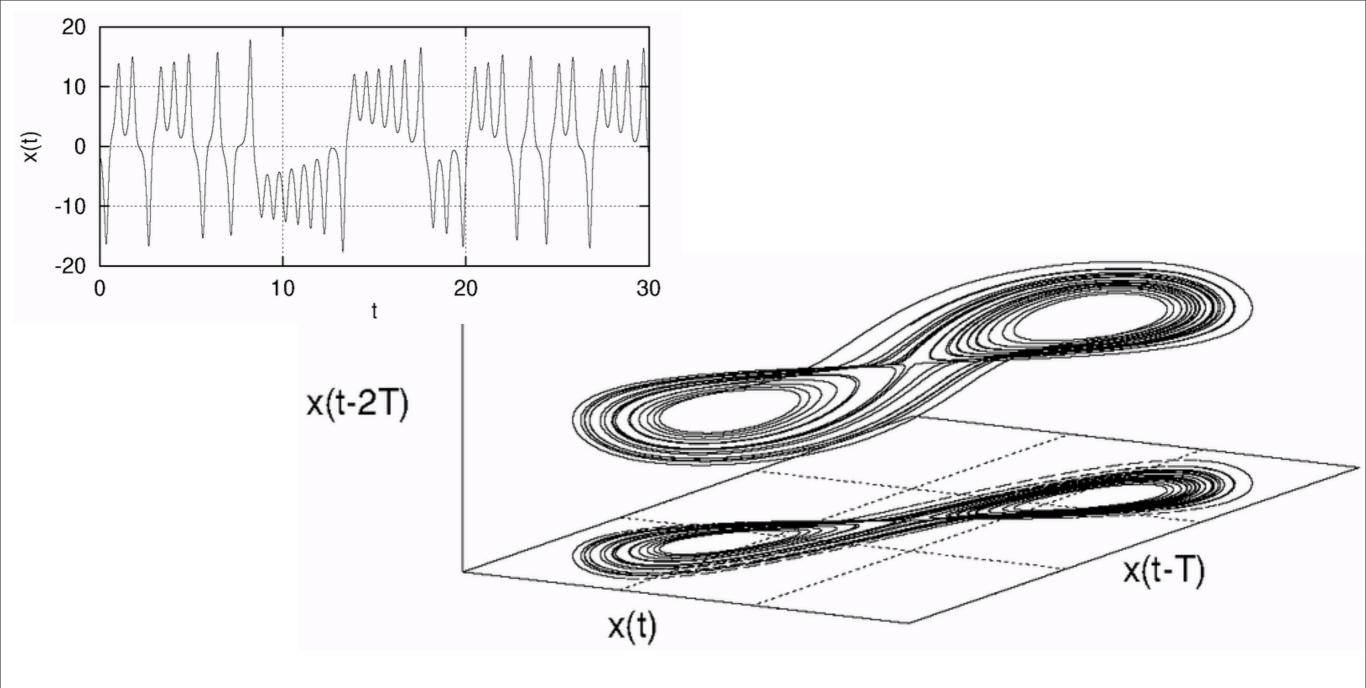
A data analysis technique known as attractor reconstruction (Embedding theorem, Takens 1981).

For system governed by an attractor, the dynamics of the full phase-space can be reconstructed from measurements of just a single time series

$$(B(t), B(t+\tau), B(t+2\tau), ..., B(t+(m-1)\tau))$$

m - dimensional state-space





au - arbitrary

reconstructed attractor

m - isn't arbitrary (difficulties!)

A number of methods have been proposed that try to estimate whether the image has been fully unfolded by a given *m*-dimensional map

More details: Alligood et al. Chaos