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2.2 Poincaré-Bendixson Theorem

It is generally difficult to establish the existence of a limit cycle. In 2-D one has the following
useful theorem:

Theorem: Suppose that there exists a bounded region D of phase-space such that any trajectory
entering D cannot leave D. If there are no fixed points in D then there exists at least one periodic
orbit in D.

Typically, D will be an annular region with an unstable focus or node in the hole in the middle
(so trajectories enter the inner boundary) and all trajectories cross the outer boundary inwards.

The standard trick to apply the Poincaré-Bendixson theorem is to construct a trapping region D,
i.e., a closed connected set such that the vector field points “inward” everywhere on the boundary
of D.

The Poincaré-Bendixson theorem tells us that the dynamics of planar systems is severely limited
— if a trajectory is confined to a closed, bounded region that contains no fixed points, then the
trajectory must eventually approach a closed orbit. There is no CHAOS for planar systems!

In higher-dimensional systems (in Rn, n ≥ 3) the Poincaré-Bendixson theorem no longer applies
and trajectories may wander around forever in a bounded region without settling down to a fixed
point or a closed orbit. In some cases, the trajectories are attracted to a complex geometric
object called a strange attractor.
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Example 1. In a fundamental biochemical process called glycolysis, living cells obtain energy by
breaking down sugar. In yeast cells, for example, glycolysis can proceed in an oscillatory fashion,
with concentrations of intermediate products varying periodically. A model of this process is
given by

ẋ = −x + ay + x2y ≡ f(x, y)

ẏ = b− ay − x2y ≡ g(x, y)

where x and y are concentrations of ADP (adenosine phosphate) and F(6)P (Fructose-6 phos-
phate) and a, b > 0 are kinetic parameters. Construct a trapping region for this system.

Solution: First find the nullclines (f(x, y) = 0 = g(x, y))

and then show that all trajectories are inwards in some region. To construct the bounding region
consider large x and y. Then ẋ ≈ x2y and ẏ ≈ −x2y, so dy/dx ≈ −1 along trajectories. Hence,
the vector field at large x is parallel to the diagonal, which suggests comparing the sizes of ẋ and
−ẏ. So, consider

ẋ− (−ẏ) = −x + ay + x2y + (b− ay − x2y) = b− x

Hence −ẏ > ẋ if x > b. This implies that the vector field points inward on the diagonal line (of
the above figure) because dy/dx is more negative than −1 and therefore the vectors are steeper
than the diagonal — we have a trapping region! We must now find under those conditions which
make the fixed point unstable (so as to repel orbits). Linearisation:

A =

[
−1 + 2xy a + x2

−2xy −(a + x2)

]
Fixed point

x = b, y =
b

a + b2

Determinant detA = a + b2 > 0 and

Tr A = −b
4 + (2a− 1)b2 + (a + a2)

a + b2
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Hence the fixed point is unstable for Tr A > 0 and stable for Tr A < 0. The border of stability
Tr A = 0 occurs when

b2 =
1
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Numerical integration shows that there is one stable limit cycle in the parameter regime which
guarantees an unstable fixed point.

2.3 Relaxation oscillators

Consider the van der Pol equation

ẍ + µ(x2 − 1)ẋ + x = 0

for the special case that µ� 1 (strongly nonlinear limit). Using

ẍ + µ(x2 − 1)ẋ =
d

dt

[
ẋ + µ(x3/3− x)

]
and introducing

F (x) =
x3

3
− x, w = ẋ + µF (x)

we may write
ẇ = ẍ + µẋ(x2 − 1) = −x

Hence, the van der Pol system has a planar representation:

ẋ = w − µF (x)

ẇ = −x

With the re-scaling y = w/µ we have

ẋ = µ[y − F (x)]

ẏ = − 1

µ
x
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Suppose that the initial condition is not too close to the cubic nullcline, i.e. y − F (x) ∼
O(1). Then |ẋ| ∼ O(µ) � 1 and |ẏ| ∼ O(1/µ) � 1; hence the velocity is large in the
horizontal direction and small in the vertical direction, so trajectories move horizontally. If the
initial condition is above the cubic nullcline then y − F (x) > 0 so ẋ > 0; the trajectory moves
sideways towards the right-hand branch of the nullcline. Once the trajectory gets so close that
y − F (x) ∼ O(1/µ2), then ẋ and ẏ become comparable (both being O(1/µ)). The trajectory
crosses the nullcline vertically (see the figure) and then moves slowly down the branch with a
velocity O(1/µ), until it reaches the knee and can jump sideways.

The system has two widely separated time scales. The jumps take a time O(1/µ) and the crawls
a time O(µ). The period of oscillation can be approximated by the time spent on the slow
branches:

T ≈
∫ tB

tA

dt +

∫ tD

tC

dt = 2

∫ tB

tA

dt by symmetry

On the slow branch y = F (x) so

ẏ ≈ dy

dx
ẋ = F ′(x)ẋ = (x2 − 1)ẋ

Using ẏ = −x/µ we have that ẋ = −x/[µ(x2 − 1)], so

dt ≈ −µ(x2 − 1)

x
dx

Now xA = 2 and xB = 1 (check this for yourselves) so

T ≈ 2

∫ 1

2

−µ
x

(x2 − 1)dx = µ[3− 2 ln 2]
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2.4 Coupled oscillators

Consider the model

θ̇1 = ω1 + K1 sin(θ2 − θ1)

θ̇2 = ω2 + K2 sin(θ1 − θ2)

In the uncoupled state (K1 = K2 = 0) we have θ1(t) = θ1(0) + ω1t and θ2(t) = θ2(0) + ω2t
such that dθ2/dθ1 = ω2/ω1. If the slope is rational, ω2/ω1 = p/q, p, q ∈ Z, then all trajectories
lie on closed orbits of the torus (with coords (θ1, θ2)).

3 : 2

For irrational slopes the flow is said to be quasiperiodic. Each trajectory is dense on the torus
(i.e. comes arbitrarily close to any given point).
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Introducing φ = θ1 − θ2 the coupled system takes the form

φ̇ = ω1 − ω2 − (K1 + K2) sinφ

There are two fixed points if |ω1 − ω2| < K1 + K2, defined by sinφ∗ = (ω1 − ω2)/(K1 + K2),
and a saddle-node (tangent) bifurcation occurs when |ω1 − ω2| = K1 + K2. In this case φ̇ = 0
so that θ̇1 = θ̇2 = constant = ω∗, where

ω∗ = ω2 + K2 sinφ∗ =
K1ω2 + K2ω1

K1 + K2

We may regard ω∗ as a co-operative frequency that is an emergent property of the coupled
system. When no-cooperative frequency can be established the two oscillators cannot phase-lock
(although they may still frequency lock).

2.5 Poincaré maps

Poincaré maps are useful for studying the flows near a periodic orbit. Consider an n-dimensional
system

ẋ = f(x).

Let S is an n− 1 dimensional surface of section. S is required to be transverse to the flow, i.e.
all trajectories starting on S flow through it (not parallel to it).
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The Poincaré map is a mapping from S to itself, obtained by following trajectories from one
intersection with S to the next. If xk ∈ S denotes the kth intersection, then the Poincaré map
is defined by

xk+1 = P (xk).

Suppose that x∗ is a fixed point of P , i.e. P (x∗) = x∗. Then a trajectory starting at x∗ returns
to x∗ after some time T , and is therefore a closed orbit for the original system ẋ = f(x).

Linear stability of limit cycle

Consider a system
ẋ = f(x), x ∈ Rn,

with a closed orbit. To ask whether the orbit is stable or not, we ask whether the corresponding
fixed point x∗ of the Poincaré map is stable. Consider x∗ + v0 in S, where v0 is a perturbation.
Then after the first return to S

x∗ + v1 = P (x∗ + v0) = P (x∗) + [DP (x∗)]v0 + small terms,

where DP (x∗) is an (n− 1)× (n− 1) matrix called the linearised Poincaré map at x∗. Since
x∗ = P (x∗), we have

v1 = DP (x∗)v0.

The stability criterion is expressed in terms of the eigenvalues λj of DP (x∗): The closed
orbit is linearly stable if and only if |λj| < 1 for all j = 1, ..., n− 1.

(From the expression vk =
∑n−1

j=1 cj(λj)
kej, where ej - eigenvectors and cj - some scalars).

λj are called the characteristic or Floquet multipliers of the periodic orbit. In general, the
characteristic multipliers can only be found by numerical integration.

Example.
ṙ = r(1− r2), θ̇ = 1

Let S be the positive x-axis. Compute the Poincaré map and show that the system has a unique
periodic orbit and determine its stability. Find the characteristic multipliers for the limit cycle.

Let r0 be the initial condition on S. Since θ̇ = 1, the first return to S occurs after a period
T = 2π. Then r1 = P (r0) where∫ r1

r0

dr

r(1− r2)
=

∫ 2π

0

dt = 2π

so

r1 =

[
1 + e−4π

(
1

r20
− 1

)]−1/2
Therefore

P (r) =

[
1 + e−4π

(
1

r2
− 1

)]−1/2
We can show graphically that P has a unique stable fixed point at r∗ = 1.
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dP (r)

dr
= e−4πr−3[1 + e−4π(r−2 − 1)]−3/2 ⇒

dP (r)

dr

∣∣∣∣
r∗=1

= e−4π − Floquet multiplier

|e−4π| < 1 ⇒ the closed orbit is linearly stable.
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