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1.2 Second (and higher) order systems

We shall consider equations of the form

ẋ = f(x), x ∈ R2, (x ∈ Rn)

Harmonic oscillator

According to classical theory a simple harmonic oscillator is a particle of mass m moving under
the action of a force F = −kx (Hooke’s law). Newton’s laws of motion take the form

mẍ = −kx or ẍ + ω2x = 0, where ω =

√
k

m

The general solution to this differential equation is of the form

x(t) = A cosωt + B sinωt

which represents an oscillatory motion of angular frequency ω. The constants of integration A
and B are determined by the initial conditions for x and ẋ, where

ẋ(t) = −Aω sinωt + Bω cosωt

so that x(0) = A and ẋ(0) = Bω. An easy way to imagine the geometry of simple harmonic
motion is to write the equations of motion as a second-order (linear!) system. Introduce v = ẋ,
then

ẋ = v

v̇ = −ω2x

There is a fixed point at (x, v) = (0, 0). Combining the above we have

dv

dx
= −ω2x

v
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After integrating this separable ODE we have

v2 + ω2x2 = constant

as before (trajectories in phase space are elliptical).

Reminder - matrix and vector manipulation

The matrix A multiplying the vector x acts as a linear operator that produces a new vector z:

z = Ax =

(
a11 a12

a21 a22

)(
x1

x2

)
=

(
a11x1 + a12x2

a21x1 + a22x2

)
.

• Identity matrix

I =

(
1 0
0 1

)
• Addition

A + B =

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
, x + y =

(
x1 + y1

x2 + y2

)
• Multiplication

cA =

(
ca11 ca12

ca21 ca22

)
, c = constant

• Differentiation

dx/dt =

(
dx1/dt
dx2/dt

)
• The trace and determinant of the matrix A

tr(A) = a11 + a22

det(A) = a11a22 − a21a12

• Singularity: the matrix A is singular if det(A) = 0

Example 1. Consider the system

ẋ = Ax, A =

(
a 0
0 −1

)
.
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Matrix multiplication yields

ẋ = ax,

ẏ = −y.

Since these two equations are uncoupled they can be solved separately

x(t) = x0eat,

y(t) = y0e−t.

• Stable nodes: i) a < −1 and ii) −1 < a < 0

• Star: a = −1

• Saddle point: a > 0
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The y-axis is called the stable manifold of the saddle point x∗: the set of initial conditions
x0 such that x(t)→ x∗ as t→∞. The x-axis is called the unstable manifold of the saddle
point x∗: the set of initial conditions x0 such that x(t)→ x∗ as t→ −∞.

• Line of fixed points: a = 0

1.3 Linear systems in R2

ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2

Introducing the vector x = (x1, x2)T we have

ẋ = Ax, A =

[
a b
c d

]
Try a solution of the form

x = eλtv

This leads to the linear homogeneous equation

Av = λv.

v is an eigenvector of A with corresponding eigenvalue λ. For the system above to have a
non-trivial solution we require that

det(A− λI) = 0

which is called the characteristic equation. Here I is the 2× 2 identity matrix. Substituting the
components of A into the characteristic equation gives

λ2 − (a + d)λ + (ad− bc) = 0

or
λ2 − Tr A λ + detA = 0

so that

λ± =
1

2

[
Tr A±

√
(Tr A)2 − 4 detA

]
The general solution for x(t):

x(t) = c1eλ1tv1 + c2eλ2tv2.
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Exercise. Solve the initial value problem

ẋ = x + y, ẏ = 4x− 2y, (x0, y0) = (2,−3)

If λ1,2 are complex ( λ1,2 = α ± iω), the fixed point is either a centre or a spiral. Since x(t)
involves linear combinations of eα±iω, x(t) is a combination of terms involving eαt cos(ωt) and
eαt sin(ωt) (by Euler’s formula eiωt = cos(ωt) + i sin(ωt)).

• If α < 0 ⇒ stable focus (or stable spiral)

• If α > 0 ⇒ unstable focus (or unstable spiral)

• If α = 0 ⇒ a centre (periodic solution with period T = 2π/ω), marginally stable.

Classification of fixed points

We classify the different types of behaviour according to the values of Tr A and detA.

• λ± are real if (Tr A)2 > 4 detA.

• Real eigenvalues have the same sign if detA > 0 and are positive if Tr A > 0 (negative if
Tr A < 0) — stable and unstable nodes.

• Real eigenvalues have opposite signs if detA < 0 — saddle node.

• Eigenvalues are complex if (Tr A)2 < 4 detA — focus.

stable node
unstable node

unstable 

focusstable 

focus

saddle saddle

1.4 Linear systems in Rn

Consider the (autonomous) differential equation

dx

dt
≡ ẋ = Ax, x ∈ Rn
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where A is an n× n constant matrix. Given the initial condition x(0) = x0, the solution is

x(t) = etAx0, etA =
∞∑
k=0

tk

k!
Ak (1)

Check this: use
d

dt
etA =

∞∑
k=1

tk−1

(k − 1)!
Ak = AetA

Thus
dx(t)

dt
=

d

dt
etAx0 = AetAx0 = Ax(t)

The solution (1) also allows one to solve inhomogeneous equation

ẋ = Ax + g(t)

Multiplying both sides by e−tA gives

d

dt

[
e−tAx(t)

]
= e−tAg(t)

Integrating wrt. t then gives

e−tAx(t)− x0 =

∫ t

0

e−t
′Ag(t′)dt′

or

x(t) = etAx0 + etA
∫ t

0

e−t
′Ag(t′)dt′

Normal forms

After classifying the fixed points (node, saddle or focus) can we determine what the flow looks
like?

Consider linear change of variables x = Py, where P is an n× n invertible matrix (detP 6= 0).
Then if ẋ = Ax

ẏ = P−1ẋ = P−1Ax = P−1APy

Choosing P such that Λ = P−1AP is a diagonal matrix we have that

ẏ = Λy

If x(0) = x0 then y(0) = P−1x0.

In the new coordinates solution is
y(t) = etΛy0

Transforming back to original coordinates

x(t) = Py(t) = P etΛy0 = P etΛP−1x0

Comparing equations (1) and (2) implies that

etA = P etΛP−1 (2)

Strategy: choose matrix P such that Λ takes a form which allows us to calculate etΛ and hence
etA. The matrix Λ is then called a Normal Form whose particular structure depends on the
eigenvalues of A.
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Real distinct eigenvalues

Suppose that A has n distinct eigenvalues λ1, . . . , λn with corresponding eigenvectors ei so that

Aei = λiei

Let P = [e1, ..., en] be the matrix with the eigenvectors of A as columns. Since the eigenvectors
are real and linearly-independent, detP 6= 0. Thus

AP = [Ae1, ..., Aen] = [λ1e1, ..., λnen] = [e1, ..., en]diag(λ1, ..., λn) = Pdiag(λ1, ..., λn)

Hence for real, distinct eigenvalues Λ = diag(λ1, ..., λn). It follows that

etA = Pdiag(eλ1t, ..., eλnt)P−1

Example 2. A =

(
−2 1
0 2

)
.

Characteristic equation det(A− λI2) = 0⇒ (λ + 2)(λ− 2) = 0.

λ1 = −2, e1 =

(
1
0

)
, λ2 = 2, e2 =

(
1
4

)

P =

(
1 1
0 4

)
, P−1 =

1

4

(
4 −1
0 1

)
and

etA = P

(
e−2t 0

0 e2t

)
P−1 =

(
e−2t 1

4
(e2t − e−2t)

0 e2t

)

Pair of complex eigenvalues

Consider a 2 × 2 matrix with a pair of complex eigenvalues ρ ± iω. The associated complex
eigenvector is q such that

Aq = (ρ + iω)q, q ∈ C2

Let q = u + iv where u, v ∈ R2 and equate real and imaginary parts:

Au = ρu− ωv
Av = ωu + ρv

or

A[v, u] = [v, u]

(
ρ −ω
ω ρ

)
Hence, set

P = [v, u] = [Im(q),Re(q)], Λ =

(
ρ −ω
ω ρ

)
to see that

AP = PΛ, or Λ = P−1AP

Having obtained the normal form, we need to solve the equation

ẋ = ρx− ωy, ẏ = ωx + ρy, x, y ∈ R
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Let z = x + iy. Then
ż = ẋ + iẏ = (ρ + iω)z (3)

Introduce polar coordinates z = reiθ (x = r cos θ, y = r sin θ). Then an equivalent form for ż is

ż = ṙeiθ + irθ̇eiθ (4)

Comparing equations (3) and (4) we deduce that

ṙ + irθ̇ = (ρ + iω)r

which, on equating real and imaginary parts yields

ṙ = ρr, θ̇ = ω

Hence, we obtain the solution

r(t) = eρtr0, θ(t) = ωt + θ0

After writing x(t) = r(t) cos(ωt + θ0) and y(t) = r(t) sin(ωt + θ) with x0 = r0 cos θ0 and
y0 = r0 sin θ0, it follows that(

x(t)
y(t)

)
= eρt

(
cosωt − sinωt
sinωt cosωt

)(
x0

y0

)
Stability dependent upon Re(ρ± iω) = ρ.

Example 3. A =

(
2 1
−2 0

)
.

Characteristic equation det(A− λI2) = 0⇒ (λ− 2)λ + 2 = 0.

λ = 1 + i, q =

(
1

−1 + i

)
, Im(q) =

(
0
1

)
, Re(q) =

(
1
−1

)

P =

(
0 1
1 −1

)
, P−1 =

(
1 1
1 0

)
and

etA = etP

(
cos t − sin t
sin t cos t

)
P−1 = et

(
cos t + sin t sin t
−2 sin t cos t− sin t

)
Degenerate eigenvalues

Suppose that A has p distinct eigenvalues λ1, ..., λp, p ≤ n. Then

det(A− λIn) =

p∏
k=1

(λ− λk)nk

where nk ≥ 1 and
∑p

k=1 nk = n. If all the eigenvectors are distinct then p = n and nk = 1 for
all k. If p < n then at least one nk > 1 and the characteristic polynomial has repeated roots.
Number nk called the multiplicity of λk.

Consider 2-D case. Recall Cayley-Hamilton theorem: the matrix A satisfies its own characteristic
equation. Therefore, (A− λI2)2x = 0 for all x ∈ R2. There are then two possibilities:

1. (A− λI2)x = 0 for all x ∈ R2 ⇒ Λ =

(
λ 0
0 λ

)
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2. (A− λI2)e2 6= 0 for some vector e2 6= 0. Define e1 = (A− λI2)e2. Then (A− λI2)e1 = 0
so that

Ae1 = λe1, Ae2 = e1 + λe2 ⇒ A[e1, e2] = [e1, e2]

(
λ 1
0 λ

)
Hence, we may set

P = [e1, e2], Λ =

(
λ 1
0 λ

)
Solution of normal form equation (solve as an inhomogeneous system)

ẋ = λx + y, ẏ = λy

is
x(t) = eλt(x0 + ty0), y(t) = eλty0

Phase portrait. That is determine direction of trajectories at various points in phase-space to
build up phase-portrait. Here

dy

dx
=

y

λx + y

-2

-1

0

1

2

-2 -1 0 1 2λ = 1

Solving linear systems

• Real eigenvalue λ ⇒ Ceλt

• Real eigenvalue λ of multiplicity r ⇒ C1eλt + C2te
λt + · · ·+ Crt

r−1eλt

• Pair of complex eigenvalues λ = ρ± iω ⇒ eρt(B cosωt + C sinωt)

• Pair of complex eigenvalues λ = ρ± iω, each with multiplicity r ⇒
eρt(B1 cosωt + C1 sinωt + B2t cosωt + C2t sinωt + · · ·+ Brt

r−1 cosωt + Crt
r−1 sinωt)
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