Complexity Science Doctoral Training Centre
 CO903 Complexity and Chaos in Dynamical Systems

1.2 Second (and higher) order systems

We shall consider equations of the form

$$
\dot{x}=f(x), \quad x \in \mathbb{R}^{2}, \quad\left(x \in \mathbb{R}^{n}\right)
$$

Harmonic oscillator

According to classical theory a simple harmonic oscillator is a particle of mass m moving under the action of a force $F=-k x$ (Hooke's law). Newton's laws of motion take the form

$$
m \ddot{x}=-k x \quad \text { or } \quad \ddot{x}+\omega^{2} x=0, \quad \text { where } \omega=\sqrt{\frac{k}{m}}
$$

The general solution to this differential equation is of the form

$$
x(t)=A \cos \omega t+B \sin \omega t
$$

which represents an oscillatory motion of angular frequency ω. The constants of integration A and B are determined by the initial conditions for x and \dot{x}, where

$$
\dot{x}(t)=-A \omega \sin \omega t+B \omega \cos \omega t
$$

so that $x(0)=A$ and $\dot{x}(0)=B \omega$. An easy way to imagine the geometry of simple harmonic motion is to write the equations of motion as a second-order (linear!) system. Introduce $v=\dot{x}$, then

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =-\omega^{2} x
\end{aligned}
$$

There is a fixed point at $(x, v)=(0,0)$. Combining the above we have

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=-\omega^{2} \frac{x}{v}
$$

After integrating this separable ODE we have

$$
v^{2}+\omega^{2} x^{2}=\text { constant }
$$

as before (trajectories in phase space are elliptical).

Reminder - matrix and vector manipulation

The matrix \boldsymbol{A} multiplying the vector \boldsymbol{x} acts as a linear operator that produces a new vector \boldsymbol{z} :

$$
\boldsymbol{z}=\boldsymbol{A} \boldsymbol{x}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{a_{11} x_{1}+a_{12} x_{2}}{a_{21} x_{1}+a_{22} x_{2}} .
$$

- Identity matrix

$$
\boldsymbol{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Addition

$$
\boldsymbol{A}+\boldsymbol{B}=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right), \quad \boldsymbol{x}+\boldsymbol{y}=\binom{x_{1}+y_{1}}{x_{2}+y_{2}}
$$

- Multiplication

$$
c A=\left(\begin{array}{ll}
c a_{11} & c a_{12} \\
c a_{21} & c a_{22}
\end{array}\right), \quad c=\mathrm{constant}
$$

- Differentiation

$$
\mathrm{d} \boldsymbol{x} / \mathrm{dt}=\binom{\mathrm{dx}_{1} / \mathrm{dt}}{\mathrm{dx}_{2} / \mathrm{dt}}
$$

- The trace and determinant of the matrix \boldsymbol{A}

$$
\begin{aligned}
\operatorname{tr}(\boldsymbol{A}) & =a_{11}+a_{22} \\
\operatorname{det}(\boldsymbol{A}) & =a_{11} a_{22}-a_{21} a_{12}
\end{aligned}
$$

- Singularity: the matrix \boldsymbol{A} is singular if $\operatorname{det}(\boldsymbol{A})=0$

Example 1. Consider the system

$$
\dot{x}=A x, \quad A=\left(\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right) .
$$

Matrix multiplication yields

$$
\begin{aligned}
& \dot{x}=a x, \\
& \dot{y}=-y .
\end{aligned}
$$

Since these two equations are uncoupled they can be solved separately

$$
\begin{aligned}
& x(t)=x_{0} \mathrm{e}^{a t} \\
& y(t)=y_{0} \mathrm{e}^{-t}
\end{aligned}
$$

- Stable nodes: i) $a<-1$ and ii) $-1<a<0$

- Star: $a=-1$

- Saddle point: $a>0$

The y-axis is called the stable manifold of the saddle point x^{*} : the set of initial conditions x_{0} such that $x(t) \rightarrow x^{*}$ as $t \rightarrow \infty$. The x-axis is called the unstable manifold of the saddle point x^{*} : the set of initial conditions x_{0} such that $x(t) \rightarrow x^{*}$ as $t \rightarrow-\infty$.

- Line of fixed points: $a=0$

1.3 Linear systems in \mathbb{R}^{2}

$$
\begin{aligned}
& \dot{x}_{1}=a x_{1}+b x_{2} \\
& \dot{x}_{2}=c x_{1}+d x_{2}
\end{aligned}
$$

Introducing the vector $x=\left(x_{1}, x_{2}\right)^{T}$ we have

$$
\dot{x}=A x, \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Try a solution of the form

$$
x=\mathrm{e}^{\lambda t} v
$$

This leads to the linear homogeneous equation

$$
A v=\lambda v .
$$

v is an eigenvector of A with corresponding eigenvalue λ. For the system above to have a non-trivial solution we require that

$$
\operatorname{det}(A-\lambda I)=0
$$

which is called the characteristic equation. Here I is the 2×2 identity matrix. Substituting the components of A into the characteristic equation gives

$$
\lambda^{2}-(a+d) \lambda+(a d-b c)=0
$$

or

$$
\lambda^{2}-\operatorname{Tr} A \lambda+\operatorname{det} A=0
$$

so that

$$
\lambda_{ \pm}=\frac{1}{2}\left[\operatorname{Tr} A \pm \sqrt{(\operatorname{Tr} A)^{2}-4 \operatorname{det} A}\right]
$$

The general solution for $\mathrm{x}(\mathrm{t})$:

$$
x(t)=c_{1} \mathrm{e}^{\lambda_{1} t} v_{1}+c_{2} \mathrm{e}^{\lambda_{2} t} v_{2} .
$$

Exercise. Solve the initial value problem

$$
\dot{x}=x+y, \quad \dot{y}=4 x-2 y, \quad\left(x_{0}, y_{0}\right)=(2,-3)
$$

If $\lambda_{1,2}$ are complex ($\left.\lambda_{1,2}=\alpha \pm i \omega\right)$, the fixed point is either a centre or a spiral. Since $x(t)$ involves linear combinations of $\mathrm{e}^{\alpha \pm i \omega}, x(t)$ is a combination of terms involving $\mathrm{e}^{\alpha t} \cos (\omega t)$ and $\mathrm{e}^{\alpha t} \sin (\omega t)$ (by Euler's formula $\mathrm{e}^{i \omega t}=\cos (\omega t)+i \sin (\omega t)$).

- If $\alpha<0 \Rightarrow$ stable focus (or stable spiral)
- If $\alpha>0 \Rightarrow$ unstable focus (or unstable spiral)
- If $\alpha=0 \Rightarrow$ a centre (periodic solution with period $T=2 \pi / \omega$), marginally stable.

Classification of fixed points

We classify the different types of behaviour according to the values of $\operatorname{Tr} A$ and $\operatorname{det} A$.

- $\lambda_{ \pm}$are real if $(\operatorname{Tr} A)^{2}>4 \operatorname{det} A$.
- Real eigenvalues have the same sign if $\operatorname{det} A>0$ and are positive if $\operatorname{Tr} A>0$ (negative if $\operatorname{Tr} A<0)$ - stable and unstable nodes.
- Real eigenvalues have opposite signs if $\operatorname{det} A<0$ - saddle node.
- Eigenvalues are complex if $(\operatorname{Tr} A)^{2}<4 \operatorname{det} A$ - focus.

1.4 Linear systems in \mathbb{R}^{n}

Consider the (autonomous) differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t} \equiv \dot{x}=A x, \quad x \in \mathbb{R}^{n}
$$

where A is an $n \times n$ constant matrix. Given the initial condition $x(0)=x_{0}$, the solution is

$$
\begin{equation*}
x(t)=\mathrm{e}^{t A} x_{0}, \quad \mathrm{e}^{t A}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k} \tag{1}
\end{equation*}
$$

Check this: use

$$
\frac{d}{d t} \mathrm{e}^{t A}=\sum_{k=1}^{\infty} \frac{t^{k-1}}{(k-1)!} A^{k}=A \mathrm{e}^{t A}
$$

Thus

$$
\frac{d x(t)}{d t}=\frac{d}{d t} \mathrm{e}^{t A} x_{0}=A \mathrm{e}^{t A} x_{0}=A x(t)
$$

The solution (1) also allows one to solve inhomogeneous equation

$$
\dot{x}=A x+g(t)
$$

Multiplying both sides by $\mathrm{e}^{-t A}$ gives

$$
\frac{d}{d t}\left[\mathrm{e}^{-t A} x(t)\right]=\mathrm{e}^{-t A} g(t)
$$

Integrating wrt. t then gives

$$
\mathrm{e}^{-t A} x(t)-x_{0}=\int_{0}^{t} \mathrm{e}^{-t^{\prime} A} g\left(t^{\prime}\right) d t^{\prime}
$$

or

$$
x(t)=\mathrm{e}^{t A} x_{0}+\mathrm{e}^{t A} \int_{0}^{t} \mathrm{e}^{-t^{\prime} A} g\left(t^{\prime}\right) d t^{\prime}
$$

Normal forms

After classifying the fixed points (node, saddle or focus) can we determine what the flow looks like?
Consider linear change of variables $x=P y$, where P is an $n \times n$ invertible matrix $(\operatorname{det} P \neq 0)$. Then if $\dot{x}=A x$

$$
\dot{y}=P^{-1} \dot{x}=P^{-1} A x=P^{-1} A P y
$$

Choosing P such that $\Lambda=P^{-1} A P$ is a diagonal matrix we have that

$$
\dot{y}=\Lambda y
$$

If $x(0)=x_{0}$ then $y(0)=P^{-1} x_{0}$.
In the new coordinates solution is

$$
y(t)=\mathrm{e}^{t \wedge} y_{0}
$$

Transforming back to original coordinates

$$
x(t)=P y(t)=P \mathrm{e}^{t \wedge} y_{0}=P \mathrm{e}^{t \wedge} P^{-1} x_{0}
$$

Comparing equations (11) and (2) implies that

$$
\begin{equation*}
\mathrm{e}^{t A}=P \mathrm{e}^{t \Lambda} P^{-1} \tag{2}
\end{equation*}
$$

Strategy: choose matrix P such that Λ takes a form which allows us to calculate $\mathrm{e}^{t \Lambda}$ and hence $\mathrm{e}^{t A}$. The matrix Λ is then called a Normal Form whose particular structure depends on the eigenvalues of A.

Real distinct eigenvalues

Suppose that A has n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with corresponding eigenvectors e_{i} so that

$$
A e_{i}=\lambda_{i} e_{i}
$$

Let $P=\left[e_{1}, \ldots, e_{n}\right]$ be the matrix with the eigenvectors of A as columns. Since the eigenvectors are real and linearly-independent, $\operatorname{det} P \neq 0$. Thus

$$
A P=\left[A e_{1}, \ldots, A e_{n}\right]=\left[\lambda_{1} e_{1}, \ldots, \lambda_{n} e_{n}\right]=\left[e_{1}, \ldots, e_{n}\right] \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=P \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Hence for real, distinct eigenvalues $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. It follows that

$$
\mathrm{e}^{t A}=P \operatorname{diag}\left(\mathrm{e}^{\lambda_{1} t}, \ldots, \mathrm{e}^{\lambda_{n} t}\right) P^{-1}
$$

Example 2. $A=\left(\begin{array}{cc}-2 & 1 \\ 0 & 2\end{array}\right)$.
Characteristic equation $\operatorname{det}\left(A-\lambda I_{2}\right)=0 \Rightarrow(\lambda+2)(\lambda-2)=0$.

$$
\begin{gathered}
\lambda_{1}=-2, \quad e_{1}=\binom{1}{0}, \quad \lambda_{2}=2, \quad e_{2}=\binom{1}{4} \\
P=\left(\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right), \quad P^{-1}=\frac{1}{4}\left(\begin{array}{cc}
4 & -1 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

and

$$
\mathrm{e}^{t A}=P\left(\begin{array}{cc}
\mathrm{e}^{-2 t} & 0 \\
0 & \mathrm{e}^{2 t}
\end{array}\right) P^{-1}=\left(\begin{array}{cc}
\mathrm{e}^{-2 t} & \frac{1}{4}\left(\mathrm{e}^{2 t}-\mathrm{e}^{-2 t}\right) \\
0 & \mathrm{e}^{2 t}
\end{array}\right)
$$

Pair of complex eigenvalues

Consider a 2×2 matrix with a pair of complex eigenvalues $\rho \pm i \omega$. The associated complex eigenvector is q such that

$$
A q=(\rho+i \omega) q, \quad q \in \mathbb{C}^{2}
$$

Let $q=u+i v$ where $u, v \in \mathbb{R}^{2}$ and equate real and imaginary parts:

$$
\begin{aligned}
& A u=\rho u-\omega v \\
& A v=\omega u+\rho v
\end{aligned}
$$

or

$$
A[v, u]=[v, u]\left(\begin{array}{cc}
\rho & -\omega \\
\omega & \rho
\end{array}\right)
$$

Hence, set

$$
P=[v, u]=[\operatorname{lm}(q), \operatorname{Re}(q)], \quad \Lambda=\left(\begin{array}{cc}
\rho & -\omega \\
\omega & \rho
\end{array}\right)
$$

to see that

$$
A P=P \Lambda, \quad \text { or } \Lambda=P^{-1} A P
$$

Having obtained the normal form, we need to solve the equation

$$
\dot{x}=\rho x-\omega y, \quad \dot{y}=\omega x+\rho y, \quad x, y \in \mathbb{R}
$$

Let $z=x+i y$. Then

$$
\begin{equation*}
\dot{z}=\dot{x}+i \dot{y}=(\rho+i \omega) z \tag{3}
\end{equation*}
$$

Introduce polar coordinates $z=r \mathrm{e}^{i \theta}(x=r \cos \theta, y=r \sin \theta)$. Then an equivalent form for \dot{z} is

$$
\begin{equation*}
\dot{z}=\dot{r} \mathrm{e}^{i \theta}+i r \dot{\theta} \mathrm{e}^{i \theta} \tag{4}
\end{equation*}
$$

Comparing equations (3) and (4) we deduce that

$$
\dot{r}+i r \dot{\theta}=(\rho+i \omega) r
$$

which, on equating real and imaginary parts yields

$$
\dot{r}=\rho r, \quad \dot{\theta}=\omega
$$

Hence, we obtain the solution

$$
r(t)=\mathrm{e}^{\rho t} r_{0}, \quad \theta(t)=\omega t+\theta_{0}
$$

After writing $x(t)=r(t) \cos \left(\omega t+\theta_{0}\right)$ and $y(t)=r(t) \sin (\omega t+\theta)$ with $x_{0}=r_{0} \cos \theta_{0}$ and $y_{0}=r_{0} \sin \theta_{0}$, it follows that

$$
\binom{x(t)}{y(t)}=\mathrm{e}^{\rho t}\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{array}\right)\binom{x_{0}}{y_{0}}
$$

Stability dependent upon $\operatorname{Re}(\rho \pm i \omega)=\rho$.
Example 3. $A=\left(\begin{array}{cc}2 & 1 \\ -2 & 0\end{array}\right)$.
Characteristic equation $\operatorname{det}\left(A-\lambda I_{2}\right)=0 \Rightarrow(\lambda-2) \lambda+2=0$.

$$
\begin{gathered}
\lambda=1+i, \quad q=\binom{1}{-1+i}, \quad \operatorname{Im}(q)=\binom{0}{1}, \quad \operatorname{Re}(q)=\binom{1}{-1} \\
P=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right), \quad P^{-1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

and

$$
\mathrm{e}^{t A}=\mathrm{e}^{t} P\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) P^{-1}=\mathrm{e}^{t}\left(\begin{array}{cc}
\cos t+\sin t & \sin t \\
-2 \sin t & \cos t-\sin t
\end{array}\right)
$$

Degenerate eigenvalues

Suppose that A has p distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}, p \leq n$. Then

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=\prod_{k=1}^{p}\left(\lambda-\lambda_{k}\right)^{n_{k}}
$$

where $n_{k} \geq 1$ and $\sum_{k=1}^{p} n_{k}=n$. If all the eigenvectors are distinct then $p=n$ and $n_{k}=1$ for all k. If $p<n$ then at least one $n_{k}>1$ and the characteristic polynomial has repeated roots. Number n_{k} called the multiplicity of λ_{k}.
Consider 2-D case. Recall Cayley-Hamilton theorem: the matrix A satisfies its own characteristic equation. Therefore, $\left(A-\lambda I_{2}\right)^{2} x=0$ for all $x \in \mathbb{R}^{2}$. There are then two possibilities:

1. $\left(A-\lambda I_{2}\right) x=0$ for all $x \in \mathbb{R}^{2} \Rightarrow \Lambda=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$
2. $\left(A-\lambda I_{2}\right) e_{2} \neq 0$ for some vector $e_{2} \neq 0$. Define $e_{1}=\left(A-\lambda I_{2}\right) e_{2}$. Then $\left(A-\lambda I_{2}\right) e_{1}=0$ so that

$$
A e_{1}=\lambda e_{1}, \quad A e_{2}=e_{1}+\lambda e_{2} \Rightarrow A\left[e_{1}, e_{2}\right]=\left[e_{1}, e_{2}\right]\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Hence, we may set

$$
P=\left[e_{1}, e_{2}\right], \quad \Lambda=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Solution of normal form equation (solve as an inhomogeneous system)

$$
\dot{x}=\lambda x+y, \quad \dot{y}=\lambda y
$$

is

$$
x(t)=\mathrm{e}^{\lambda t}\left(x_{0}+t y_{0}\right), \quad y(t)=\mathrm{e}^{\lambda t} y_{0}
$$

Phase portrait. That is determine direction of trajectories at various points in phase-space to build up phase-portrait. Here

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{\lambda x+y}
$$

Solving linear systems

- Real eigenvalue $\lambda \quad \Rightarrow \quad C \mathrm{e}^{\lambda t}$
- Real eigenvalue λ of multiplicity $r \quad \Rightarrow \quad C_{1} \mathrm{e}^{\lambda t}+C_{2} t \mathrm{e}^{\lambda t}+\cdots+C_{r} t^{r-1} \mathrm{e}^{\lambda t}$
- Pair of complex eigenvalues $\lambda=\rho \pm i \omega \quad \Rightarrow \quad \mathrm{e}^{\rho t}(B \cos \omega t+C \sin \omega t)$
- Pair of complex eigenvalues $\lambda=\rho \pm i \omega$, each with multiplicity $r \quad \Rightarrow$ $\mathrm{e}^{\rho t}\left(B_{1} \cos \omega t+C_{1} \sin \omega t+B_{2} t \cos \omega t+C_{2} t \sin \omega t+\cdots+B_{r} t^{r-1} \cos \omega t+C_{r} t^{r-1} \sin \omega t\right)$

