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1.5 Nonlinear systems in R2 (in Rn)

We shall consider equations of the form

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2).

This system can be wirtten in vector notation

ẋ = f(x),

where x(x1, x2), f(x) = (f1(x), f2(x)). x represents a point in the phase plane, and ẋ is the
velocity vector at that point.

Existence and uniqueness theorem (in Rn): Suppose ẋ = f(x) and f : Rn → Rn is
continuously differentiable (i.e. ∂fi/∂xj, i, j = 1, ..., n exist and are continuous for all x). Then
there exits t1 > 0 and t2 > 0 such that the solution with x(t0) = x0 exists and is unique for all
t ∈ (t0 − t1, t0 + t2).

Phase-space and flows. Refer to local solution through x0 as a solution curve or trajectory.
Suppose that ẋ = f(x), x ∈ Rn, f : Rn → Rn. We define a flow φ(x, t) such that φ(x, t) is the
solution of the ODE at time t with initial value x0 at t = 0. The solution x(t) with x(0) = x0 is
now written as φ(x0, t)

dφ(x, t)

dt
= f(φ(x, t)), φ(x, 0) = x0

By varying initial condition x0 we generate a family of trajectories called the flow generated by
Φ.

WRONG!

Note that uniqueness imples that trajectories cannot cross.

An equilibrium or fixed point satisfies Φ(x, t) = x for all t. Thus f(x) = 0. An important
feature of nonlinearities is that there can exist more than one (isolated) fixed point.
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Stability

A fixed point x0 is an attracting fixed point if all trajectories that start near x0 approach it as
t→∞. If x0 attracts all trajectories it is called globally attracting.

A fixed point x0 is Lyapunov (neutrally) stable if for all ε > 0 there exists δ > 0 such that
|x(0)− x0| < δ implies that |x(t)− x0| < ε for all t > 0.

In other words, if a solution starts near an equilibrium x0 then it stays near x0 (for example
harmonic oscillator).

A fixed point is asymptotically stable if it is Lyapunov stable and there exists δ > 0 such that
if |x(0)− x0| < δ then |x(t)− x0| → 0 as t→∞.

Linearisation

Consider the system

ẋ = f(x, y),

ẏ = g(x, y)

and suppose that (x∗, y∗) is a fixed point. Considering a small disturbance from the fixed point

u = x− x∗, v = y − y∗

we have (by Taylor series expansion)

u̇ = ẋ = f(u + x∗, v + y∗) = f(x∗, y∗) +
∂f

∂x

∣∣∣∣
(x∗,y∗)

· u +
∂f

∂y

∣∣∣∣
(x∗,y∗)

· v + O(u2, v2, uv).
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This leads to

u̇ =
∂f

∂x

∣∣∣∣
(x∗,y∗)

· u +
∂f

∂y

∣∣∣∣
(x∗,y∗)

· v + O(u2, v2, uv)

and similarly

v̇ =
∂g

∂x

∣∣∣∣
(x∗,y∗)

· u +
∂g

∂y

∣∣∣∣
(x∗,y∗)

· v + O(u2, v2, uv).

Hence (
u̇
v̇

)
= A

(
u
v

)
− the linearised system

with

A =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x∗,y∗)

− the Jacobian matrix

Theorem (linear stability): Suppose that ẋ = f(x) has an equilibrium at x∗ and the linearisa-
tion ẋ = Ax. If A has no zero or purely imaginary eigenvalues then the local stability of the fixed
point (which is called hyperbolic in this case) is determined by the linear system. In particular,
if all eigenvalues have a negative real part Re (λi) < 0 for all i = 1, . . . , n then the fixed point
is asymptotically stable.

Hartman-Grobman theorem: The local phase-portrait near a hyperbolic fixed point is topo-
logically equivalent to the phase-portrait of the linearisation.

Structural stability A phase portrait is structurally stable if its topology cannot be changed
by an arbitrarily small perturbation to the vector field, i.e. a system is structurally stable if it is
topologically equivalent to any ε-perturbation

ẋ = f(x) + εp(x)

where ε� 1 and p is smooth enough. For example, the phase portrait of a saddle is structurally
stable, but that of a centre is not: an arbitrarily small amount of damping converts the center to
a spiral.

Exercise. Consider the system

ẋ = −y + ax(x2 + y2)

ẏ = x + ay(x2 + y2),

where a is a parameter. Show that the linearised system incorrectly predicts that the origin is a
centre for all values a. (Hint: rewite the system in polar coordinates x = r cos θ, y = r sin θ)

Example 1. To illustrate some of the principles covered let us do a phase-plane analysis of the
Lotka-Volterra model of population dynamics of two competing species. Assume i) each species
grows in the absence of the other with logistic growth (ẋ = x(1− x)) and ii) when both species
are present they compete for food such that one may go hungry. A particular model of rabbits
(r) and sheep (s):

ṙ = r(3− r − 2s) ≡ f(r, s)

ṡ = s(2− r − s) ≡ g(r, s)
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Fixed points defined by ṙ = ṡ = 0. One finds (r, s) = (0, 0), (0, 2), (3, 0), (1, 1). To classify them
we compute

A =

[
∂f
∂r

∂f
∂s

∂g
∂r

∂g
∂s

]
=

[
3− 2r − 2s −2r
−s 2− r − 2s

]
1. (r, s) = (0, 0)

A =

[
3 0
0 2

]
The eigenvalues are both positive so (0, 0) is an unstable node. Trajectories leave the origin
parallel to the eigenvector for λ = 2, i.e. tangential to (0, 1).

2. (r, s) = (0, 2)

A =

[
−1 0
−2 −2

]
, Λ =

[
−1 0
0 −2

]
Hence (0, 2) is a stable node. Slow eigendirection is (1,−2).

3. (r, s) = (3, 0)

A =

[
−3 −6
0 −1

]
, Λ =

[
−3 0
0 −1

]
Hence (3, 0) is a stable node. Slow eigendirection is (3,−1).

4. (r, s) = (1, 1)

A =

[
−1 −2
1 −1

]
, Λ =

[
−1 +

√
2 0

0 −1−
√

2

]
Hence, (1, 1) is a saddle

1

2

3

1 2 3

stable

manifold

stable

manifold

unstable

manifold

unstable

manifold

basin for (3,0)

basin boundary is

stable manifold

of saddle

The above example nicely illustrates the notion of a basin of attraction. Given an attracting
fixed point x we define its basin of attraction to be the set of initial conditions x0 such that
x(t) → x as t → ∞. For instance the basin of attraction for the node at (3, 0) consists of all
points lying below the stable manifold of the saddle. Because the stable manifold separates the
basins of two nodes, it is called the basin boundary.
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1.6 Lyapunov function

Lyapunov theorem: Suppose that x∗ is a fixed point for the differential equation ẋ = f(x),
x ∈ Rn. Then x∗ is Lyapunov stable if there exists a (continuously differentiable) function L(x)
(called a Lyapunov function) with the following properties in some neighbourhood of x∗:

1. L(x) and its partial derivatives are continuous

2. L(x) > 0 for all x 6= x∗ and L(x∗) = 0

3. L̇ ≤ 0 for all x 6= x∗

Note that L̇ is determined by the chain-rule

L̇ =
∑
i

∂L

∂xi
ẋi =

∑
i

∂L

∂xi
f(xi)

Example 2. Show that L(x, y) = x2 + 4y2 is a Lyapunov function for

ẋ = −x + 4y, ẏ = −x− y3

The fixed point is at (0, 0).

1. L(x, y) is continuously differentiable.

2. L(x, y) > 0, L(0, 0) = 0.

3.

L̇ =
∂L

∂x
ẋ +

∂L

∂y
ẏ = −2x2 − 8y4 < 0

⇒ L(x, y) - Lyapunov function

Heuristic picture: sufficiently close to the fixed point, L forms a bowl and L decreases along
trajectories.

Main difficulty of this method for checking stability is finding an appropriate Lyapunov function.
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