
CO907 Quantifying uncertainty and correlation in complex systems 

Problem sheet 2 

2.1 

(a) M=3 (cubic curve) 

{3.92 -8.15 2.72 1.45}   

 

(b) Using cross validation we can prove that M=4 is the best value of M. 

 

(c) First, using cross – validation, trying M from 1 to 100, choose parameter M to fit the data. 



1. FTSE data 

 

Algorithm suggests using M = 50, but as we can see from the plot above, the difference between 

mean errors is negligible from M=15 and the biggest ‘jump’ mean error does from M=1 to M=5. 

 

 

 

 

 

 

 

 

Using common sense, it seems that to fit the data polynomial of 3
rd

 degree is sufficient. 



 

Then, detrend the data: 

 

To check stationarity of the detrended data, plot autocorrelation function truncating the data: 

 



We can see, that autocorrelation functions don’t really match, so this process doesn’t look 

stationary. 

3. Temperature anomaly data 

 

Algorithm suggests using M = 20, but we see that after M=9 mean error stops decaying rapidly. 

 

 

 

 

 

 

 

 



Then detrend the data: 

 

 

To check stationarity of the detrended data, plot autocorrelation functions truncating the 

detrended data: 

 

 

This process seems stationary from the plot we’ve got.  



2.2 

(a) 1 1 2 2t t t tX c X X       , where 2~ (0, )t N   and 1 2, ,c    are real-valued parameters. Left 

plot represent sample, right plot shows autocorrelation function 

Process 1. 2

0 1 1 20, 0, 3 / 2, 3 / 4, 1/ 4X X c           

  

Process 2. 2

0 1 1 20, 0, 1/ 2, 1/ 3, 1/ 4X X c          

  

(b) 1 1 2 2t t t tX c X X        

Consider now writing an equation for each observation: 

2 1 1 2 0 2

3 1 2 2 1 3

1 1 2 2

...

n n n n

X c X X

X c X X

X c X X

  

  

   

   

   

   

 



2 1 0 2

1

1 2 2

1

. . . . .

1n n n n

X X X c

X X X





  

       
       

 
       
              

 

Design matrix: 
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Vector of parameters f , vector of error terms ξ : 
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We have to minimize sum of squared residuals: 
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(c)  

a) Numerical implementation of formal solution gives the following parameters in average from 

100 realizations of the process (1): 1 2  0.0001,  1.4962, 0.7499c      ; variance 2 0.5345  . 

Numerical implementation of formal solution gives the following parameters in average from 

100 realizations of the process (2): 1 2  0.0002,  0.4991, 0.3207c     ; variance 2 0.1531  . 

 

This fit is very good, because obtained parameters are very close to those, used for generating the 

data in both process (1) and process (2). 

 

 (d)   

1. FTSE 

Trying to fir AR(2) model to FTSE data, we obtain following parameters: 

1 2  0.182,  1.059, 0.06c      ; variance 2 429.127   

In order to check goodness of fit we generate a sample using parameters from above 1000 times 

and each time calculate coefficient of determination, then plot coefficients for each try. 

 

From this we can conclude that  FTSE data cannot be fitted correctly with AR(2).  

  



2.3 

(a) cos(2 ) (cos cos2 sin sin 2 )X A t A t tt t t               

        ( cos )cos(2 ) ( sin )sin(2 ) cos(2 ) sin(2 )
1 2

A t A t B t B tt t               

 (b) Using Curve Fitting Toolbox in MATLAB:   

Coefficients (with 95% confidence bounds): 

B1 = -0.63  (-1.07, -0.19) 

        B2 = -2.155  (-2.59, -1.72) 
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   (c)   Goodness of fit: 

          Residual Sum of Squares: 
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. A value closer to 0 indicates that 

the model has a smaller random error component, and that the fit will be more useful for 

prediction.  
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R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a 

greater proportion of variance is accounted for by the model. For example, an R-square 

value of 0.0907 means that the fit explains 9.07% of the total variation in the data about 

the average. 



          Adjusted coefficient of determination: 2 1
1 0.0898
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          fitted coefficients. The adjusted R-square statistic can take on any value less than or equal 

to 1, with a value closer to 1 indicating a better fit. 

 

          Root Mean Squared Error: 5.009
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As we can see linear regression provided not a ‘good fit’, because of high level of noise. 

 


