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2.1 Curve Fitting and Model Selection 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equation for the cubic curve fitted to curvefittingdata2013.dat is: 

    ( )                  
         

The unbiased variance of the data points about the cubic curve is         . 

(b) 

 

 

 

 

 

 

 

The above graphs were calculated numerically using cross validation. The data set of 100 points was 

randomly divided into two sets of 50 points, the polynomial was fitted to the first set of 50 points, 
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then the square distance error was calculated using the remaining 50 points. This process was 

repeated 8000 times for each order of the polynomial. Upon close inspection the error is minimised 

when a 4th order polynomial is fitted parametised by 5 coefficients, M=5. This results is consistent 

having run the algorithm multiple times. 

(c) 

FTSE Data 

Applying the cross validation to the ftse dataset of 3128 data points suggests that the least square 

error is minimised by a polynomial of order between 30 and 65. However square error can be greatly 

reduced and the long term rise of the data can be captured using a polynomial of order 4 or 5 or an 

exponential curve. Here I shall present the two polynomial curves and cases for choosing either one. 

 

 

 

In the above graphs, cross validation was performed splitting the data in half, training and testing 

4000 times for each polynomial order. Error is largely reduced by order 5, and reduced further by 

order 17 and we see that the polynomial order is apparently minimized at 53 using this technique.  

The data set is financial data over 12 years, in reality the boom-bust economic cycle is typically 5 to 

10 years, government elections and new economic policy decisions are every few years, annual 

seasonal effects, weekly scandals, and other effects perturb the ftse value giving the data set 

unpredictable structure on many length scales. 

One may fit a polynomial of arbitrarily increasing order and approximate closer and closer the 

features of smaller scales, ever reducing error. The effects of local features may be studied however 

the polynomial will quickly go to infinity outside of the interval of the data set, extrapolation is not 

possible. A lower order polynomial will ignore the short scale structure and may provide reasonable 

results beyond the scope of the data. 
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Inspecting the above graphs, like the error, the adjusted coefficient of determination reaches a high 

level by order 5, then 17 and at order 27 it is no longer consistently monotonically increasing, the 

length scale is of the order of numerical errors. 

Below are plots of the ftse data with 4th order and 53rd order polynomials and the resulting 

detrended data. 

We see that the 53rd order polynomial has captured more of the local structure. The standard  

deviation of the 4th order detrended data is 178.4, and for the 53rd order  97.3. The higher order 
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polynomial captures more local structure, however I think higher order polynomials would be 

hypothetically more accurate and in this case numerical errors, ill-conditioned matrices, limit the 

fitting of a higher order polynomial, I do not think the minute differences in the square error curve 

are particularly accurate beyond 17th order. Comparing the stationarity of the 5th  and 53rd order 

detrended data, the 5th has more temporary highs and lows on longer time scales and a wider 

variance than the 53rd which has had more of those features removed. 

 

Temperature Anomoly Data 

 

The best fit polynomial is 20th order however the error largely reduced by a 9th order polynomial as is 

also shown by the determination coefficient. 

 

 

For linearly detrended data the standard devation is 16.5, for the 9th order detrended data it is lower 

at 13.6 and 20th order it is largely unchanged at 13.3. The stationarity of the detrended data is like 

that of an independent and identically distributed Gaussian random variable, the QQ plot below 

shows that the quantiles of the linearly detrended temperature data  match those of the normal 

distribution, this relationship is true for the 9th and 20th order detrended data too but this is not true 

for the original data with the trend. 
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Although this is time series data not random variables, the detrending is intended to remove the 

time dependence, and the above graphs illustrate this change and the resulting data is Gaussian.  
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2. Autoregressive Models 

(a) 
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(b) 

Assuming the first two values are fixed, we may use the remaining data to set up a regression 

problem for the parameters of the AR(2) time series,        . We can find these parameters by 

mminising the square error bewteen the data and the AR(2) sequence without noise: 

  
 

 
∑(                  )

 

 

   

 

If the first two terms of the sequence are known then they will not conrtribute to the error and the 

sum will start from    . To minimise the error simply differwentiate with rtespect to the 

parameters and set to zero: 
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       ⟩       ⟩    ⟩ 

Where   ⟩ is the vector of data points,   ⟩ is the vector of parameters, and   is the design matrix 

with elements given by the basis functions of each parameter evaluated at the time step, the basis 

function of the first parameter is simply a constant, so we set is to 1, the basis function of the second 

parameter is the previous data point, the the basis function of the final parameters is the 2nd 

previous data point. 
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     {
 
    
    

       
       
       

  

where i runs from 2 to N, and   {     } . The equation for the gradient of the least square error is 

simply a set of simultaneous linear equations that may be rearranged to find the parameters: 

       ⟩       ⟩    ⟩ 

     ⟩     ⟩ 

  ⟩  (   )      ⟩ 

(   )     is known as the Moore-Penrose Pseudo Inverse matrix. 

 

(c)  

Implementing the above calculation on the generated datasets provided estimates for the 

parameters: 

For the first dataset:   (
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For the second dataset:   (
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Errors in these parameters were calculated using two techniques, firstly the parameters were 

calculated using 200 consecutive points within the data set, ranging from 1-200 up to 301-500. The 

above errors are two times standard error of the 300 calculated sets multiplied by a factor of 

√    √   . This is clearly a rough calculation and shows that the order of magnitude of the 

uncertainty is less than the value, except in the case of the constant which was originally zero. Hence 

the parameter values are within the uncertainty of the original values used in the generation of the 

sequence. 

Secondly the ARIMA and ‘estimate’ functions were used in Matlab which gave the following almost 

identical results:  

For the first dataset:   (
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The errors calculated by the ‘estimate’ function are smaller, and suggest that the parameter values 

are a good approximation. 

(d) 

The ftse data was detrended using a 4th order polynomial. This data set is does not have values for 

weekends, 2 of 7 days a week, so I have assumed that the Friday and Monday values are 

consecutive. 

Applying the design matrix calculation produced the following parameters: 

(

 ̂
 ̂ 
 ̂ 
 ̂ 

)  (

           
           
            
        

) 

Where  ̂  was simply calculated by taking the variance of the differences between each data point 

and the would-be AR(2) generated term without noise, errors are from the Matlab estimate 

function, which produced almost identical values for the parameters. The detrended ftse values are 

typically between -200 and 200,  ̂         , and  ̂    , however  ̂        , suggesting 

the sequence is driven by noise and only the previous term in regions within -200, 200, like a random 

walk, AR(1) or Markov process and so I do not think AR(2) is a particularly good model for ftse data. 

The autocorrelation of the ftse data, quickly drops to zero for short time lags, suggesting it is 

stationary however there appears not to be other structure on longer time scales which would 

require an AR(q) process with a greater lag, q>>2. 
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3. Extracting a Signal from Noise 

(a)            (      )     

Using the following identity 

   (   )     ( )    ( )     ( )     ( ) 

where          , we get: 
 

       ( )   (    )      ( )    (   )     

        (    )       (   )     

where        ( )         ( ) . 

(b) 

Two methods were used to calculate the coefficients   and  , firstly using the Moore-Penrose 

Pseudo inverse matrix to find    and   , and secondly using the matlab curve fitting tool to find   

and   directly. 

Method 1: Using the following Matlab code: 

%timevals and datavals are vectors of the source data 

  
%vectors of base functions, cos and sin, with omega=1/50 
phi1 = cos(timevals*2*pi/50); 
phi2 = sin(timevals*2*pi/50); 

  
%the design matrix 
PHI=[phi1, phi2]; 

  
%pseudoinverse matrix 
MPPinverse=(PHI'*PHI)^-1*PHI'; 

  
B=MPPinverse*datavals 

 

Gave the output  B = -0.6301, -2.1550. 

Therefore:         ( )               ( )         

   ( )  
      

       
               

  
      

    (       )
         

Method 2: Curve fitting tool 

Given the data and the function          ( 
  

  
  ) the curve fitting tool returned: 

        ,                
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(c) 

 

 

The mean of the data points is -0.15, near the centre and the standard devatiation of the sample is 

5.25, qqplots of the y values of the data, with and without the wave, show that the noise is Gaussian. 

The amplitude of the wave is 2.24, less than 1/2 of a standard deviation of the data suggesting this 

fit is implausible. However, calculating the amplitude for other frequencies, taking the discrete 

Fourier transform, shows that 1/50 = 0.02 has the highest amplitude, which is maximum at 0.428 

standard deviations of the data. 

 

 


