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The k-Means Problem (k-Means)

Measuring the quality of a clustering:

Assign one center ci to each cluster Xi

Cluster potential: Φ(Xi ) :=
∑

x∈Xi

‖x − ci‖2

Clustering potential: Φ(X ) :=
∑
i

Φ(Xi )

Objective: Find clustering (X1, . . . ,Xk) and centers
c1, . . . , ck with minimal potential Φ(X )
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The Challenge

k-means is NP-hard,

even in the plane and

even for k = 2

=⇒ Approximation algorithms, heuristics
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Lloyd’s Algorithm (k-Means Method, k-Means)

Observations:

The optimal centers ci for given clusters Xi are their centers
of mass

The optimal clusters Xi for given centers ci are the points
nearest to ci
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Advantages And Disadvantages

Practitioners Theoreticians
Advantages

Simple to implement

Fast in practice

Disadvantages

Exponential worst-case time

Requires good initialization
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Tackling The Disadvantages

Polynomial time in the framework of smoothed analysis

Approximation guarantee with k-means++ seeding technique
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k-Means++ Seeding

Centers chosen from the input set step-by-step

1 Choose the first center uniformly at random

2 Choose point x ∈ X with probability D2(x)
Φ(X ) as next center

(
D2(x) = min

ci

‖x − ci‖2

)
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Asymptotic Bounds

Theorem (Arthur and Vassilvitskii, 2007)

The expected approximation ratio of k-means++ is O(log k).

Observation

There is a family of instances on which the expected approximation
ratio of k-means++ is Ω(log k).
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Open Question

Does k-means++ yield an O(1)-approximation with
constant probability?
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Optimal Clustering C ∗

Φ∗(X ) ≈ k · k · 1
2 = k2

2
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Discrete Clustering With s Covered Sets Xi

Φ(X ) = Φ(Xc) + Φ(Xu) ≈ s · k · 1 + (k − s) · k ·∆2
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Discrete Clustering With s Covered Sets Xi

Covering probability: Φ(Xu)
Φ(X ) ≈

1
1+ s

(k−s)·∆2
=: ps
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How Many Sets To Cover?

In the end:

r ≥ Φ(X )
Φ∗(X ) ≥

Φ(Xu)
Φ∗(X ) ≈ 2∆2 ·

(
1− s

k

)
(r - approximation factor)

=⇒ s & k ·
(
1− r

2∆2

)
=: s∗
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Expected Number Of Steps X

E [X ] =
s∗−1∑
s=0

1
ps

& k + k
∆2 ·

(
ln ∆2

r −
r
2

)

=⇒ Choose ∆2 = r · exp
(

1+ε
2 r
)

=⇒ E [X ] & k + ε
2 ·

k
exp( 1+ε

2
r)

If r ∈ o(log k), then Pr [X ≤ k] is exponentially small in k

(Hoeffding Inequality + workaround)
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Open Questions

1 Do k-means++ and k-means together yield an
O(1)-approximation with constant probability?

2 Can we slightly modify k-means++ to guarantee better
bounds?
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