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A Short Introduction
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A Short Introduction

The k-Means Problem (k-Means)

Measuring the quality of a clustering:

@ Assign one center ¢; to each cluster X;

o Cluster potential: ®(X;) := Y ||x — ¢i?
x€X;

o Clustering potential: ®(X) := > ®(X;)

Objective:  Find clustering (Xi,...,Xx) and centers
c1, ..., Ck with minimal potential ®(X)
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@ even for k =2
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A Short Introduction

The Challenge

k-means is N'P-hard,

@ even in the plane and

@ even for k =2

—> Approximation algorithms, heuristics



The k-Means Method

Lloyd’s Algorithm (k-Means Method, k-Means)

Observations:

@ The optimal centers ¢; for given clusters X; are their centers
of mass

@ The optimal clusters X; for given centers ¢; are the points
nearest to ¢;
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The k-Means Method

Advantages And Disadvantages

Practitioners Theoreticians

Advantages
Simple to implement ) &)
Fast in practice @ @

Disadvantages

Exponential worst-case time () @

Requires good initialization @ @



The k-Means Method

Tackling The Disadvantages

@ Polynomial time in the framework of smoothed analysis

@ Approximation guarantee with k-means++ seeding technique
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The k-Means++ Method

k-Means++ Seeding

Centers chosen from the input set step-by-step
@ Choose the first center uniformly at random

@ Choose point x € X with probability % as next center

(060 = minlix - ci?)
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Asymptotic Bounds

Theorem (Arthur and Vassilvitskii, 2007)
The expected approximation ratio of k-means++ is O(log k).
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The k-Means++ Method

Asymptotic Bounds

Theorem (Arthur and Vassilvitskii, 2007)
The expected approximation ratio of k-means++ is O(log k).

Observation

There is a family of instances on which the expected approximation
ratio of k-means++ is Q(log k).
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The k-Means++ Method

Open Question

Does k-means++ yield an O(1)-approximation with
constant probability?

11/19



A Bad Instance
The Instance

(" )

12 /19



A Bad Instance
The Instance

12 /19



e N
B
X

3

\_ X2 Y,

X




The Instance

s ™~
Q. o
o 1{I o0
A ~3
(+ )
_ ° Y,

12 /19
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Optimal Clustering C*
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Discrete Clustering With s Covered Sets X;

Covering probability: $%Xu) ~ L =:
gp Y BX) T Ps
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Markov Chain
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A Bad Instance

Expected Number Of Steps X

s*—1
E[X] = Z:()éik#—é-(ln%z—g)
s=

— Choose A? = r - exp (%r)

= EX] 2 k+ 5 e

If r € o(log k), then Pr[X < k] is exponentially small in k

(Hoeffding Inequality + workaround)
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A Bad Instance

Open Questions

© Do k-means++ and k-means together yield an
O(1)-approximation with constant probability?
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A Bad Instance

Open Questions

© Do k-means++ and k-means together yield an
O(1)-approximation with constant probability?

@ Can we slightly modify k-means++ to guarantee better
bounds?
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