Clustering How Bad Is The k-Means++ Method?

Tobias Brunsch Heiko Röglin

Department of Quantitative Economics Maastricht University The Netherlands

July 15, 2010

What Is Clustering?

What Is Clustering?

The k-Means Problem (k-Means)

Measuring the quality of a clustering:

The k-Means Problem (k-Means)

Measuring the quality of a clustering:

• Assign one center c_i to each cluster X_i

The k-Means Problem (k-Means)

Measuring the quality of a clustering:

• Assign one center c_i to each cluster X_i

• Cluster potential:
$$\Phi(X_i) := \sum_{x \in X_i} \|x - c_i\|^2$$

The k-Means Problem (k-Means)

Measuring the quality of a clustering:

- Assign one center c_i to each cluster X_i
- Cluster potential: $\Phi(X_i) := \sum_{x \in X_i} \|x c_i\|^2$
- Clustering potential: $\Phi(X) := \sum_{i} \Phi(X_i)$

The k-Means Problem (k-Means)

Measuring the quality of a clustering:

- Assign one center c_i to each cluster X_i
- Cluster potential: $\Phi(X_i) := \sum_{x \in X_i} \|x c_i\|^2$

• Clustering potential:
$$\Phi(X) := \sum_{i} \Phi(X_i)$$

Objective: Find clustering (X_1, \ldots, X_k) and centers c_1, \ldots, c_k with minimal potential $\Phi(X)$

The Challenge

k-means is \mathcal{NP} -hard,

- even in the plane and
- even for k = 2

The Challenge

k-means is \mathcal{NP} -hard,

- even in the plane and
- even for k = 2

 \implies Approximation algorithms, heuristics

Lloyd's Algorithm (k-Means Method, k-Means)

Observations:

- The optimal centers c_i for given clusters X_i are their centers of mass
- The optimal clusters X_i for given centers c_i are the points nearest to c_i

Advantages And Disadvantages

Practitioners Theoreticians

Advantages

Simple to implement

Advantages And Disadvantages

Advantages And Disadvantages

Advantages And Disadvantages

Tackling The Disadvantages

- Polynomial time in the framework of smoothed analysis
- Approximation guarantee with *k*-means++ seeding technique

k-Means++ Seeding

Centers chosen from the input set step-by-step

k-Means++ Seeding

Centers chosen from the input set step-by-step

Choose the first center uniformly at random

k-Means++ Seeding

Centers chosen from the input set step-by-step

- Choose the first center uniformly at random
- **2** Choose point $x \in X$ with probability $\frac{D^2(x)}{\Phi(X)}$ as next center

$$\left(D^2(x) = \min_{c_i} \|x - c_i\|^2\right)$$

Asymptotic Bounds

Theorem (Arthur and Vassilvitskii, 2007)

The expected approximation ratio of k-means++ is $O(\log k)$.

Asymptotic Bounds

Theorem (Arthur and Vassilvitskii, 2007)

The expected approximation ratio of k-means++ is $O(\log k)$.

Observation

There is a family of instances on which the expected approximation ratio of k-means++ is $\Omega(\log k)$.

Open Question

Does k-means++ yield an O(1)-approximation with constant probability?

Optimal Clustering C*

Optimal Clustering C*

Discrete Clustering With s Covered Sets X_i

Discrete Clustering With *s* Covered Sets X_i

 $\Phi(X) = \Phi(X_c) + \Phi(X_u) \approx s \cdot k \cdot 1 + (k - s) \cdot k \cdot \Delta^2$

Discrete Clustering With *s* Covered Sets X_i

Covering probability: $\frac{\Phi(X_u)}{\Phi(X)} \approx \frac{1}{1 + \frac{s}{(k-s) \cdot \Delta^2}} =: p_s$

How Many Sets To Cover?

In the end:

$$r \geq rac{\Phi(X)}{\Phi^*(X)} \geq rac{\Phi(X_u)}{\Phi^*(X)} pprox 2\Delta^2 \cdot \left(1 - rac{s}{k}
ight)$$
 (r - approximation factor)

How Many Sets To Cover?

In the end:

$$egin{aligned} r &\geq rac{\Phi(X)}{\Phi^*(X)} \geq rac{\Phi(X_u)}{\Phi^*(X)} pprox 2\Delta^2 \cdot \left(1 - rac{s}{k}
ight) & (r ext{ - approximation factor}) \ &\Longrightarrow s \gtrsim k \cdot \left(1 - rac{r}{2\Delta^2}
ight) =: s^* \end{aligned}$$

Markov Chain

Expected Number Of Steps X

$$\mathbf{E}[X] = \sum_{s=0}^{s^*-1} \frac{1}{p_s} \gtrsim k + \frac{k}{\Delta^2} \cdot \left(\ln \frac{\Delta^2}{r} - \frac{r}{2} \right)$$

Expected Number Of Steps X

$$\mathbf{E}[X] = \sum_{s=0}^{s^*-1} \frac{1}{p_s} \gtrsim k + \frac{k}{\Delta^2} \cdot \left(\ln \frac{\Delta^2}{r} - \frac{r}{2} \right)$$

$$\implies$$
 Choose $\Delta^2 = r \cdot \exp\left(\frac{1+\epsilon}{2}r\right)$

Expected Number Of Steps X

$$\mathbf{E}[X] = \sum_{s=0}^{s^*-1} \frac{1}{p_s} \gtrsim k + \frac{k}{\Delta^2} \cdot \left(\ln \frac{\Delta^2}{r} - \frac{r}{2} \right)$$

$$\implies$$
 Choose $\Delta^2 = r \cdot \exp\left(\frac{1+\epsilon}{2}r\right)$

$$\Longrightarrow \mathbf{E}[X] \gtrsim k + rac{\epsilon}{2} \cdot rac{k}{\exp\left(rac{1+\epsilon}{2}r
ight)}$$

Expected Number Of Steps X

$$\mathbf{E}[X] = \sum_{s=0}^{s^*-1} \frac{1}{p_s} \gtrsim k + \frac{k}{\Delta^2} \cdot \left(\ln \frac{\Delta^2}{r} - \frac{r}{2} \right)$$

$$\implies$$
 Choose $\Delta^2 = r \cdot \exp\left(\frac{1+\epsilon}{2}r\right)$

$$\Longrightarrow \mathbf{E}[X] \gtrsim k + \frac{\epsilon}{2} \cdot \frac{k}{\exp(\frac{1+\epsilon}{2}r)}$$

If $r \in o(\log k)$, then $\Pr[X \le k]$ is exponentially small in k (Hoeffding Inequality + workaround)

Open Questions

Do k-means++ and k-means together yield an O(1)-approximation with constant probability?

Open Questions

- Do k-means++ and k-means together yield an O(1)-approximation with constant probability?
- Can we slightly modify k-means++ to guarantee better bounds?

