Genome assembly

Rayan Chikhi

ENS Cachan Brittany, France

Genome assembly: outline

Bioinformatics context

Problem formulation

Work and perspectives

Genome sequencing

Genome: string s of nucleotides ($5<\log 10(\mathrm{n})<10$)

$$
s \in\{A, C, T, G\}^{n}
$$

The sequencing process:
Clone the genome many times Output random fragments

Genoscope - Sequencing room
Reads: collection of m substrings of $s(6<\log 10(m)<11)$

$$
\left\{s_{k}=s\left[i_{k} \ldots i_{k}+r\right]\right\}, i_{k} \in[1 . . n]
$$

Assembly

Genome

Intuition:

Actual scenario

```
```

ACGTCGTACGTACTG

```
```

ACGTCGTACGTACTG
ACTGACGTCGTAC
ACTGACGTCGTAC
TACACGTCGTACGTACTG
TACACGTCGTACGTACTG
ACGTCGTACGTACTGACGTCGTACACGTCGTACGTACTG

```
```

ACGTCGTACGTACTGACGTCGTACACGTCGTACGTACTG

```
```

Human genome:
~ 3 Gbp
~ 10 billion short reads
Assembly:
2 days
140 Gb memory
~ 1 million contigs

Shortest Common Superstring

Find the shortest string that contains \{reads\} as substrings.
Max-SNP hard
GREEDY <= 4 OPT (conjectured: 2)

Genome != SCS

Tandem repeats collapsing: ARRRRRB \rightarrow ARRB

Overcollapsing: ARBRCRD \rightarrow ARBR'DR'D
where $R^{\prime}=R[1 . . r]+R[|R|-r . .|R|]$

Assembly problem ${ }_{\text {Inyes, } 2005]}$

$V=\{$ reads $\}$
$E=\{(r 1 \rightarrow r 2)$, s.t. a k-suffix
overlap graph
of $r 1$ matches a k-prefix
of r2 (overlap) \}

(+ Remove contained reads and transitively inferable edges.)

Assembly problem: find a generalized Hamiltonian path in G (visit every node at least once) of minimum length

Can we approximate it?

L-reduction to SCS \rightarrow fixed constant approximation algo
No published approx. algorithm for AP

Bad biological news: many solutions with minimal cost

Heuristics: output all linear subgraphs

Parametrized complexity results

Hardness is due to repeats [Nagarajan 09]:

Suppose we have only such repeat sizes:

$$
>2 r-k+1
$$

P

P, if repeats contained in reads

- Proof: all edges have in or out degree $=1$, assembly found using a chinese postman path (visit every edge)

Given « good» reads, AP can be solved with as an instance of the Chinese Postman Problem:

But many reconstructions are possible. (and \#CPP is \#P-complete)

Maybe find Chinese Postman paths that satisfy a copy-number for each node or given the genome length? NP-hard [Skiena 93].

Nagarajan Conjecture :
If $r<2 k, A P$ is in P.

Actual sequencing

Paired-end assembly

genome

Assembly with paired reads

Scaffolding problem: Find an ordering (absolute coordinate) of contigs.

Not satisfactory: why should we start from contigs?

Paired-end assembly

Intuitively close to the paired jigsaw problem:

Equivalent paired assembly problem: add pairs as special edges in the graph impose the pairing constraint on path.

Paired AP, paired SCS :
MaxSNP-hard

On-going work

paired overlap graphs

Greedy heuristic:
Find all non-overlapping maximal-length paths where (in-degree of visited edges $=1$)

Observation:
these paths spell valid scaffolds.
contigs are included

Perspectives

In which cases can we do polynomial-time assembly?
r < 2k?
can we exploit pairing + repeats $>2 r-k$?
Can we get ε-approximations in some cases?

Thank you for your attention!

