Genome assembly

Rayan Chikhi

ENS Cachan Brittany, France

Genome assembly: outline

Bioinformatics context

Problem formulation

Work and perspectives

Genome sequencing

Genome: string s of nucleotides ($5 < \log 10(n) < 10$) $s \in \{A, C, T, G\}^n$

The sequencing process:

Clone the genome many times Output random fragments

Genoscope – Sequencing room

Reads: collection of m substrings of s ($6 < \log 10(m) < 11$)

$$\{s_k = s[i_k ... i_k + r]\}, i_k \in [1...n]$$

Assembly

Intuition:

Actual scenario

Human genome:

~ 3 Gbp

~ 10 billion short reads

Assembly:

2 days 140 Gb memory ~ **1 million** contigs

ACGTCGTACGTACTG ACTGACGTCGTAC TACACGTCGTACGTACTG ACGTCGTACGTACTGACGTCGTACGTACTG

Shortest Common Superstring

Find the shortest string that contains {reads} as substrings.

Max-SNP hard

GREEDY <= 4 OPT (conjectured: 2)

Genome != SCS

Tandem repeats collapsing: ARRRRB → ARRB

Overcollapsing: ARBRCRD \rightarrow ARBR'DR'D where R'=R[1..r]+R[|R|-r..|R|]

Assembly problem [Myers, 2005]

V= { reads } E= { (r1 \rightarrow r2), s.t. a k-suffix of r1 matches a k-prefix of r2 (overlap) } genome overlap graph

(+ Remove contained reads and transitively inferable edges.)

Assembly problem: find a generalized Hamiltonian path in G (visit every node at least once) of minimum length

Can we approximate it?

L-reduction to SCS \rightarrow fixed constant approximation algo

No published approx. algorithm for AP

Bad biological news: many solutions with minimal cost

Heuristics: output all linear subgraphs

Parametrized complexity results

Hardness is due to repeats [Nagarajan 09]:

Suppose we have only such repeat sizes:

Given « good » reads, AP can be solved with as an instance of the Chinese Postman Problem:

But many reconstructions are possible. (and #CPP is #P-complete)

Maybe find Chinese Postman paths that satisfy a copy-number for each node or given the genome length? NP-hard [Skiena 93].

Nagarajan Conjecture : If r < 2k, AP is in P.

Actual sequencing

Non-uniform coverage + sequencing errors + DNA is double-stranded

Paired-end assembly

Assembly with paired reads

Scaffolding problem: Find an ordering (absolute coordinate) of contigs.

Not satisfactory: why should we start from contigs?

Paired-end assembly

Intuitively close to the paired jigsaw problem:

Equivalent paired assembly problem: add pairs as special edges in the graph impose the pairing constraint on path.

Paired AP, paired SCS : MaxSNP-hard

On-going work

paired overlap graphs

Greedy heuristic:

Find all non-overlapping maximal-length paths where (in-degree of visited edges = 1)

Observation:

these paths spell valid scaffolds.

contigs are included

Perspectives

In which cases can we do polynomial-time assembly?

r < 2k?

can we exploit pairing + repeats > 2r-k ?

Can we get ϵ -approximations in some cases?

Thank you for your attention!

