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Introduction Covering Games

A general covering problem

Given
I a universe E of elements

I a weight function w : E 7→ N
I n collections of subsets of E

I Si ⊂ 2E for each i ∈ [n]

Task
I choose n subsets (si)i∈[n], s.t.

I si ∈ Si
I

⋃
i∈[n] si has maximum total

weight
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Introduction Covering Games

Covering Games

I n players

I player i ∈ [n] chooses si ∈ Si

I for covering an element, pay players
according to utility sharing function

I f : [n] 7→ [0,1]

I natural assumptions on f
I non-increasing
I no-overpay (j · f (j) ≤ 1)

I Load on e ∈ E :
δe(s) = |{i ∈ [n] : e ∈ si}|

I Utility of player i ∈ [n]:

ui(s) =
∑
e∈si

f (δe(s)) · we

6 30 1

101212

5 2 20

f (1) = 1 f (2) = 1
2 f (3) = 1

3

I u1(s) = 37
I u2(s) = 13
I u3(s) = 11
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I player i ∈ [n] chooses si ∈ Si
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Introduction Covering Games

Special Cases

MAX-k-Cover
Si = Sj for all players i , j ∈ [n]

SAT-Games
|Si | ≤ 2 for each player i ∈ [n]

Market-Sharing Games

[ NEMHAUSER, WOLSEY, FISHER, ’78]
Greedy⇒ (1− 1

e )− approx .
[ FEIGE, ’98]
better⇒ NP ⊆ TIME(nO(log log n))

[ GIANNAKOS ET AL., ’07]

[ GOEMANS, MIRROKNI, THOTTAN, ’04]
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Introduction Covering Games

Nash Equilibrium

Nash Equilibrium
The (pure) strategy profile s is a pure Nash equilibrium if and only if all
players i ∈ [n] are satisfied, that is,

ui(s) ≥ ui(s−i , s′i ) for all i ∈ [n] and s′i ∈ Si .

Proposition [ ROSENTHAL, 1973]

Every covering game admits a pure Nash equilibrium.

Rosenthals potential function:

Φ(s) =
∑
e∈E

δe(s)∑
i=1

fe(i)

If a single player increases her payoff by ∆ then also the potential
increases by ∆.
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Covering Games Price of Anarchy

Price of Anarchy

I W (s) . . . total weight of elements covered in s
I f . . . utility sharing function.

Price of Anarchy

PoAf = inf
Γ∈G,

s is NE in Γ

W (s)

OPT
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Covering Games Upper Bound

What to hope for?
Example: k=4 I node↔ element (we = 1)

I edge↔ player
I |S1| = 1
I |Si | = 2 for i ≥ 2

I k + 1 levels
I root: k − 1 children
I level j node: k − j children

f : [n] 7→ R depends only on the number of players choosing an element.

Nash Equilibrium s

W (s) = 1 +
∑k−1

j=1 (k − 1) · (k−1)!
(k−j)!

Optimum s∗

W (s∗) = 1 +
∑k

j=1(k − 1) · (k−1)!
(k−j)!

Theorem

PoAf (k) ≤ 1− 1
1

(k−1)(k−1)! +
∑k−1

j=0
1
j!

.
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Covering Games General Lower Bound

What is known?

A simple example shows:

I If f is defined by f (j) = 1
j for all j ∈ N

⇒ PoAf ≤ 1
2

Consider utility sharing function which is
I non-increasing,
I j · f (j) ≤ 1 (no-overpay), and
I f (1) = 1

Then the covering game is also a valid utility game.

Theorem [ VETTA, ’02]

PoAf ≥
1
2
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Covering Games General Lower Bound

General Lower Bound on PoA:

I Given utility sharing function f
I Define χ = χ(f ) as the smallest number, such that ∀j ∈ N:

j · f (j)− f (j + 1) ≤ χ · f (1)

Theorem

PoAf ≥
1

χ+ 1

Remarks
I Construct f such that χ is minimized.
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Covering Games Optimum Lower Bound

Construct f that minimizes χ

Task
minχ s.t.

I i · f (i)− f (i + 1) ≤ χ · f (1) for all i ∈ [k − 1]

I (k − 1) · f (k) ≤ χ · f (1)
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k is known
I χ = 1

1
(k−1)(k−1)!

+
Pk−1

j=1
1
j!

I Utility sharing function:

f (i) = (i−1)!
1

(k−1)(k−1)!
+

Pk−1
j=i

1
j!

1
(k−1)(k−1)!

+
Pk−1

j=1
1
j!

I PoAf ≥ 1− 1
1

(k−1)(k−1)!
+

Pk−1
j=0

1
j!
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Covering Games Optimum Lower Bound

Construct f that minimizes χ
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k is unknown (k →∞)
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Covering Games Distributed (Local Search) Approximation Algorithm

Distributed Approximation Algorithm

Task
I Turn this into (1− 1

e)-approximation algorithm.
I Start with arbitrary strategy profile.
I Let players unilaterally improve. (selfish steps)

I Use Rosenthals potential function to bound running time.

Problem
I Increase in potential function can be arbitrary small.

Solution
I choose constant k ′ ∈ N
I f (i) = 0 for i > k ′

I This yields (1− 1
e − ε)-approximation algorithm (ε = ε(k ′) = o(1))
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Covering Games Distributed (Local Search) Approximation Algorithm

A local search approximation algorithm

Theorem
For every ε > 0, there exists a (local-search) approximation algorithm

I with approximation ratio 1− 1
e − ε,

I that uses at most O(1
ε · log log(1

ε )) ·W selfish steps.

Best Possible [Feige, JouACM’98]

I What happens if W is arbitrary?

Theorem
Then, for every (non-constant) utility sharing function, computing a
pure Nash equilibrium is PLS-complete.

Theorem

There exists a (centralized) polynomial-time (1− 1
e)-approximation

algorithm for the general covering problem.
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Conclusion Overview

Covering Games

We showed:
I For every utility sharing function f , PoAf ≤ 1− 1

e .
I There exists f with PoAf ≥ 1− 1

e .
I Local search approximation algorithm if W is bounded by polynom

in n, |E |.
I Limits of our approach
I Centralized Approximation Algorithm

Open Problems
I weighted case: restrict to ε-NE
I More general models

I we is not constant
I element must be covered multiple times
I ...

5 3 4 6

12911

9 6 13

24 8 9 18

6 3 1 1

2
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