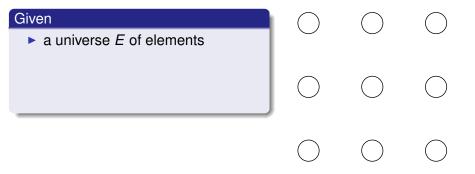
Covering Games: Approximation through Non-Cooperation

Martin Gairing

Warwick 2010

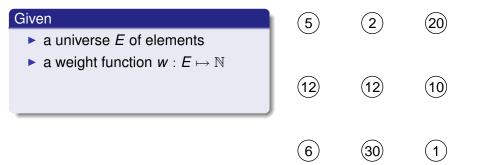
Covering Games

A general covering problem



Covering Games

A general covering problem

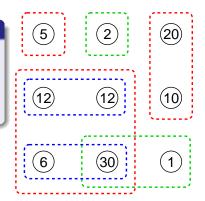


Covering Games

A general covering problem

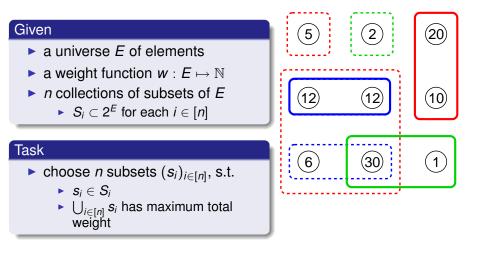
Given

- a universe E of elements
- a weight function $w : E \mapsto \mathbb{N}$
- n collections of subsets of E
 - $S_i \subset 2^E$ for each $i \in [n]$



Covering Games

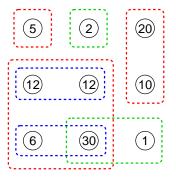
A general covering problem



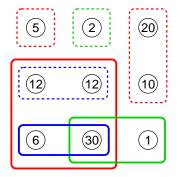
UVERPOOL UVERPOOL

Covering Games

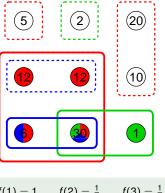
n players



- n players
- ▶ player $i \in [n]$ chooses $s_i \in S_i$

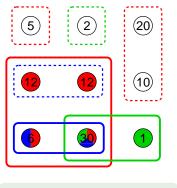


- n players
- ▶ player $i \in [n]$ chooses $s_i \in S_i$
- for covering an element, pay players according to utility sharing function



$$f(1) = 1$$
 $f(2) = \frac{1}{2}$ $f(3) = \frac{1}{3}$

- n players
- ▶ player $i \in [n]$ chooses $s_i \in S_i$
- for covering an element, pay players according to utility sharing function
 - *f* : [*n*] → [0, 1]
- natural assumptions on f
 - non-increasing
 - no-overpay $(j \cdot f(j) \le 1)$



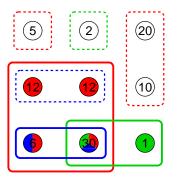
$$f(1) = 1$$
 $f(2) = \frac{1}{2}$ $f(3) = \frac{1}{3}$

- n players
- ▶ player $i \in [n]$ chooses $s_i \in S_i$
- for covering an element, pay players according to utility sharing function
 - *f* : [*n*] → [0, 1]
- natural assumptions on f
 - non-increasing
 - no-overpay $(j \cdot f(j) \leq 1)$
- ► Load on *e* ∈ *E*:

 $\delta_{\boldsymbol{e}}(\mathbf{s}) = |\{i \in [\boldsymbol{n}] : \boldsymbol{e} \in \boldsymbol{s}_i\}|$

• Utility of player $i \in [n]$:

$$u_i(\mathbf{s}) = \sum_{e \in s_i} f(\delta_e(\mathbf{s})) \cdot w_e$$



$$f(1) = 1$$
 $f(2) = \frac{1}{2}$ $f(3) = \frac{1}{3}$

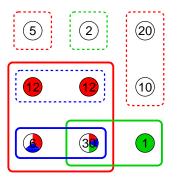
- ▶ u₁(s) = 37
- ▶ *u*₂(s) = 13

- n players
- ▶ player $i \in [n]$ chooses $s_i \in S_i$
- for covering an element, pay players according to utility sharing function
 - *f* : [*n*] → [0, 1]
- natural assumptions on f
 - non-increasing
 - no-overpay $(j \cdot f(j) \leq 1)$
- ► Load on *e* ∈ *E*:

 $\delta_{\boldsymbol{e}}(\mathbf{s}) = |\{i \in [\boldsymbol{n}] : \boldsymbol{e} \in \boldsymbol{s}_i\}|$

• Utility of player $i \in [n]$:

$$u_i(\mathbf{s}) = \sum_{e \in s_i} f(\delta_e(\mathbf{s})) \cdot w_e$$



$$f(1) = 1$$
 $f(2) = \frac{1}{3}$ $f(3) = \frac{1}{6}$

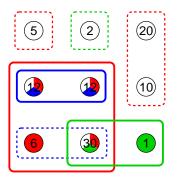
- ▶ *u*₁(s) = 31
- ► $u_2(s) = 7$:-(

- n players
- ▶ player $i \in [n]$ chooses $s_i \in S_i$
- for covering an element, pay players according to utility sharing function
 - *f* : [*n*] → [0, 1]
- natural assumptions on f
 - non-increasing
 - no-overpay $(j \cdot f(j) \leq 1)$
- ► Load on *e* ∈ *E*:

 $\delta_{\boldsymbol{e}}(\mathbf{s}) = |\{i \in [\boldsymbol{n}] : \boldsymbol{e} \in \boldsymbol{s}_i\}|$

• Utility of player $i \in [n]$:

$$u_i(\mathbf{s}) = \sum_{e \in s_i} f(\delta_e(\mathbf{s})) \cdot w_e$$



$$f(1) = 1$$
 $f(2) = \frac{1}{3}$ $f(3) = \frac{1}{6}$

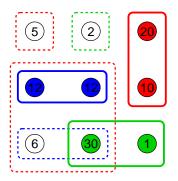
- ▶ *u*₁(s) = 24 :-(
- ► *u*₂(s) = 8

- n players
- ▶ player $i \in [n]$ chooses $s_i \in S_i$
- for covering an element, pay players according to utility sharing function
 - *f* : [*n*] → [0, 1]
- natural assumptions on f
 - non-increasing
 - no-overpay $(j \cdot f(j) \leq 1)$
- ► Load on *e* ∈ *E*:

 $\delta_{\boldsymbol{e}}(\mathbf{s}) = |\{i \in [\boldsymbol{n}] : \boldsymbol{e} \in \boldsymbol{s}_i\}|$

• Utility of player $i \in [n]$:

$$u_i(\mathbf{s}) = \sum_{e \in s_i} f(\delta_e(\mathbf{s})) \cdot w_e$$



$$f(1) = 1$$
 $f(2) = \frac{1}{3}$ $f(3) = \frac{1}{6}$

- ▶ u₁(s) = 30
- ▶ *u*₂(s) = 24

Introduction Covering Games

Special Cases

MAX-k-Cover

 $S_i = S_j$ for all players $i, j \in [n]$

 $\begin{array}{l} [\text{ NEMHAUSER, WOLSEY, FISHER, '78]} \\ \text{Greedy} \Rightarrow (1 - \frac{1}{e}) - \textit{approx.} \\ [\text{FEIGE, '98]} \\ \text{better} \Rightarrow \textit{NP} \subseteq \textit{TIME}(n^{O(\log\log n)}) \end{array}$

Introduction Covering Games

Special Cases

MAX-k-Cover

$$S_i = S_j$$
 for all players $i, j \in [n]$

SAT-Games

 $|S_i| \leq 2$ for each player $i \in [n]$

 $\begin{array}{l} [\text{ NEMHAUSER, WOLSEY, FISHER, '78]} \\ \text{Greedy} \Rightarrow (1 - \frac{1}{e}) - \textit{approx.} \\ [\text{FEIGE, '98]} \\ \text{better} \Rightarrow \textit{NP} \subseteq \textit{TIME}(n^{O(\log\log n)}) \end{array}$

[GIANNAKOS ET AL., '07]

Introduction Covering Games

Special Cases

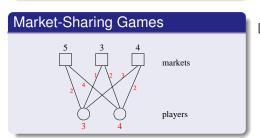
MAX-k-Cover

$$S_i = S_j$$
 for all players $i, j \in [n]$

 $[\text{NEMHAUSER, WOLSEY, FISHER, '78}] \\ Greedy \Rightarrow (1 - \frac{1}{e}) - approx. \\ [FEIGE, '98] \\ better \Rightarrow NP \subseteq TIME(n^{O(\log\log n)})$

SAT-Games

 $|S_i| \leq$ 2 for each player $i \in [n]$



[GIANNAKOS ET AL., '07]

[GOEMANS, MIRROKNI, THOTTAN, '04]

Nash Equilibrium

Nash Equilibrium

The (pure) strategy profile s is a pure Nash equilibrium if and only if all players $i \in [n]$ are satisfied, that is,

 $u_i(\mathbf{s}) \ge u_i(\mathbf{s}_{-i}, \mathbf{s}'_i)$ for all $i \in [n]$ and $\mathbf{s}'_i \in \mathbf{S}_i$.

Nash Equilibrium

Nash Equilibrium

The (pure) strategy profile s is a pure Nash equilibrium if and only if all players $i \in [n]$ are satisfied, that is,

 $u_i(\mathbf{s}) \ge u_i(\mathbf{s}_{-i}, \mathbf{s}'_i)$ for all $i \in [n]$ and $\mathbf{s}'_i \in \mathbf{S}_i$.

Proposition

[ROSENTHAL, 1973]

Every covering game admits a pure Nash equilibrium.

Rosenthals potential function:

$$\Phi(\mathbf{s}) = \sum_{e \in E} \sum_{i=1}^{\delta_e(\mathbf{s})} f_e(i)$$

If a single player increases her payoff by Δ then also the potential increases by Δ .

Price of Anarchy

- $W(s) \dots$ total weight of elements covered in s
- ► *f*...utility sharing function.

Price of Anarchy

$$\mathsf{PoA}_f = \inf_{\substack{\Gamma \in \mathcal{G}, \\ \mathsf{s} \text{ is NE in } \Gamma}} \frac{W(\mathsf{s})}{\mathsf{OPT}}$$

Price of Anarchy

- $W(s) \dots$ total weight of elements covered in s
- f ... utility sharing function.

Price of Anarchy

$$\mathsf{PoA}_f = \inf_{\substack{\Gamma \in \mathcal{G}, \\ \mathsf{s} \text{ is NE in } \Gamma}} \frac{W(\mathsf{s})}{\mathsf{OPT}}$$

Main task

Construct utility sharing function that maximizes PoA_f.

Price of Anarchy

- $W(s) \dots$ total weight of elements covered in s
- ► *f*...utility sharing function.

Price of Anarchy

$$\mathsf{PoA}_f = \inf_{\substack{\Gamma \in \mathcal{G}, \\ \mathsf{s} \text{ is NE in } \Gamma}} \frac{W(\mathsf{s})}{\mathsf{OPT}}$$

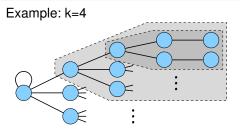
Main task

Construct utility sharing function that maximizes PoA_f.

► Coordination Mechanism [Christodoulou, Koutsoupias, Nanavati, '04]

Upper Bound

What to hope for?



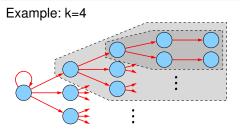
- ▶ node \leftrightarrow element ($w_e = 1$)
- ▶ edge ↔ player

- \blacktriangleright k + 1 levels
 - ▶ root: k 1 children
 - level *j* node: k j children

 $f: [n] \mapsto \mathbb{R}$ depends only on the number of players choosing an element.

Upper Bound

What to hope for?



- ▶ node \leftrightarrow element ($w_e = 1$)
- ▶ edge ↔ player

- \blacktriangleright k + 1 levels
 - ▶ root: k 1 children
 - level *j* node: k j children

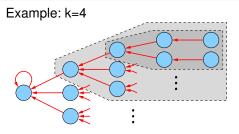
 $f: [n] \mapsto \mathbb{R}$ depends only on the number of players choosing an element.

Optimum s*

$$W(s^*) = 1 + \sum_{j=1}^{k} (k-1) \cdot \frac{(k-1)!}{(k-j)!}$$

Upper Bound

What to hope for?



 $W(s) = 1 + \sum_{i=1}^{k-1} (k-1) \cdot \frac{(k-1)!}{(k-i)!}$

- ▶ node \leftrightarrow element ($w_e = 1$)
- \blacktriangleright edge \leftrightarrow player

- \blacktriangleright k + 1 levels
 - ▶ root: k 1 children
 - level *j* node: k j children

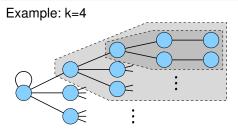
 $f: [n] \mapsto \mathbb{R}$ depends only on the number of players choosing an element.

Optimum s*

$$W(s^*) = 1 + \sum_{j=1}^{k} (k-1) \cdot \frac{(k-1)}{(k-j)}$$

Nash Equilibrium s

What to hope for?



- node \leftrightarrow element ($w_e = 1$)
- $\blacktriangleright edge \leftrightarrow player$

- ▶ k + 1 levels
 - root: k 1 children
 - level j node: k j children

 $f: [n] \mapsto \mathbb{R}$ depends only on the number of players choosing an element.

Optimum s*

$$V(s) = 1 + \sum_{j=1}^{k-1} (k-1) \cdot \frac{(k-1)!}{(k-j)!}$$

$$W(s^*) = 1 + \sum_{j=1}^{k} (k-1) \cdot \frac{(k-1)!}{(k-j)!}$$

Theorem

Nash Equilibrium s

$$\mathsf{PoA}_{f}(k) \leq 1 - \frac{1}{\frac{1}{(k-1)(k-1)!} + \sum_{j=0}^{k-1} \frac{1}{j!}}$$

UVERPOOL UVERPOOL

What is known?

A simple example shows:

If f is defined by $f(j) = \frac{1}{j}$ for all j ∈ N
⇒ PoA_f ≤ $\frac{1}{2}$

What is known?

A simple example shows:

► If *f* is defined by $f(j) = \frac{1}{j}$ for all $j \in \mathbb{N}$ $\Rightarrow \mathsf{PoA}_f \le \frac{1}{2}$

Consider utility sharing function which is

- non-increasing,
- $j \cdot f(j) \leq 1$ (no-overpay), and
- ► *f*(1) = 1

Then the covering game is also a valid utility game.

What is known?

A simple example shows:

► If *f* is defined by $f(j) = \frac{1}{j}$ for all $j \in \mathbb{N}$ ⇒ $\mathsf{PoA}_f \leq \frac{1}{2}$

Consider utility sharing function which is

- non-increasing,
- ▶ $j \cdot f(j) \leq 1$ (no-overpay), and
- ► *f*(1) = 1

Then the covering game is also a valid utility game.

Theorem[VETTA, '02] $PoA_f \geq \frac{1}{2}$

General Lower Bound on PoA:

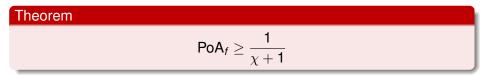
- Given utility sharing function f
- Define $\chi = \chi(f)$ as the smallest number, such that $\forall j \in \mathbb{N}$:

$$j \cdot f(j) - f(j+1) \leq \chi \cdot f(1)$$

General Lower Bound on PoA:

- Given utility sharing function f
- Define $\chi = \chi(f)$ as the smallest number, such that $\forall j \in \mathbb{N}$:

$$j \cdot f(j) - f(j+1) \leq \chi \cdot f(1)$$



General Lower Bound on PoA:

- Given utility sharing function f
- Define $\chi = \chi(f)$ as the smallest number, such that $\forall j \in \mathbb{N}$:

$$j \cdot f(j) - f(j+1) \leq \chi \cdot f(1)$$

Theorem $ext{PoA}_f \geq rac{1}{\chi+1}$

Remarks

• Construct *f* such that χ is minimized.

Optimum Lower Bound

Construct *f* that minimizes χ

Task

►
$$i \cdot f(i) - f(i+1) \le \chi \cdot f(1)$$
 for all $i \in [k-1]$
► $(k-1) \cdot f(k) \le \chi \cdot f(1)$

Optimum Lower Bound

Construct *f* that minimizes χ

Task

i · *f*(*i*) − *f*(*i* + 1) ≤
$$\chi$$
 · *f*(1) for all *i* ∈ [*k* − 1]
(*k* − 1) · *f*(*k*) ≤ χ · *f*(1)

$$\begin{pmatrix} 1-\chi & -1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ -\chi & 2 & -1 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ -\chi & 0 & \cdots & i & -1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ -\chi & 0 & \cdots & 0 & 0 & k-2 & -1 & 0 \\ -\chi & 0 & \cdots & 0 & 0 & 0 & k-1 & -1 \\ -\chi & 0 & \cdots & 0 & 0 & 0 & 0 & k-1 & -1 \\ \end{pmatrix}$$

Optimum Lower Bound

Construct *f* that minimizes χ

Task

i · *f*(*i*) − *f*(*i* + 1) ≤
$$\chi$$
 · *f*(1) for all *i* ∈ [*k* − 1]
(*k* − 1) · *f*(*k*) ≤ χ · *f*(1)

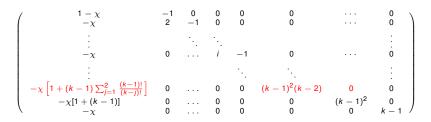
$$\begin{pmatrix} 1-\chi & -1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ -\chi & 2 & -1 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & & & \vdots \\ -\chi & 0 & \cdots & i & -1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & & \vdots \\ -\chi & 0 & \cdots & 0 & 0 & k-2 & -1 & 0 \\ -\chi [1 + (k-1)] & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ -\chi & 0 & \cdots & 0 & 0 & 0 & 0 & (k-1)^2 & 0 \\ -\chi & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & k-1 \end{pmatrix}$$

Covering Games Optimum Lower Bound

Construct f that minimizes χ

Task

i · *f*(*i*) − *f*(*i* + 1) ≤
$$\chi$$
 · *f*(1) for all *i* ∈ [*k* − 1]
(*k* − 1) · *f*(*k*) ≤ χ · *f*(1)



Optimum Lower Bound

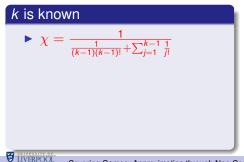
Construct *f* that minimizes χ

Task

i · *f*(*i*) − *f*(*i* + 1) ≤
$$\chi$$
 · *f*(1) for all *i* ∈ [*k* − 1]
(*k* − 1) · *f*(*k*) ≤ χ · *f*(1)

$$\begin{pmatrix} (k-1)(k-1)! - \chi \left[1 + (k-1) \sum_{j=1}^{k-1} \frac{(k-1)!}{(k-j)!} \right] & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ & \vdots & & \ddots & \ddots & & \vdots \\ -\chi \left[1 + (k-1) \sum_{j=1}^{k-i} \frac{(k-1)!}{(k-j)!} \right] & 0 & \cdots & (k-1) \frac{(k-1)!}{(i-1)!} & 0 & 0 & \cdots & 0 \\ & \vdots & & & \ddots & \ddots & \vdots \\ -\chi [1 + (k-1)] & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ -\chi & & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ -\chi & & 0 & \cdots & 0 & 0 & 0 & 0 & (k-1) \end{pmatrix}$$

$$\begin{pmatrix} (k-1)(k-1)! - \chi \left[1 + (k-1) \sum_{j=1}^{k-1} \frac{(k-1)!}{(k-j)!} \right] & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ & \vdots & & \ddots & \ddots & & \vdots \\ -\chi \left[1 + (k-1) \sum_{j=1}^{k-i} \frac{(k-1)!}{(k-j)!} \right] & 0 & \cdots & (k-1) \frac{(k-1)!}{(i-1)!} & 0 & 0 & \cdots & 0 \\ & \vdots & & & \ddots & \ddots & \vdots \\ -\chi [1 + (k-1)] & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ & -\chi & & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ & -\chi & & 0 & \cdots & 0 & 0 & 0 & 0 & (k-1) \end{pmatrix}$$



Covering Games: Approximation through Non-Cooperation

$$\begin{pmatrix} (k-1)(k-1)! - \chi \left[1 + (k-1) \sum_{j=1}^{k-1} \frac{(k-1)!}{(k-j)!} \right] & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ & \vdots & & \ddots & \ddots & & \vdots \\ -\chi \left[1 + (k-1) \sum_{j=1}^{k-i} \frac{(k-1)!}{(k-j)!} \right] & 0 & \cdots & (k-1) \frac{(k-1)!}{(i-1)!} & 0 & 0 & \cdots & 0 \\ & \vdots & & & \ddots & \ddots & \vdots \\ -\chi [1 + (k-1)] & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ -\chi & & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ \end{pmatrix}$$

k is known

$$\chi = \frac{1}{\frac{1}{(k-1)(k-1)!} + \sum_{j=1}^{k-1} \frac{1}{j!}}$$
• Utility sharing function:

$$f(i) = (i-1)! \frac{1}{\frac{(k-1)(k-1)!}{(k-1)(k-1)!} + \sum_{j=1}^{k-1} \frac{1}{j!}}$$

UVERPOOL UVERPOOL

$$\begin{pmatrix} (k-1)(k-1)! - \chi \left[1 + (k-1) \sum_{j=1}^{k-1} \frac{(k-1)!}{(k-j)!} \right] & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ & \vdots & & \ddots & \ddots & & \vdots \\ -\chi \left[1 + (k-1) \sum_{j=1}^{k-i} \frac{(k-1)!}{(k-j)!} \right] & 0 & \cdots & (k-1) \frac{(k-1)!}{(i-1)!} & 0 & 0 & \cdots & 0 \\ & \vdots & & & \ddots & \ddots & \vdots \\ -\chi [1 + (k-1)] & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ & -\chi & & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ \end{pmatrix}$$

k is known

$$\chi = \frac{1}{\frac{1}{(k-1)(k-1)!} + \sum_{j=1}^{k-1} \frac{1}{j!}}$$
• Utility sharing function:

$$f(i) = (i-1)! \frac{\frac{1}{(k-1)(k-1)!} + \sum_{j=1}^{k-1} \frac{1}{j!}}{\frac{1}{(k-1)(k-1)!} + \sum_{j=0}^{k-1} \frac{1}{j!}}$$
• PoA_f ≥ 1 - $\frac{1}{\frac{1}{(k-1)(k-1)!} + \sum_{j=0}^{k-1} \frac{1}{j!}}$

UVERPOOL

$$\begin{pmatrix} (k-1)(k-1)! - \chi \left[1 + (k-1) \sum_{j=1}^{k-1} \frac{(k-1)!}{(k-j)!} \right] & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ & \vdots & & \ddots & \ddots & & \vdots \\ -\chi \left[1 + (k-1) \sum_{j=1}^{k-i} \frac{(k-1)!}{(k-j)!} \right] & 0 & \cdots & (k-1) \frac{(k-1)!}{(i-1)!} & 0 & 0 & \cdots & 0 \\ & \vdots & & & \ddots & \ddots & \vdots \\ -\chi [1 + (k-1)] & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ & -\chi & & 0 & \cdots & 0 & 0 & 0 & (k-1)^2 & 0 \\ \end{pmatrix}$$

k is known $\chi = \frac{1}{\frac{1}{(k-1)(k-1)!} + \sum_{j=1}^{k-1} \frac{1}{j!}}$ Utility sharing function: $f(i) = (i-1)! \frac{\frac{1}{(k-1)(k-1)!} + \sum_{j=1}^{k-1} \frac{1}{j!}}{\frac{1}{(k-1)(k-1)!} + \sum_{j=1}^{k-1} \frac{1}{j!}}$ ► $PoA_f \ge 1 - \frac{1}{\frac{1}{(k-1)(k-1)!} + \sum_{j=0}^{k-1} \frac{1}{j!}}$ IVERPOOL

Covering Games: Approximation through Non-Cooperation

k is unknown ($k \rightarrow \infty$)

$$\blacktriangleright \chi = \frac{1}{e-1}$$

• Utility sharing function:

$$f(i) = (i-1)! \frac{e - \sum_{j=0}^{i-1} \frac{1}{j!}}{e-1}$$

▶
$$PoA_f \ge 1 - \frac{1}{e}$$

Martin Gairing

11

Covering Games Distributed (Local Search) Approximation Algorithm

Distributed Approximation Algorithm

- Turn this into $(1 \frac{1}{e})$ -approximation algorithm.
 - Start with arbitrary strategy profile.
 - Let players unilaterally improve. (selfish steps)
- Use Rosenthals potential function to bound running time.

Distributed Approximation Algorithm

- Turn this into $(1 \frac{1}{e})$ -approximation algorithm.
 - Start with arbitrary strategy profile.
 - Let players unilaterally improve. (selfish steps)
- Use Rosenthals potential function to bound running time.

Problem

Increase in potential function can be arbitrary small.

Distributed Approximation Algorithm

- Turn this into $(1 \frac{1}{e})$ -approximation algorithm.
 - Start with arbitrary strategy profile.
 - Let players unilaterally improve. (selfish steps)
- Use Rosenthals potential function to bound running time.

Problem

Increase in potential function can be arbitrary small.

Solution

• choose constant $k' \in \mathbb{N}$

► This yields $(1 - \frac{1}{e} - \varepsilon)$ -approximation algorithm $(\varepsilon = \varepsilon(k') = o(1))$

A local search approximation algorithm

Theorem

For every $\varepsilon > 0$, there exists a (local-search) approximation algorithm

- with approximation ratio $1 \frac{1}{e} \varepsilon$,
- that uses at most $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \log(\frac{1}{\varepsilon})) \cdot W$ selfish steps.

Best Possible [Feige, JouACM'98]

A local search approximation algorithm

Theorem

For every $\varepsilon > 0$, there exists a (local-search) approximation algorithm

- with approximation ratio $1 \frac{1}{e} \varepsilon$,
- that uses at most $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \log(\frac{1}{\varepsilon})) \cdot W$ selfish steps.
- What happens if W is arbitrary?

Theorem

Then, for every (non-constant) utility sharing function, computing a pure Nash equilibrium is PLS-complete.

A local search approximation algorithm

Theorem

For every $\varepsilon > 0$, there exists a (local-search) approximation algorithm

- with approximation ratio $1 \frac{1}{e} \varepsilon$,
- that uses at most $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \log(\frac{1}{\varepsilon})) \cdot W$ selfish steps.
- What happens if W is arbitrary?

Theorem

Then, for every (non-constant) utility sharing function, computing a pure Nash equilibrium is PLS-complete.

Theorem

LIVERPOOL

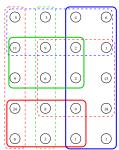
There exists a (centralized) polynomial-time $(1 - \frac{1}{e})$ -approximation algorithm for the general covering problem.

Covering Games: Approximation through Non-Cooperation

Covering Games

We showed:

- ► For every utility sharing function f, $PoA_f \le 1 \frac{1}{e}$.
- There exists f with $PoA_f \ge 1 \frac{1}{e}$.
- ► Local search approximation algorithm if W is bounded by polynom in n, |E|.
- Limits of our approach
- Centralized Approximation Algorithm



Covering Games

We showed:

- ► For every utility sharing function f, $PoA_f \le 1 \frac{1}{e}$.
- There exists f with $PoA_f \ge 1 \frac{1}{e}$.
- ► Local search approximation algorithm if W is bounded by polynom in n, |E|.
- Limits of our approach
- Centralized Approximation Algorithm

Open Problems

- weighted case: restrict to ε-NE
- More general models
 - w_e is not constant
 - element must be covered multiple times

