Maximum-Feasible Subsystems: Algorithms and Complexity

Rajiv Raman

DIMAP, University of Warwick

July 15, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Given a system of equations/inequalities satisfy the largest number of them that can be satisfied simultaneously.

$$x_1 + x_2 = 1$$

 $x_1 = 1$
 $x_2 = 1$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

At most *two* of the equations above are feasible.

Maximum Feasible Subsystem

Given a matrix $A \in \mathbb{Q}^{m \times n}$, and $u \in \mathbb{Q}^m$, the maximum feasible subsystem problem is to find the largest subsystem of

 $Ax \diamond u$

that is feasible, where $\diamond \in \{\leq, <, =\}$.

Applications

► Operations Research: Modeling real-life problems using LPs.

- Computational Geometry: Densest Hemisphere
- Machine Learning
- Maximum Acyclic Subgraphs
- Pricing
- Several Others

Application: Large LP models

- Modeling using large-scale LPs may lead to infeasible systems.
- Diagnosing infeasibility done by extracting a minimal infeasible system (Eg. CPLEX IIS¹ solver).
- This is the complementary problem, but much more difficult.

Application: Densest Hemisphere

Given a set of points $\{a_1, \ldots, a_n\}$ on a sphere \mathbb{S}^{n-1} in \mathbb{R}^n . The *Densest Hemisphere* problem is to find a halfspace that contains the *maximum number of points*.

 $\max\{a_i:a_i^Tx\geq 0\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application: Max Acyclic Subgraph

 x_5

 $D = (V, A) \text{ directed graph. Find } A' \subseteq A \text{ s.t. } D(V, A') \text{ is acyclic.}$ x_1 $x_2 - x_1 \geq 1$ $x_3 - x_2 \geq 1$ $x_4 - x_3 \geq 1$ $x_1 - x_4 \geq 1$ \vdots

Application: Max Acyclic Subgraph

 x_5

 $D = (V, A) \text{ directed graph. Find } A' \subseteq A \text{ s.t. } D(V, A') \text{ is acyclic.}$ x_1 $x_2 - x_1 \geq 1$ $x_3 - x_2 \geq 1$ $x_4 - x_3 \geq 1$ $x_1 - x_4 \geq 1$ \vdots

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Application: Max Acyclic Subgraph

D = (V, A) directed graph. Find $A' \subseteq A$ s.t. D(V, A') is acyclic.

:

• $E = \{e_1, \ldots, e_m\}$ of items to sell.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- $E = \{e_1, \ldots, e_m\}$ of items to sell.
- Buyer interested in a subset.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Buyer *i* has budget B_i .

- ► A collection E = {e₁,..., e_m} of items to sell.
- Buyers interested in subsets of items.
- Each buyer i has a budget B_i.

- ► A collection E = {e₁,..., e_m} of items to sell.
- Buyers interested in subsets of items.
- Each buyer i has a budget B_i.

- ► A collection E = {e₁,..., e_m} of items to sell.
- Buyers interested in subsets of items.
- Each buyer i has a budget B_i.
- Buyer buys if the total price is within her budget.

200 + 245	<	500 Buys
200 + 200	>	300 Does not Buy
200 + 245	>	350 Does not buy

Total Profit : 200 + 245 = 445.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

200 + 245 <</td> 500 Buys 200 + 200 > 300 Does not Buy 200 + 245 > 350 Does not buy

Total Profit : 200 + 245 = 445.

Objective

Set prices to maximize profit.

Pricing

Assume buyers are single minded, i.e., each buyer is interested in exactly one subset.

- Assume we have infinitely many copies of each item.
- Also considered:
 - Buyers have different valuations on different subsets.
 - Finite copies of each item.

Lemma

There exists a 2-approximate solution S to Pricing such that each buyer i in S spends at least $B_i/2$.

Proof.

Let OPT be the optimal solution. $OPT = OPT_{<} + OPT_{\geq}$. If Lemma is not true, we can *double* the price of each item, and $OPT_{<}$ is still feasible, leading to a contradiction.

With a loss of a factor of 2, we can assume each buyer spends at least $1/2\ \rm her$ budget.

Define a variable p_e = Price of item $e \in E$. Then, for each buyer $i \in I$, we can write:

$$B_i/2 \leq \sum_{e \in I_i} p_e \leq B_i$$
 of weight B_i

A Weighted Maximum Feasible Subsystem Problem: Maximize the weight of the satisfied constraints.

Related Work

► [Amaldi,Kann 95]

- ▶ $Ax \diamond u$, $\diamond \in \{\leq,=\}$ NP-hard even if $A_{ij} \in \{-1,1\}, \{-1,0,1\}$
- 2-approximation for $Ax \leq b$.
- Also studied variations where some inequalities must be satisfied in any feasible solution.

► *Ax* = *b*

- Feige, Reichman 07] Ax = b is hard to approximate beyond m^{1−ϵ} for any ϵ > 0.
- [Guruswami,Raghavendra 07] Ax = b with $|A_i| \le 3$ is hard to approximate beyond $m^{1-\epsilon}$ for any $\epsilon > 0$.

 [Amaldi,Kann 98] Complexity of Minimizing unsatisfied constraints.

MFS with 0/1 Matrices

Given a matrix $A_{m \times n}$, $A_{ij} \in \{0, 1\}$, and $I, u \in \mathbb{Q}^m$, and a weight function $w : \{1, \ldots, m\} \to \mathbb{Q}$, find a maximum weight feasible subsystem of

$$\begin{array}{rrrr} I_i \leq & A_i^T x & \leq u_i & (w_i) \\ & x & \geq 0 \end{array}$$

- Assume wlog. $\min\{I_i : I_i \neq 0\} = 1$.
- Let $L = \max\{l_1, \ldots, l_m\}.$

Bi-criteria Approximation

Let S be a feasible solution.

- $\alpha \ge 1$: Approximation factor.
- $\beta \ge 1$: Relaxation factor.

 (α,β) -approximation

•
$$|S| \ge \frac{OPT}{\alpha}$$
, and

• For each
$$i \in S$$
, $I_i \leq A_i^T x \leq \beta u_i$.

i.e., We satisfy at least an α -fraction of the inequalities, while violating each inequality by a factor of β .

Our Results

0/1-Matrices	Bi-criteria approximation	Hardness Results.
Interval Matrices	Bi-criteria approximation	Hardness Results.

An $(O(\log nL), 1 + \epsilon)$ -approximation

$$l_{1} \leq A_{1}^{T} x \leq u_{1}$$
$$l_{2} \leq A_{2}^{T} x \leq u_{2}$$
$$\vdots$$
$$l_{m} \leq A_{m}^{T} x \leq u_{m}$$

- Group into sets on $\frac{I_i}{|A_i|}$
- Solve each group separately.

Return the best group.

An $(O(\log nL/\epsilon), 1+\epsilon)$ -approximation

$$\begin{split} \frac{l_i}{|A_i|} \\ \hline 0 \leq A_i^T x \leq u_i & (0, (1+\epsilon)] \\ \hline l_i \leq A_i^T x \leq u_i & ((1+\epsilon), (1+\epsilon)^2] \\ & \vdots \\ & ((1+\epsilon)^{i-1}, (1+\epsilon)^i] \\ \hline l_i \leq A_i^T x \leq u_i & ((1+\epsilon)^{h-1}(1+\epsilon)^h] \end{split}$$

- $L_{min} = \min\{\frac{l_i}{|A_i|}\} \ (\geq 1/n)$
- $L_{max} = \max\{\frac{l_i}{|A_i|}\} \ (\leq L)$

►
$$h = \lceil \log_{1+\epsilon} \frac{L_{max}}{L_{min}} \rceil \le \lceil \log_{1+\epsilon} nL \rceil$$

• Set
$$x = (1 + \epsilon)^i$$
.

- Satisfies G_i , with $\beta = (1 + \epsilon)$.
- ▶ Hence $\alpha \le h+1$

But this algorithm is almost the best possible.

Theorem

Unless $NP \subseteq DTIME(2^{n^{\epsilon}})$ for some $\epsilon > 0$, it is impossible to obtain a better than $O(\alpha, \beta)$ -approximation, where $\alpha \cdot \beta = O(\log^{\mu} n)$, for some $\mu > 0$.

Hence, obtaining a better than $(O(\log^{\mu} n), O(1))$ -approximation algorithm is hard.

Dependence on L

- $\blacktriangleright (\alpha, \beta) = (\log nL, 1 + \epsilon)$
- ▶ If *L* is poly(*m*, *n*), polylog approximation.
- What if $L = \Omega(2^{poly(m,n)})$

► Then MFS is hard to approximate beyond $\left(\left(\frac{L}{\log \log L}\right)^{1/3-\epsilon}, O(1)\right)$ for any $\epsilon > 0$, unless NP=ZPP.

- ► G = (A, B, E) bipartite graph.
- M ⊆ E is an induced matching if
- ► G(M) is a matching.

- ► G = (A, B, E) bipartite graph.
- M ⊆ E is an induced matching if
- ► G(M) is a matching.

- ► G = (A, B, E) bipartite graph.
- M ⊆ E is an induced matching if
- ► G(M) is a matching.

- ► G = (A, B, E) bipartite graph.
- M ⊆ E is an induced matching ⇒ G(M) is a matching.
- ► max |*M*|.

- $\blacktriangleright A_{ij} = 1 \Leftrightarrow \{i, j\} \in E$
- Largest identity matrix.

Reduction

- For a vertex v^i in V(G).
- *K* copies: $\{v_1^i, \ldots, v_K^i\}$.
- *K* copies: $\{v_1'^i, ..., v_K'^i\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

► Edge vⁱ_j, vⁱ_j

Reduction

- ▶ For $\{v^i, v^j\} \in E(G)$.
- All edges between gadgets.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

This completes the reduction.

Hardness of Approximation

Independent set IS of G, then

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\blacktriangleright |MIDM| \ge K \cdot |IS|$

Hardness of Approximation

- ► (from prev) |*MIDM*|/K ≥ |*IS*|
- $|IS| \ge |MIDM|/K 1.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Hardness of Approximation

- ► MIS hard to approximate beyond Ω(n^{1-ϵ}) for any ϵ > 0 unless NP=ZPP.
- ► MIMP hard to approximate beyond Ω(n^{1/3-ϵ}). for any ϵ > 0 unless NP = ZPP.

(日)、

Hardness of Approximation

Theorem

MIM is hard to approximate beyond $n^{1/3-\epsilon}$ for any $\epsilon > 0$ unless NP=ZPP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hardness of Approximation

Using a similar reduction as in the Maximum Induced Matching on Bipartite Graphs, we can show

Hardness of Approximation

Using a similar reduction as in the Maximum Induced Matching on Bipartite Graphs, we can show

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Theorem MFS with 0/1 matrices is hard to approximate beyond $\left(\left(\frac{\log L}{\log \log L}\right)^{1/3-\epsilon}, O(1)\right)$ unless NP=ZPP.

General 0/1 Matrices

Approximation (α, β)	Running Time	Hardness $(lpha,eta)$		
$O(\log \frac{nL}{\epsilon}), 1+\epsilon)$	$poly(m, n, \log L, \frac{1}{\epsilon})$	$(O(\log^{\mu} n), O(1))$		
		$(O((\frac{\log L}{\log \log L})^{\frac{1}{3}-\epsilon}), O(1))$		
Here $L = \max\{l_1,, l_m\}$, $\min\{l_i, l_i \neq 0\} = 1$				

A matrix A is an interval matrix, if it is the *clique-vertex* incidence matrix of an *interval graph*. In other words, the matrix has the *consecutive one's property* in the rows.

Interval Graph

- Intervals with total order on end-points.
- Each interval has lower/upper bounds on lengths.
- Draw maximum number of intervals satisfying order of end-points, and length constraints.

$(\sqrt{m}, 1)$ -approx

- Define a partial order *P* by containment.
- Claim: We can partition \mathcal{P} into partial orders P_1, \ldots, P_k s.t. each P_i is either a chain or an anti-chain, and $k \leq 2 \cdot \sqrt{|\mathcal{P}|}$.

$(\sqrt{m}, 1)$ -approx

Each anti-chain can be partitioned into at most 2 sets V₁ and V₂ such that each V_i is a disjoint union of staircases.

$(\sqrt{m}, 1)$ -approximation

- Find the best *tower* with each possible interval as base by dynamic programming.
- 2. Find the best staircase between two intervals for each pair.
- Find the best set of disjoint staircases by maximum independent set of interval graphs.
- 4. Return the best of the two.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$(\sqrt{m}, 1)$ -approximation

- Find the best *tower* with each possible interval as base by dynamic programming.
- Find the best staircase between two intervals for each pair.
- Find the best set of disjoint staircases by maximum independent set of interval graphs.
- 4. Return the best of the two.

Approximation (α, β)	Running Time	Hardness
$(1+\epsilon,1+\epsilon)$ [Grandoni,Rothvoss '10]	$poly(m, n, \frac{1}{\epsilon})$	NP-hard
$(\sqrt{m},1)$	poly(m, n)	APX-hard

Reduction from MAX-2-SAT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gadget for variable x_i.

◆□>
◆□>
E>

► TRUE configuration.

・ロト ・四ト ・ヨト ・ヨト

æ

FALSE configuration of gadget for x_i

・ロト ・聞ト ・ヨト ・ヨト

æ

• Gadget for clause $(x_i \lor x_j)$

◆□>
◆□>
E>

• Gadget for clause $(x_i \vee \overline{x_i})$.

- The MFS instance.
- Each variable gadget is copied m_i times, where m_i is the number of clauses variable x_i appears in.
- A total of O(m) intervals.

- In any optimal solution, all variable gadgets in either TRUE or FALSE configuration.
- For each satisfied clause, exactly one interval is feasible iff it is satisfiable.

Open Questions

MFS

- Better approximation algorithms, or hardness for interval matrices.
- Extend results on interval matrices to Totally Unimodular Matrices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Non-Bi-criteria results.

References

Based on joint work with

- Stefan Canzar (CWI)
- Khaled Elbassioni, Amr Elmasry (Max-Planck-Institut, Saarbrucken)

- Saurabh Ray (EPFL)
- René Sitters (VU Amsterdam)

Thank you.