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Example

Given a system of equations/inequalities satisfy the largest number
of them that can be satisfied simultaneously.

x1 + x2 = 1

x1 = 1

x2 = 1

At most two of the equations above are feasible.



Maximum Feasible Subsystem

Given a matrix A ∈ Qm×n, and u ∈ Qm, the maximum feasible
subsystem problem is to find the largest subsystem of

Ax � u

that is feasible, where � ∈ {≤, <,=}.



Applications

I Operations Research: Modeling real-life problems using LPs.

I Computational Geometry: Densest Hemisphere

I Machine Learning

I Maximum Acyclic Subgraphs

I Pricing

I Several Others



Application: Large LP models

I Modeling using large-scale LPs may lead to infeasible systems.

I Diagnosing infeasibility done by extracting a minimal
infeasible system (Eg. CPLEX IIS1 solver).

I This is the complementary problem, but much more difficult.

1Irreducible Infeasible System



Application: Densest Hemisphere

Given a set of points {a1, . . . , an} on a sphere Sn−1 in Rn. The
Densest Hemisphere problem is to find a halfspace that contains
the maximum number of points.

a1

a2

a3

an

a1

a2

a3

an

x

max{ai : aT
i x ≥ 0}



Application:
Max Acyclic Subgraph

D = (V ,A) directed graph. Find A′ ⊆ A s.t. D(V ,A′) is acyclic.

x1

x2

x3

x4

x5

x2 − x1 ≥ 1

x3 − x2 ≥ 1
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x1 − x4 ≥ 1
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Application:
Max Acyclic Subgraph

D = (V ,A) directed graph. Find A′ ⊆ A s.t. D(V ,A′) is acyclic.

x1

x2

x3

x4

x5

1
2

34 2− 1 ≥ 1

3− 2 ≥ 1

4− 3 ≥ 1

1− 4 ≥ 1
...



Application: Pricing

I E = {e1, . . . , em} of items
to sell.
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Application: Pricing

I A collection
E = {e1, . . . , em} of items
to sell.

I Buyers interested in subsets
of items.

I Each buyer i has a budget
Bi .

I Buyer buys if the total price
is within her budget.



Application: Pricing

200 + 245 < 500 Buys

200 + 200 > 300 Does not Buy

200 + 245 > 350 Does not buy

Total Profit : 200 + 245 = 445.

Objective

Set prices to maximize profit.



Application: Pricing

200 + 245 < 500 Buys

200 + 200 > 300 Does not Buy

200 + 245 > 350 Does not buy

Total Profit : 200 + 245 = 445.

Objective

Set prices to maximize profit.



Pricing

I Assume buyers are single minded, i.e., each buyer is interested
in exactly one subset.

I Assume we have infinitely many copies of each item.
I Also considered:

I Buyers have different valuations on different subsets.
I Finite copies of each item.



Connection to MFS

Lemma
There exists a 2-approximate solution S to Pricing such that each
buyer i in S spends at least Bi/2.

Proof.
Let OPT be the optimal solution. OPT = OPT< + OPT≥. If
Lemma is not true, we can double the price of each item, and
OPT< is still feasible, leading to a contradiction.

With a loss of a factor of 2, we can assume each buyer spends at
least 1/2 her budget.



Connection to MFS

Define a variable pe = Price of item e ∈ E . Then, for each buyer
i ∈ I , we can write:

Bi/2 ≤
∑
e∈Ii

pe ≤ Bi of weight Bi

A Weighted Maximum Feasible Subsystem Problem: Maximize the
weight of the satisfied constraints.



Related Work

I [Amaldi,Kann 95]
I Ax � u, � ∈ {≤,=} NP-hard even if Aij ∈ {−1, 1}, {−1, 0, 1}
I 2-approximation for Ax ≤ b.
I Also studied variations where some inequalities must be

satisfied in any feasible solution.

I Ax = b
I [Feige, Reichman 07] Ax = b is hard to approximate beyond

m1−ε for any ε > 0.
I [Guruswami,Raghavendra 07] Ax = b with |Ai | ≤ 3 is hard to

approximate beyond m1−ε for any ε > 0.

I [Amaldi,Kann 98] Complexity of Minimizing unsatisfied
constraints.



MFS with 0/1 Matrices

Given a matrix Am×n, Aij ∈ {0, 1}, and l , u ∈ Qm, and a weight
function w : {1, . . . ,m} → Q, find a maximum weight feasible
subsystem of

li ≤ AT
i x ≤ ui (wi )

x ≥ 0

I Assume wlog. min{li : li 6= 0} = 1.

I Let L = max{l1, . . . , lm}.



Bi-criteria Approximation

Let S be a feasible solution.

I α ≥ 1: Approximation factor.

I β ≥ 1: Relaxation factor.

(α, β)-approximation

I |S | ≥ OPT
α , and

I For each i ∈ S , li ≤ AT
i x ≤ βui .

i.e., We satisfy at least an α-fraction of the inequalities, while
violating each inequality by a factor of β.



Our Results

0/1-Matrices Bi-criteria approximation Hardness Results.

Interval Matrices Bi-criteria approximation Hardness Results.



An (O(log nL), 1 + ε)-approximation

l1 ≤ AT
1 x ≤ u1

l2 ≤ AT
2 x ≤ u2

...

lm ≤ AT
mx ≤ um

I Group into sets on li
|Ai |

I Solve each group separately.

I Return the best group.



An (O(log nL/ε), 1 + ε)-approximation

0 ≤ AT
i x ≤ ui

li ≤ AT
i x ≤ ui

li ≤ AT
i x ≤ ui

li
|Ai|

(0, (1 + ε)]

((1 + ε), (1 + ε)2]

((1 + ε)i−1, (1 + ε)i]

((1 + ε)h−1(1 + ε)h]

...

I Lmin = min{ li
|Ai |} (≥ 1/n)

I Lmax = max{ li
|Ai |} (≤ L)

I h = dlog1+ε
Lmax
Lmin
e ≤

dlog1+ε nLe
I Set x = (1 + ε)i .

I Satisfies Gi , with
β = (1 + ε).

I Hence α ≤ h + 1



Hardness of Approximation

But this algorithm is almost the best possible.

Theorem
Unless NP ⊆ DTIME (2nε

) for some ε > 0, it is impossible to
obtain a better than O(α, β)-approximation, where
α · β = O(logµ n), for some µ > 0.

Hence, obtaining a better than
(
O(logµ n),O(1)

)
-approximation

algorithm is hard.



Dependence on L

I (α, β) = (log nL, 1 + ε)

I If L is poly(m, n), polylog approximation.

I What if L = Ω(2poly(m,n))

I Then MFS is hard to approximate beyond((
L

log log L

)1/3−ε
,O(1)

)
for any ε > 0, unless NP=ZPP.



Induced Matching
Bipartite Graphs
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Induced Matching
Bipartite Graphs

a1

a2

a3

b1

b2

b3

I G = (A,B,E ) bipartite
graph.

I M ⊆ E is an induced
matching ⇒ G (M) is a
matching.

I max |M|.

I Aij = 1⇔ {i , j} ∈ E

I Largest identity matrix.

a1

a2

a3

b1 b2 b3

1

1

0

0

1

1

0

0

1



Reduction

vi
1
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vi
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v′i
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K

vi

I For a vertex v i in V (G ).

I K copies: {v i
1, . . . , v

i
K}.

I K copies: {v ′i1 , . . . , v ′iK}
I Edge v i

j , v
′i
j



Reduction
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v′i
K I For {v i , v j} ∈ E (G ).

I All edges between gadgets.

This completes the reduction.



Hardness of Approximation

vj
1

vj
2

vj
3

vj
K

v′j
1

v′j
2

v′j
3

v′j
K

vi

vj

vi
1

vi
2

vi
3

vi
K

v′i
1

v′i
2

v′i
3

v′i
K

I Independent set IS of G ,
then

I |MIDM| ≥ K · |IS |



Hardness of Approximation
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I (from prev)
|MIDM|/K ≥ |IS |

I |IS | ≥ |MIDM|/K − 1.



Hardness of Approximation
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I MIS hard to approximate
beyond Ω(n1−ε) for any
ε > 0 unless NP=ZPP.

I MIMP hard to approximate
beyond Ω(n1/3−ε). for any
ε > 0 unless NP = ZPP.



Hardness of Approximation
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beyond n1/3−ε for any ε > 0
unless NP=ZPP.



Hardness of Approximation

Using a similar reduction as in the Maximum Induced Matching on
Bipartite Graphs, we can show

Theorem
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Theorem
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General 0/1 Matrices

Approximation (α, β) Running Time Hardness (α, β)

(O(log nL
ε ), 1 + ε) poly(m, n, log L, 1

ε ) (O(logµ n),O(1))

(O(( log L
log log L)

1
3
−ε),O(1))

Here L = max{l1, . . . , lm}, min{li , li 6= 0} = 1



Interval Matrix

A matrix A is an interval matrix, if it is the clique-vertex incidence
matrix of an interval graph. In other words, the matrix has the
consecutive one’s property in the rows.

0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1





Interval Graph

la lb lc ra rb rc

(1, 2)

(5, 6)

(1, 2)

I Intervals with total order on
end-points.

I Each interval has
lower/upper bounds on
lengths.

I Draw maximum number of
intervals satisfying order of
end-points, and length
constraints.



Interval Matrices

(
√

m, 1)-approx

I Define a partial order P by
containment.

I Claim: We can partition P
into partial orders
P1, . . . ,Pk s.t. each Pi is
either a chain or an
anti-chain, and
k ≤ 2 ·√|P|.



Interval Matrices

(
√

m, 1)-approx

I Each anti-chain can be
partitioned into at most 2
sets V1 and V2 such that
each Vi is a disjoint union of
staircases.



Interval Matrices

(
√

m, 1)-approximation

1. Find the best tower with
each possible interval as
base by dynamic
programming.

2. Find the best staircase
between two intervals for
each pair.

3. Find the best set of disjoint
staircases by maximum
independent set of interval
graphs.

4. Return the best of the two.
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Interval Matrices

Approximation (α, β) Running Time Hardness

(1 + ε, 1 + ε) [Grandoni,Rothvoss ’10] poly(m, n, 1
ε ) NP-hard

(
√

m, 1) poly(m, n) APX-hard



APX-hardness

Reduction from MAX-2-SAT.
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I Gadget for variable xi .



APX-hardness
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APX-hardness
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I FALSE configuration of gadget for xi



APX-hardness
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APX-hardness
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APX-hardness

x

x

x

n

xn−1

n−2

1

l rr rx x x x xn 1 2 xr n−1 n
l l x n−1 n−2

l x1

l rz z

0

I The MFS instance.

I Each variable gadget is copied mi times, where mi is the
number of clauses variable xi appears in.

I A total of O(m) intervals.



APX-hardness
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l rr rx x x x xn 1 2 xr n−1 n
l l x n−1 n−2

l x1

l rz z

0

I In any optimal solution, all variable gadgets in either TRUE or
FALSE configuration.

I For each satisfied clause, exactly one interval is feasible iff it is
satisfiable.



Open Questions

I MFS
I Better approximation algorithms, or hardness for interval

matrices.
I Extend results on interval matrices to Totally Unimodular

Matrices.
I Non-Bi-criteria results.
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