Smoothed Analysis of Multiobjective Optimization

Heiko Röglin
Department of Quantitative Economics

July 2010
DIMAP Summer School
based on joint work with
Rene Beier, Shang-Hua Teng, and Berthold Vöcking

Optimization Problems

Single-criterion Optimization Problem: $\min f(x)$ subject to $x \in \mathcal{S}$.

Example:
Shortest Path Problem

Optimization Problems

Single-criterion Optimization Problem: $\min f(x)$ subject to $x \in \mathcal{S}$.

Example:
Shortest Path Problem

Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)

Optimization Problems

Single-criterion Optimization Problem: $\min f(x)$ subject to $x \in \mathcal{S}$.

Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)
Multiobjective Opt. Problem: $\min f_{1}(x), \ldots, \min f_{d}(x)$ s.t. $x \in \mathcal{S}$. Usually, there is no solution that is simultaneously optimal for all f_{i}.

Question

What can we do algorithmically to support the decision maker?

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$
$x \in \mathcal{S}$ Pareto-optimal \Longleftrightarrow
$\nexists y \in \mathcal{S}: y$ dominates x

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$
$x \in \mathcal{S}$ Pareto-optimal

$\nexists y \in \mathcal{S}: y$ dominates x

Often the Pareto curve is generated:

- Pareto curve limits options for decision maker.
- Monotone functions are optimized by Pareto-optimal solutions, e.g., $\lambda_{1} w^{1}(x)+\ldots+\lambda_{d} w^{d}(x)$ or $w^{1}(x) \cdots \cdot w^{d}(x)$.

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$
$x \in \mathcal{S}$ Pareto-optimal

Often the Pareto curve is generated:

- Pareto curve limits options for decision maker.
- Monotone functions are optimized by Pareto-optimal solutions, e.g., $\lambda_{1} w^{1}(x)+\ldots+\lambda_{d} w^{d}(x)$ or $w^{1}(x) \cdots \cdots w^{d}(x)$.

Central Question
 How large is the Pareto curve?

Model

Linear Binary Optimization Problem

- set of feasible solutions $\mathcal{S} \subseteq\{0,1\}^{n}$ solution $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{S}$ consists of n binary variables
- d linear objective functions:

$$
\forall i \in\{1, \ldots, d\}: \min w^{i}(x)=w_{1}^{i} x_{1}+\cdots+w_{n}^{i} x_{n}
$$

\mathcal{S} can encode arbitrary combinatorial structure, e.g., for a given graph, all paths from s to t, all Hamiltonian cycles, all spanning trees, ...

Model

Linear Binary Optimization Problem

- set of feasible solutions $\mathcal{S} \subseteq\{0,1\}^{n}$ solution $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{S}$ consists of n binary variables
- d linear objective functions:
$\forall i \in\{1, \ldots, d\}: \min w^{i}(x)=w_{1}^{i} x_{1}+\cdots+w_{n}^{i} x_{n}$
\mathcal{S} can encode arbitrary combinatorial structure, e.g., for a given graph, all paths from s to t, all Hamiltonian cycles, all spanning trees, ...

How large is the Pareto curve?

- Exponential in the worst case for almost all problems.
- In practice, often few Pareto optimal solutions.

Example: Train Connections
w.r.t. travel time, fare, number of train changes
[Müller-Hannemann, Weihe 2001]

Smoothed Analysis

Smoothed Analysis

- $\mathcal{S} \subseteq\{0,1\}^{n}, d$ objectives: $\min w^{i}(x)=w_{1}^{i} x_{1}+\cdots+w_{n}^{i} x_{n}$
- Every coefficient w_{j}^{j} is an independent random variable following a probability density $f_{j}^{i}:[-1,1] \rightarrow[0, \phi]$.

Smoothed Analysis

Smoothed Analysis

- $\mathcal{S} \subseteq\{0,1\}^{n}$, d objectives: $\min w^{i}(x)=w_{1}^{i} x_{1}+\cdots+w_{n}^{i} x_{n}$
- Every coefficient w_{j}^{i} is an independent random variable following a probability density $f_{j}^{i}:[-1,1] \rightarrow[0, \phi]$.
- each w_{j}^{i} uniformly at random from interval of length $1 / \phi$
- w_{j}^{i} are Gaussians, adversary specifies means, $\phi \sim 1 / \sigma$
- ϕ large \approx worst case ϕ small \approx average case

Smoothed Analysis

Smoothed Analysis

- $\mathcal{S} \subseteq\{0,1\}^{n}$, d objectives: $\min w^{i}(x)=w_{1}^{i} x_{1}+\cdots+w_{n}^{i} x_{n}$
- Every coefficient w_{j}^{j} is an independent random variable following a probability density $f_{j}^{i}:[-1,1] \rightarrow[0, \phi]$.
- each w_{j}^{i} uniformly at random from interval of length $1 / \phi$
- w_{j}^{i} are Gaussians, adversary specifies means, $\phi \sim 1 / \sigma$
- ϕ large \approx worst case ϕ small \approx average case

$$
Q_{d}(n, \phi)=\max _{\mathcal{S}, f_{j}^{i}} \mathbf{E}\left[\text { number of Pareto-optimal sol. for } \mathcal{S} \text { and } f_{j}^{i}\right]
$$

Results

Bicriteria Optimization ($d=2$):
Beier, Vöcking (STOC 2003)
For any \mathcal{S} and any $f_{j}^{i}, Q_{2}(n, \phi)=O\left(n^{4} \phi\right)$.
There are \mathcal{S} and f_{j}^{i} such that $Q_{2}(n, \phi)=\Omega\left(n^{2}\right)$.

Results

Bicriteria Optimization ($d=2$):
Beier, Vöcking (STOC 2003)
For any \mathcal{S} and any $f_{j}^{i}, Q_{2}(n, \phi)=O\left(n^{4} \phi\right)$.
There are \mathcal{S} and f_{j}^{i} such that $Q_{2}(n, \phi)=\Omega\left(n^{2}\right)$.

Beier, R., Vöcking (IPCO 2007)

For any \mathcal{S} and any $f_{j}^{i}, Q_{2}(n, \phi)=O\left(n^{2} \phi\right)$.
Extension to integer optimization problems.

Results

Bicriteria Optimization ($d=2$):
Beier, Vöcking (STOC 2003)
For any \mathcal{S} and any $f_{j}^{i}, Q_{2}(n, \phi)=O\left(n^{4} \phi\right)$.
There are \mathcal{S} and f_{j}^{i} such that $Q_{2}(n, \phi)=\Omega\left(n^{2}\right)$.

Beier, R., Vöcking (IPCO 2007)

For any \mathcal{S} and any $f_{j}^{i}, Q_{2}(n, \phi)=O\left(n^{2} \phi\right)$.
Extension to integer optimization problems.

Multiobjective Optimization (d arbitrary constant):

R., Teng (FOCS 2009)

For any \mathcal{S} and any $f_{j}^{i}, Q_{d}(n, \phi)=O\left((n \phi)^{h(d)}\right)$ for some function h.
For any $c \in[1, \sqrt{\log (n)}], Q_{d}(n, \phi)^{c}=O\left((n \phi)^{c \cdot h(d)}\right)$.

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon] ?$

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon] ?$

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon] ?$

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- loser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon] ?$

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- Ioser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- i-th loser gap: $\Lambda^{i}(t)=$ distance of i-th loser from t

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon]$?

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- loser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- i-th loser gap: $\Lambda^{i}(t)=$ distance of i-th loser from t
$\operatorname{Pr}\left[\exists \ell\right.$ many PO solutions x with $\left.w^{1}(x) \in[t, t+\varepsilon]\right] \leq \operatorname{Pr}\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon]$?

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- loser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- i-th loser gap: $\Lambda^{i}(t)=$ distance of i-th loser from t
$\operatorname{Pr}\left[\exists \ell\right.$ many PO solutions x with $\left.w^{1}(x) \in[t, t+\varepsilon]\right] \leq \operatorname{Pr}\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon]$?

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- loser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- i-th loser gap: $\Lambda^{i}(t)=$ distance of i-th loser from t
$\operatorname{Pr}\left[\exists \ell\right.$ many PO solutions x with $\left.w^{1}(x) \in[t, t+\varepsilon]\right] \leq \operatorname{Pr}\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$
Lemma [Beier, Vöcking (STOC 2004)]
For every $\varepsilon \geq 0$ and $t \in \mathbb{R}, \operatorname{Pr}\left[\Lambda^{1}(t) \leq \varepsilon\right] \leq n \phi \varepsilon$.

Generalized Loser Gap

How many
PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon]$?

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- loser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- i-th loser gap: $\Lambda^{i}(t)=$ distance of i-th loser from t
$\operatorname{Pr}\left[\exists \ell\right.$ many PO solutions x with $\left.w^{1}(x) \in[t, t+\varepsilon]\right] \leq \operatorname{Pr}\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$

Lemma [R., Teng (FOCS 2009)]

For every $\varepsilon \geq 0, z \in \mathbb{N}$, and $t \in \mathbb{R}$,

$$
\operatorname{Pr}\left[\Lambda^{2^{z-1}}(t) \leq \varepsilon\right] \leq 2^{z^{2}+z} n^{z} \phi^{z} \varepsilon^{z-1} .
$$

Higher Moments

divide $[0, n]$ into k intervals:
$[0, n]=\left[t_{0}, t_{1}\right], \ldots,\left[t_{k-1}, t_{k}\right]$

Higher Moments

divide $[0, n]$ into k intervals:
$[0, n]=\left[t_{0}, t_{1}\right], \ldots,\left[t_{k-1}, t_{k}\right]$

$$
\operatorname{Pr}\left[Q_{2}(n, \phi)^{c} \geq\left(2^{z-1} \cdot k\right)^{c}\right]
$$

$\leq \operatorname{Pr}\left[\exists i:\left[t_{i}, t_{i+1}\right]\right.$ contains more than $2^{z-1} \mathrm{PO}$ solutions $]$
$\leq \operatorname{Pr}\left[\exists i: \Lambda^{2^{z-1}}\left(t_{i}\right) \leq \frac{2 n}{k}\right] \leq \frac{2^{z^{2}+2 z-1} n^{2 z-1} \phi^{z}}{k^{z-2}}$

Higher Moments

divide $[0, n]$ into k intervals:
$[0, n]=\left[t_{0}, t_{1}\right], \ldots,\left[t_{k-1}, t_{k}\right]$

$$
\operatorname{Pr}\left[Q_{2}(n, \phi)^{c} \geq\left(2^{z-1} \cdot k\right)^{c}\right]
$$

$\leq \operatorname{Pr}\left[\exists i:\left[t_{i}, t_{i+1}\right]\right.$ contains more than $2^{z-1} \mathrm{PO}$ solutions $]$
$\leq \operatorname{Pr}\left[\exists i: \Lambda^{2^{z-1}}\left(t_{i}\right) \leq \frac{2 n}{k}\right] \leq \frac{2^{z^{2}+2 z-1} n^{2 z-1} \phi^{z}}{k^{z-2}}$

R., Teng (FOCS 2009)

For any \mathcal{S} and any f_{j}^{i} and every $c \in[1, \sqrt{\log (n)}]$,

$$
\mathbf{Q}_{\mathrm{d}}(\mathbf{n}, \phi)^{\mathbf{c}}=\left(\mathbf{n}^{2} \phi\right)^{\mathbf{c}(1+\mathbf{o}(1))} .
$$

Proof Idea for $d \geq 3$

How many $\mathrm{PO} x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon] ?$
$\min w^{2}(x), \ldots, \min w^{d}(x)$
s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$

Proof Idea for $d \geq 3$

How many PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon] ?$
$\min w^{2}(x), \ldots, \min w^{d}(x)$
s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$

$d=2$
optimal solution x^{\star}
$d \geq 3$
$\mathcal{P}^{\star}=$ set of PO solutions

Proof Idea for $d \geq 3$

How many PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon] ?$
$\min w^{2}(x), \ldots, \min w^{d}(x)$
s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
$d=2$
optimal solution x^{\star}
$\mathcal{L}=\left\{x \in \mathcal{S} \mid w^{2}(x)<w^{2}\left(x^{\star}\right)\right\}$

$d \geq 3$
$\mathcal{P}^{\star}=$ set of PO solutions
$\left(x_{2}^{\star}, \ldots, x_{d}^{\star}\right) \in\left(\mathcal{P}^{\star}\right)^{d-1}$
$\mathcal{L}=\left\{x \in \mathcal{S} \mid \forall i: w^{i}(x)<w^{i}\left(x_{i}^{\star}\right)\right\}$

Proof Idea for $d \geq 3$

How many PO $x \in \mathcal{S}$ with $w^{1}(x) \in[t, t+\varepsilon]$?
$\min w^{2}(x), \ldots, \min w^{d}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
$d=2$
optimal solution x^{\star}
$\mathcal{L}=\left\{x \in \mathcal{S} \mid w^{2}(x)<w^{2}\left(x^{\star}\right)\right\}$

$d \geq 3$
$\mathcal{P}^{\star}=$ set of PO solutions
$\left(x_{2}^{\star}, \ldots, x_{d}^{\star}\right) \in\left(\mathcal{P}^{\star}\right)^{d-1}$
$\mathcal{L}=\left\{x \in \mathcal{S} \mid \forall i: w^{i}(x)<w^{i}\left(x_{i}^{\star}\right)\right\}$

Proof Idea for $d \geq 3$

How many PO $x \in \mathcal{S}$ with
$w^{1}(x) \in[t, t+\varepsilon]$?
$\min w^{2}(x), \ldots, \min w^{d}(x)$
s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
$d=2$
optimal solution x^{\star}
$\mathcal{L}=\left\{x \in \mathcal{S} \mid w^{2}(x)<w^{2}\left(x^{\star}\right)\right\}$

$d \geq 3$
$\mathcal{P}^{\star}=$ set of PO solutions
$\left(x_{2}^{\star}, \ldots, x_{d}^{\star}\right) \in\left(\mathcal{P}^{\star}\right)^{d-1}$
$\mathcal{L}=\left\{x \in \mathcal{S} \mid \forall i: w^{i}(x)<w^{i}\left(x_{i}^{\star}\right)\right\}$

Proof Idea for $d \geq 3$

How many PO $x \in \mathcal{S}$ with $w^{1}(x) \in[t, t+\varepsilon]$?
$\min w^{2}(x), \ldots, \min w^{d}(x)$
s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
$d=2$
optimal solution x^{\star}
$\mathcal{L}=\left\{x \in \mathcal{S} \mid w^{2}(x)<w^{2}\left(x^{\star}\right)\right\}$

$d \geq 3$
$\mathcal{P}^{\star}=$ set of PO solutions
$\left(x_{2}^{\star}, \ldots, x_{d}^{\star}\right) \in\left(\mathcal{P}^{\star}\right)^{d-1}$
$\mathcal{L}=\left\{x \in \mathcal{S} \mid \forall i: w^{i}(x)<w^{i}\left(x_{i}^{\star}\right)\right\}$

Every $(d-1)$-tuple from \mathcal{P} defines a loser gap. Induction: Use bound for $Q_{d-1}(n, \phi)^{d-1}$ to bound $Q_{d}(n, \phi)$.

Proof Idea for $d \geq 3$

How many PO $x \in \mathcal{S}$ with $w^{1}(x) \in[t, t+\varepsilon]$?
$\min w^{2}(x), \ldots, \min w^{d}(x)$
s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
$d=2$
optimal solution x^{\star}
$\mathcal{L}=\left\{x \in \mathcal{S} \mid w^{2}(x)<w^{2}\left(x^{\star}\right)\right\}$

$d \geq 3$
$\mathcal{P}^{\star}=$ set of PO solutions
$\left(x_{2}^{\star}, \ldots, x_{d}^{\star}\right) \in\left(\mathcal{P}^{\star}\right)^{d-1}$
$\mathcal{L}=\left\{x \in \mathcal{S} \mid \forall i: w^{i}(x)<w^{i}\left(x_{i}^{\star}\right)\right\}$

Every $(d-1)$-tuple from \mathcal{P} defines a loser gap. Induction: Use bound for $Q_{d-1}(n, \phi)^{d-1}$ to bound $Q_{d}(n, \phi)$.

Theorem

$\forall d \forall c \in[1, \sqrt{\log (n)}]: Q_{d}(n, \phi)^{c}=O\left((n \phi)^{c \cdot h(d)}\right)$ for $h(d)=2^{d-3} d!$.

Extensions and Open Questions

Further Results

- polynomial bound for $Q_{d}(n, \phi)^{c}$ for any constants c and d \Rightarrow first concentration bounds for $|\mathcal{P}|$
- extension to integer case $\mathcal{S} \subseteq\{-m,-m+1, \ldots, m-1, m\}^{n}$
- polyn. smoothed complexity $=$ expected polynomial running time

Extensions and Open Questions

Further Results

- polynomial bound for $Q_{d}(n, \phi)^{c}$ for any constants c and d \Rightarrow first concentration bounds for $|\mathcal{P}|$
- extension to integer case $\mathcal{S} \subseteq\{-m,-m+1, \ldots, m-1, m\}^{n}$
- polyn. smoothed complexity $=$ expected polynomial running time

Open Questions

- $h(d)=2^{d-3} d$!: $(n \phi)^{O(d)}$ possible?
- lower bounds?
- higher moments, stronger concentration?

Thank you for your attention!

Questions?

