Smoothed Analysis of Multiobjective Optimization

Heiko Röglin Department of Quantitative Economics

July 2010 DIMAP Summer School

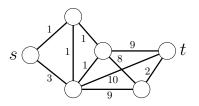
based on joint work with Rene Beier, Shang-Hua Teng, and Berthold Vöcking

Heiko Röglin Smoothed Analysis of Multiobjective Optimization

Optimization Problems

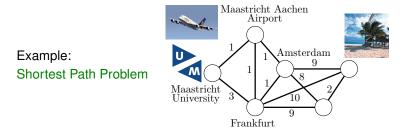
Single-criterion Optimization Problem: min f(x) subject to $x \in S$.

Example: Shortest Path Problem



Optimization Problems

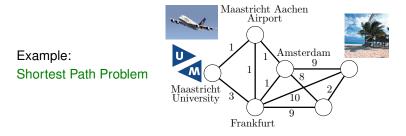
Single-criterion Optimization Problem: min f(x) subject to $x \in S$.



Real-life logistical problems often involve multiple objectives. (travel time, fare, departure time, etc.)

Optimization Problems

Single-criterion Optimization Problem: min f(x) subject to $x \in S$.



Real-life logistical problems often involve multiple objectives. (travel time, fare, departure time, etc.)

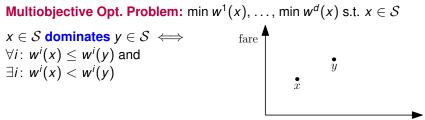
Multiobjective Opt. Problem: min $f_1(x), \ldots, \min f_d(x)$ s.t. $x \in S$. Usually, there is no solution that is simultaneously optimal for all f_i .

Question

What can we do algorithmically to support the decision maker?

Heiko Röglin Smoothed Analysis of Multiobjective Optimization

Pareto-optimal Solutions



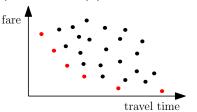
travel time

Pareto-optimal Solutions

Multiobjective Opt. Problem: min $w^1(x), \ldots, \min w^d(x)$ s.t. $x \in S$

 $x \in S$ dominates $y \in S \iff$ $\forall i: w^i(x) \le w^i(y)$ and $\exists i: w^i(x) < w^i(y)$

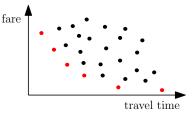
 $x \in S$ Pareto-optimal \iff $\exists y \in S: y$ dominates x



Multiobjective Opt. Problem: min $w^1(x), \ldots, \min w^d(x)$ s.t. $x \in S$

 $x \in S$ dominates $y \in S \iff$ $\forall i: w^i(x) \le w^i(y)$ and $\exists i: w^i(x) < w^i(y)$

 $x \in S$ Pareto-optimal \iff $\exists y \in S: y$ dominates x



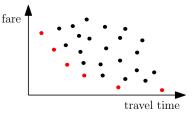
Often the Pareto curve is generated:

- Pareto curve limits options for decision maker.
- Monotone functions are optimized by Pareto-optimal solutions, e.g., $\lambda_1 w^1(x) + \ldots + \lambda_d w^d(x)$ or $w^1(x) \cdots w^d(x)$.

Multiobjective Opt. Problem: min $w^1(x), \ldots, \min w^d(x)$ s.t. $x \in S$

 $x \in S$ dominates $y \in S \iff$ $\forall i: w^i(x) \le w^i(y)$ and $\exists i: w^i(x) < w^i(y)$

 $x \in S$ Pareto-optimal \iff $\exists y \in S: y$ dominates x



Often the Pareto curve is generated:

- Pareto curve limits options for decision maker.
- Monotone functions are optimized by Pareto-optimal solutions, e.g., $\lambda_1 w^1(x) + \ldots + \lambda_d w^d(x)$ or $w^1(x) \cdots w^d(x)$.

Central Question

How large is the Pareto curve?

Model

Linear Binary Optimization Problem

- set of feasible solutions S ⊆ {0, 1}ⁿ
 solution x = (x₁,..., x_n) ∈ S consists of *n* binary variables
- *d* linear objective functions:

$$\forall i \in \{1,\ldots,d\}: \min w^i(x) = w_1^i x_1 + \cdots + w_n^i x_n$$

S can encode arbitrary combinatorial structure, e.g., for a given graph, all paths from *s* to *t*, all Hamiltonian cycles, all spanning trees, ...

Model

Linear Binary Optimization Problem

- set of feasible solutions S ⊆ {0, 1}ⁿ
 solution x = (x₁,..., x_n) ∈ S consists of *n* binary variables
- *d* linear objective functions:

 $\forall i \in \{1,\ldots,d\}: \min w^i(x) = w_1^i x_1 + \cdots + w_n^i x_n$

S can encode arbitrary combinatorial structure, e.g., for a given graph, all paths from *s* to *t*, all Hamiltonian cycles, all spanning trees, ...

How large is the Pareto curve?

- Exponential in the worst case for almost all problems.
- In practice, often few Pareto optimal solutions.

Example: Train Connections w.r.t. travel time, fare, number of train changes [Müller-Hannemann, Weihe 2001]

Smoothed Analysis

- $S \subseteq \{0,1\}^n$, *d* objectives: min $w^i(x) = w_1^i x_1 + \cdots + w_n^i x_n$
- Every coefficient w_j^i is an independent random variable following a probability density $f_j^i : [-1, 1] \rightarrow [0, \phi]$.

Smoothed Analysis

- $S \subseteq \{0,1\}^n$, *d* objectives: min $w^i(x) = w_1^i x_1 + \cdots + w_n^i x_n$
- Every coefficient w_j^i is an independent random variable following a probability density $f_i^i : [-1, 1] \rightarrow [0, \phi]$.
- each w_i^i uniformly at random from interval of length $1/\phi$
- w^i_i are Gaussians, adversary specifies means, $\phi \sim 1/\sigma$
- ϕ large \approx worst case ϕ small \approx average case

Smoothed Analysis

• $S \subseteq \{0,1\}^n$, *d* objectives: min $w^i(x) = w_1^i x_1 + \cdots + w_n^i x_n$

• Every coefficient w_j^i is an independent random variable following a probability density $f_i^i : [-1, 1] \rightarrow [0, \phi]$.

- each w_i^i uniformly at random from interval of length $1/\phi$
- w^i_i are Gaussians, adversary specifies means, $\phi \sim 1/\sigma$
- ϕ large \approx worst case ϕ small \approx average case

 $Q_d(n, \phi) = \max_{\mathcal{S}, f_j^i} \mathbf{E} \left[\text{number of Pareto-optimal sol. for } \mathcal{S} \text{ and } f_j^i \right]$

Results

Bicriteria Optimization (d = 2):

Beier, Vöcking (STOC 2003)

For any S and any f_j^i , $Q_2(n, \phi) = O(n^4 \phi)$. There are S and f_j^i such that $Q_2(n, \phi) = \Omega(n^2)$.

Results

Bicriteria Optimization (d = 2):

Beier, Vöcking (STOC 2003)

For any S and any f_j^i , $Q_2(n, \phi) = O(n^4 \phi)$. There are S and f_j^i such that $Q_2(n, \phi) = \Omega(n^2)$.

Beier, R., Vöcking (IPCO 2007)

For any S and any f_j^i , $Q_2(n, \phi) = O(n^2 \phi)$. Extension to integer optimization problems.

Results

Bicriteria Optimization (d = 2**):**

Beier, Vöcking (STOC 2003)

For any
$$S$$
 and any f_j^i , $Q_2(n, \phi) = O(n^4 \phi)$.
There are S and f_j^i such that $Q_2(n, \phi) = \Omega(n^2)$.

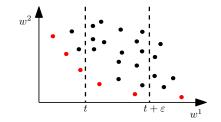
Beier, R., Vöcking (IPCO 2007)

For any S and any f_j^i , $Q_2(n, \phi) = O(n^2 \phi)$. Extension to integer optimization problems.

Multiobjective Optimization (*d* **arbitrary constant):**

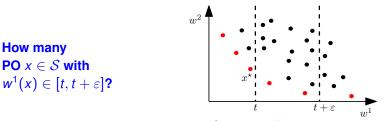
R., Teng (FOCS 2009)

For any S and any f_j^i , $Q_d(n, \phi) = O((n\phi)^{h(d)})$ for some function h. For any $c \in \left[1, \sqrt{\log(n)}\right], Q_d(n, \phi)^c = O((n\phi)^{c \cdot h(d)}).$



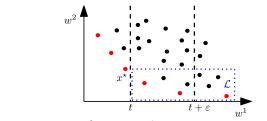
How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$?

How many **PO** $x \in S$ with



- single-criterion problem: min $w^2(x)$ s.t. $w^1(x) \le t$ and $x \in S$
- winner: $x^* = optimal solution$

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$?



- single-criterion problem: min $w^2(x)$ s.t. $w^1(x) \le t$ and $x \in S$
- winner: x^* = optimal solution
- loser set: \mathcal{L} = all solutions $x \in S$ with $w^2(x) < w^2(x^*)$

 w^2

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$?

- single-criterion problem: min $w^2(x)$ s.t. $w^1(x) \leq t$ and $x \in S$
- winner: x^* = optimal solution
- loser set: \mathcal{L} = all solutions $x \in S$ with $w^2(x) < w^2(x^*)$
- *i*-th loser gap: $\Lambda^{i}(t)$ = distance of *i*-th loser from *t*

 w^2 x^* t $\lambda_2(t)$ $\lambda_2(t)$ $\lambda_1(t)$ $\lambda_3(t)$ $t + \varepsilon$ w^1

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$?

• single-criterion problem: min $w^2(x)$ s.t. $w^1(x) \leq t$ and $x \in S$

- winner: $x^* = optimal solution$
- loser set: \mathcal{L} = all solutions $x \in S$ with $w^2(x) < w^2(x^*)$
- *i*-th loser gap: $\Lambda^{i}(t)$ = distance of *i*-th loser from *t*

 $\Pr\left[\exists \ell \text{ many PO solutions } x \text{ with } w^1(x) \in [t, t + \varepsilon]\right] \leq \Pr\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$

 w^2 x^* t $\Lambda_2(t)$ L $\Lambda_1(t)$ $\Lambda_3(t)$ $t + \varepsilon$ w^1

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$?

• single-criterion problem: min $w^2(x)$ s.t. $w^1(x) \leq t$ and $x \in S$

- winner: $x^* = optimal solution$
- loser set: \mathcal{L} = all solutions $x \in S$ with $w^2(x) < w^2(x^*)$
- *i*-th loser gap: $\Lambda^{i}(t)$ = distance of *i*-th loser from *t*

 $\Pr\left[\exists \ell \text{ many PO solutions } x \text{ with } w^1(x) \in [t, t + \varepsilon]\right] \leq \Pr\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$

 w^2 x^* $t_{\Lambda_1(t) \ \Lambda_3(t)}$ $t_{\Lambda_1(t) \ \Lambda_3(t)}$ $t_{\Lambda_1(t) \ \Lambda_3(t)}$ $t_{\Lambda_1(t) \ \Lambda_3(t)}$

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$?

• single-criterion problem: min $w^2(x)$ s.t. $w^1(x) \le t$ and $x \in S$

- winner: x^* = optimal solution
- loser set: $\mathcal{L} =$ all solutions $x \in S$ with $w^2(x) < w^2(x^*)$
- *i*-th loser gap: $\Lambda^{i}(t)$ = distance of *i*-th loser from *t*

 $\Pr\left[\exists \ell \text{ many PO solutions } x \text{ with } w^1(x) \in [t, t + \varepsilon]\right] \leq \Pr\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$

Lemma [Beier, Vöcking (STOC 2004)]

For every $\varepsilon \geq 0$ and $t \in \mathbb{R}$, $\Pr[\Lambda^1(t) \leq \varepsilon] \leq n\phi\varepsilon$.

 w^2 x^* $\lambda_2(t)$ x^* L $\lambda_1(t)$ $\Lambda_3(t)$ $t + \varepsilon$ w^1

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$?

• single-criterion problem: min $w^2(x)$ s.t. $w^1(x) \le t$ and $x \in S$

- winner: $x^* = optimal solution$
- loser set: $\mathcal{L} =$ all solutions $x \in \mathcal{S}$ with $w^2(x) < w^2(x^*)$
- *i*-th loser gap: $\Lambda^{i}(t)$ = distance of *i*-th loser from *t*

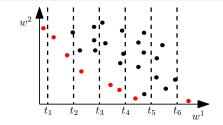
 $\Pr\left[\exists \ell \text{ many PO solutions } x \text{ with } w^1(x) \in [t, t + \varepsilon]\right] \leq \Pr\left[\Lambda^{\ell}(t) \leq \varepsilon\right]$

Lemma [R., Teng (FOCS 2009)]

For every $\varepsilon \geq 0, z \in \mathbb{N}$, and $t \in \mathbb{R}$,

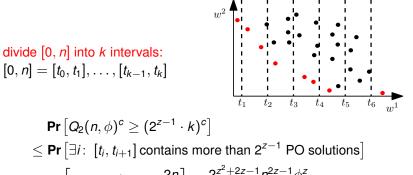
$$\Pr\left[\Lambda^{2^{z-1}}(t) \le \varepsilon\right] \le 2^{z^2+z} n^z \phi^z \varepsilon^{z-1}.$$

Higher Moments



divide [0, n] into *k* intervals: $[0, n] = [t_0, t_1], \dots, [t_{k-1}, t_k]$

Higher Moments

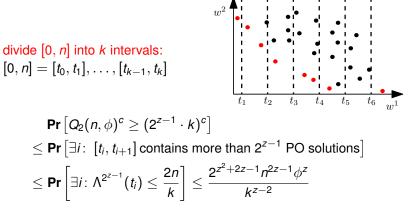


$$\Pr\left[Q_2(n,\phi)^c \ge (2^{z-1} \cdot k)^c\right]$$

$$\leq \Pr\left[\exists i: [t_i, t_{i+1}] \text{ contains more than } 2^{z-1} \text{ PO solutions}\right]$$

$$\leq \Pr\left[\exists i: \Lambda^{2^{z-1}}(t_i) \le \frac{2n}{k}\right] \le \frac{2^{z^2+2z-1}n^{2z-1}\phi^z}{k^{z-2}}$$

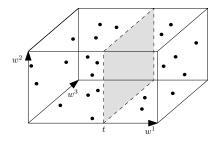
Higher Moments



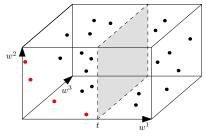
R., Teng (FOCS 2009)

For any S and any f_j^i and every $c \in [1, \sqrt{\log(n)}]$, $\mathbf{Q}_{\mathbf{d}}(\mathbf{n}, \phi)^{\mathbf{c}} = (\mathbf{n}^2 \phi)^{\mathbf{c}(1+\mathbf{o}(1))}$.

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$? min $w^2(x), \dots, \min w^d(x)$ s.t. $w^1(x) \leq t$ and $x \in S$



How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$? min $w^2(x), \dots, \min w^d(x)$ s.t. $w^1(x) \leq t$ and $x \in S$



d = 2

optimal solution x^*

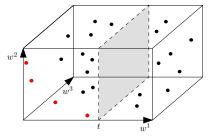
 $d \ge 3$ $\mathcal{P}^{\star} = \text{set of PO solutions}$

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$? min $w^2(x), \dots, \min w^d(x)$ s.t. $w^1(x) \leq t$ and $x \in S$

d = 2

optimal solution x^*

$$\mathcal{L} = \{x \in \mathcal{S} \mid w^2(x) < w^2(x^\star)\}$$

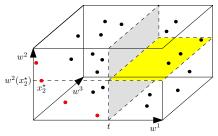


How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$? min $w^2(x), \dots, \min w^d(x)$ s.t. $w^1(x) \leq t$ and $x \in S$

d = 2

optimal solution x^*

$$\mathcal{L} = \{x \in \mathcal{S} \mid w^2(x) < w^2(x^\star)\}$$

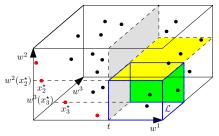


How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$? min $w^2(x), \dots, \min w^d(x)$ s.t. $w^1(x) \leq t$ and $x \in S$

d = 2

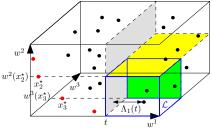
optimal solution x^*

$$\mathcal{L} = \{x \in \mathcal{S} \mid w^2(x) < w^2(x^\star)\}$$



 $\begin{aligned} \boldsymbol{d} &\geq \boldsymbol{3} \\ \mathcal{P}^{\star} &= \boldsymbol{set of PO solutions} \\ (\boldsymbol{x}_{2}^{\star}, \dots, \boldsymbol{x}_{d}^{\star}) \in (\mathcal{P}^{\star})^{d-1} \\ \mathcal{L} &= \{\boldsymbol{x} \in \mathcal{S} \mid \forall i \colon \boldsymbol{w}^{i}(\boldsymbol{x}) < \boldsymbol{w}^{i}(\boldsymbol{x}_{i}^{\star}) \} \end{aligned}$

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$? min $w^2(x), \dots, \min w^d(x)$ s.t. $w^1(x) \leq t$ and $x \in S$



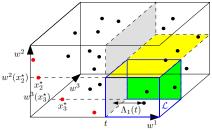
d = 2

optimal solution x^*

$$\mathcal{L} = \{ x \in \mathcal{S} \mid w^2(x) < w^2(x^\star) \}$$

Every (d - 1)-tuple from \mathcal{P} defines a loser gap. Induction: Use bound for $Q_{d-1}(n, \phi)^{d-1}$ to bound $Q_d(n, \phi)$.

How many PO $x \in S$ with $w^1(x) \in [t, t + \varepsilon]$? min $w^2(x), \dots, \min w^d(x)$ s.t. $w^1(x) \leq t$ and $x \in S$



d = 2

optimal solution x^*

$$\mathcal{L} = \{ x \in \mathcal{S} \mid w^2(x) < w^2(x^\star) \}$$

Every (d - 1)-tuple from \mathcal{P} defines a loser gap. Induction: Use bound for $Q_{d-1}(n, \phi)^{d-1}$ to bound $Q_d(n, \phi)$.

Theorem

$$\forall d \ \forall c \in [1, \sqrt{\log(n)}]: Q_d(n, \phi)^c = O((n\phi)^{c \cdot h(d)}) \text{ for } h(d) = 2^{d-3}d!.$$

Further Results

- polynomial bound for $Q_d(n, \phi)^c$ for any constants *c* and *d* \Rightarrow first concentration bounds for $|\mathcal{P}|$
- extension to integer case $\mathcal{S} \subseteq \{-m, -m+1, \dots, m-1, m\}^n$
- polyn. smoothed complexity = expected polynomial running time

Further Results

- polynomial bound for $Q_d(n, \phi)^c$ for any constants *c* and *d* \Rightarrow first concentration bounds for $|\mathcal{P}|$
- extension to integer case $\mathcal{S} \subseteq \{-m, -m+1, \dots, m-1, m\}^n$
- polyn. smoothed complexity = expected polynomial running time

Open Questions

- $h(d) = 2^{d-3}d!: (n\phi)^{O(d)}$ possible?
- Iower bounds?
- higher moments, stronger concentration?

Thank you for your attention!

Heiko Röglin Smoothed Analysis of Multiobjective Optimization