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Optimization Problems

Single-criterion Optimization Problem: min f (x) subject to x ∈ S.

Example:
Shortest Path Problem
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Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)

Multiobjective Opt. Problem: min f1(x), . . . , min fd (x) s.t. x ∈ S.
Usually, there is no solution that is simultaneously optimal for all fi .

Question
What can we do algorithmically to support the decision maker?
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Heiko Röglin Smoothed Analysis of Multiobjective Optimization



Pareto-optimal Solutions

Multiobjective Opt. Problem: min w1(x), . . . , min wd (x) s.t. x ∈ S
x ∈ S dominates y ∈ S ⇐⇒
∀i : w i(x) ≤ w i(y) and
∃i : w i(x) < w i(y)

x ∈ S Pareto-optimal ⇐⇒
6 ∃y ∈ S : y dominates x

travel time

fare

x

y

Often the Pareto curve is generated:

Pareto curve limits options for decision maker.

Monotone functions are optimized by Pareto-optimal solutions,
e.g., λ1w1(x) + . . .+ λd wd (x) or w1(x) · · · · · wd (x).

Central Question
How large is the Pareto curve?
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Heiko Röglin Smoothed Analysis of Multiobjective Optimization



Model

Linear Binary Optimization Problem

set of feasible solutions S ⊆ {0, 1}n

solution x = (x1, . . . , xn) ∈ S consists of n binary variables

d linear objective functions:
∀i ∈ {1, . . . , d} : min w i(x) = w i

1x1 + · · ·+ w i
nxn

S can encode arbitrary combinatorial structure, e.g., for a given graph,
all paths from s to t , all Hamiltonian cycles, all spanning trees, . . .

How large is the Pareto curve?

Exponential in the worst case for almost all problems.

In practice, often few Pareto optimal solutions.

Example: Train Connections
w.r.t. travel time, fare, number of train changes
[Müller-Hannemann, Weihe 2001]
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Smoothed Analysis

Smoothed Analysis

S ⊆ {0, 1}n, d objectives: min w i(x) = w i
1x1 + · · ·+ w i

nxn

Every coefficient w i
j is an independent random variable following

a probability density f i
j : [−1, 1]→ [0, φ].

each w i
j uniformly at random from interval of length 1/φ

w i
j are Gaussians, adversary specifies means, φ ∼ 1/σ

φ large ≈ worst case φ small ≈ average case

Qd (n, φ) = max
S,f i

j

E
[
number of Pareto-optimal sol. for S and f i

j

]
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Results

Bicriteria Optimization (d = 2):
Beier, Vöcking (STOC 2003)

For any S and any f i
j , Q2(n, φ) = O(n4φ).

There are S and f i
j such that Q2(n, φ) = Ω(n2).

Beier, R., Vöcking (IPCO 2007)

For any S and any f i
j , Q2(n, φ) = O(n2φ).

Extension to integer optimization problems.

Multiobjective Optimization (d arbitrary constant):

R., Teng (FOCS 2009)

For any S and any f i
j , Qd (n, φ) = O((nφ)h(d)) for some function h.

For any c ∈
[
1,
√

log(n)
]
, Qd (n, φ)c = O((nφ)c·h(d)).
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Generalized Loser Gap

How many
PO x ∈ S with
w1(x) ∈ [t, t + ε]?

w1

w2

t t + ε

single-criterion problem: min w2(x) s.t. w1(x) ≤ t and x ∈ S
winner: x? = optimal solution
loser set: L = all solutions x ∈ S with w2(x) < w2(x?)
i-th loser gap: Λi(t) = distance of i-th loser from t

Pr
[
∃` many PO solutions x with w1(x) ∈ [t, t + ε]

]
≤ Pr

[
Λ`(t) ≤ ε

]

Heiko Röglin Smoothed Analysis of Multiobjective Optimization



Generalized Loser Gap

How many
PO x ∈ S with
w1(x) ∈ [t, t + ε]?

w1

w2

t

x?

t + ε

single-criterion problem: min w2(x) s.t. w1(x) ≤ t and x ∈ S
winner: x? = optimal solution

loser set: L = all solutions x ∈ S with w2(x) < w2(x?)
i-th loser gap: Λi(t) = distance of i-th loser from t

Pr
[
∃` many PO solutions x with w1(x) ∈ [t, t + ε]

]
≤ Pr

[
Λ`(t) ≤ ε

]
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Higher Moments

divide [0, n] into k intervals:
[0, n] = [t0, t1], . . . , [tk−1, tk ]

w1

w2

t1 t3 t4 t5 t6t2

Pr
[
Q2(n, φ)c ≥ (2z−1 · k)c]

≤ Pr
[
∃i : [ti , ti+1] contains more than 2z−1 PO solutions

]
≤ Pr

[
∃i : Λ2z−1

(ti) ≤
2n
k

]
≤ 2z2+2z−1n2z−1φz

kz−2

R., Teng (FOCS 2009)

For any S and any f i
j and every c ∈

[
1,
√

log(n)
]
,

Qd(n, φ)c = (n2φ)c(1+o(1)).
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Proof Idea for d ≥ 3

How many PO x ∈ S with
w1(x) ∈ [t, t + ε]?

min w2(x), . . . ,min wd (x)
s.t. w1(x) ≤ t and x ∈ S

w1

w2

t

w3

d = 2
optimal solution x?

L = {x ∈ S | w2(x) < w2(x?)}

d ≥ 3
P? = set of PO solutions
(x?

2 , . . . , x
?
d ) ∈ (P?)d−1

L = {x ∈ S | ∀i : w i (x) < w i (x?
i )}

Every (d − 1)-tuple from P defines a loser gap.
Induction: Use bound for Qd−1(n, φ)d−1 to bound Qd (n, φ).

Theorem

∀d ∀c ∈ [1,
√

log(n)]: Qd (n, φ)c = O((nφ)c·h(d)) for h(d) = 2d−3d!.
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How many PO x ∈ S with
w1(x) ∈ [t, t + ε]?

min w2(x), . . . ,min wd (x)
s.t. w1(x) ≤ t and x ∈ S

w1

w2

t

w3x?
2

w2(x?
2)

x?
3

w3(x?
3)

LΛ1(t)

d = 2
optimal solution x?

L = {x ∈ S | w2(x) < w2(x?)}

d ≥ 3
P? = set of PO solutions
(x?

2 , . . . , x
?
d ) ∈ (P?)d−1

L = {x ∈ S | ∀i : w i (x) < w i (x?
i )}

Every (d − 1)-tuple from P defines a loser gap.
Induction: Use bound for Qd−1(n, φ)d−1 to bound Qd (n, φ).

Theorem

∀d ∀c ∈ [1,
√

log(n)]: Qd (n, φ)c = O((nφ)c·h(d)) for h(d) = 2d−3d!.
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Extensions and Open Questions

Further Results

polynomial bound for Qd (n, φ)c for any constants c and d
⇒ first concentration bounds for |P|
extension to integer case S ⊆ {−m,−m + 1, . . . ,m − 1,m}n

polyn. smoothed complexity = expected polynomial running time

Open Questions

h(d) = 2d−3d!: (nφ)O(d) possible?

lower bounds?

higher moments, stronger concentration?
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Thank you for your attention!

Questions?
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