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Online Buffering

Online Buffering

Toy example:

buffer of bounded size B

in every time step t = 1, . . . , T :

I demand dt ≤ B
I pt ∈ [0, 1], price per unit of

the resource OR
I f t(x), price function to buy
x units

How much should be purchased in time step t?
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Online Buffering Applications

Main Application

Battery Management of Hybrid cars
I two energy resources (combustion / electrical)
I given requested torque of the car, battery level
I determine torque of combustion engine
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Online Learning Motivation

Online Learning

Motivation:

online buffering problems have been studied in Worst-Case Analysis

algorithm is “threat-based“, i.e. buys enough to ensure the competitive
factor in the next step for all possible extensions of the price sequence
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Online Learning Problems

Online Learning Applied to Online Buffering

Algorithm 1 (Randomized Weighted Majority (RWM))

1: w1
i = 1, q1i = 1

N , for all i ∈ {1, . . . , N}
2: for t = 1, . . . , T do
3: choose expert et at random according to Qt = (qt1, . . . , q

t
N )

4: wt+1
i = wti(1− η)c

t
i , for all i

5: qt+1
i =

wt+1
i∑N

j=1 w
t+1
j

, for all i

6: end for

Problem: [
pt

dt

]
=

[
0
0

]([
0

1/4

] [
1

1/4

] [
0

1/4

] [
1

1/4

])T ′
.

The first expert purchases 1/2 unit in the initial step and afterwards one unit
in the third step of every round.

The second expert purchases one unit in the first step of every round.
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Our Approach Shrinking Dartboard

Online Learning for Online Buffering

Algorithm 2 (Shrinking Dartboard (SD))

1: w1
i = 1, q1i = 1

N , for all i
2: choose expert e1 at random according to Q1 = (q11 , . . . , q

1
N )

3: for t = 2, . . . , T do

4: wti = wt−1i (1− η)c
t−1
i , for all i

5: qti =
wt

i∑N
j=1 w

t
j

, for all i

6: with probability
wt

et

wt−1

et

do not change expert, i.e., set et = et−1

7: else choose et at random according to Qt = (qt1, . . . , q
t
N )

8: end for
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Our Approach Shrinking Dartboard

Shrinking Dartboard Algorithm

Idea: dartboard of size N , area of size 1 for expert i

1 set active area of expert i to 1

2 throw dart into active area to choose an expert
3 if weight of expert i decreases

I decrease active area of that expert

4 dart outside of active area ⇒ throw new dart

⇒ distribution to choose an expert is the same as
for RWM in every step, but depends on et−1

Theorem

For η = min{
√

lnN/(BT ), 1/2}, the expected cost of SD satisfies

CTSD ≤ CTbest +O(
√
BT logN).
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Our Approach Shrinking Dartboard

Regret of Shrinking Dartboard

Proof idea:

Observation: E[cSD] ≤
∑
t cchosen expert +B · E[number of expert changes]

1 expected cost of chosen expert ⇔ cost of RWM: (1 + η)CTbest + lnN
η

2 additional cost for every expert change are at most B

I due to difference in number of units in the storage

3 estimate number of expert changes

I W t, remaining size of dartboard in step t, (W t =
∑N

i=1 w
t
i)

I size of dartboard larger than weight of best expert, (WT+1 ≥ (1 + η)C
T
best )

I WT+1 equals product of fraction of dartboard which remains from t to t+ 1

multiplied by N , (N
∏T

t=1(1−
W t−W t+1

W t ))

4 combining those equations leads to CTSD ≤ CTbest +O(
√
BT logN).
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Our Approach Weighted Fractional

Weighted Fractional Algorithm

Algorithm 3 (Weighted Fractional (WF))

1: w1
i = 1, q1i = 1

N , for all i
2: for t = 2, . . . , T do
3: purchase xt =

∑N
i=1 qixi units, xi amount purchased by i

4: wti = wt−1i (1− η)c
t−1
i , for all i

5: qti =
wt

i∑N
j=1 w

t
j

, for all i

6: end for

Idea: purchased amount is a weighted sum of the recommendations of the experts

Theorem

Suppose the price functions f t(x) are convex, for 1 ≤ t ≤ T . Then for η =
min{

√
lnN/(BT ), 1/2} the cost of WF satisfies

CTWF ≤ CTbest +O(
√
BT logN).
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Our Approach Lower Bound

Lower Bound

Theorem
For every T , there exists a sequence of length T together with N experts s.t.
every learning algorithm with a buffer of size B suffers a regret of Ω(

√
BT logN).

Proof idea:

[
pt

dt

]
=

[(
2
0

)B ({0, 4}
0

)B (
4
1

)B]T ′ a) The expert purchases B units in the
first phase.

b) The expert purchases B units in the
second phase.

every expert chooses one of the strategies uniformly at random in every round

cost of experts: N independent random walks of length T ′ with step length B

expected minimum of those random walks 2/3T − Ω(
√
BT logN), expected

cost 2/3T
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Summary

Summary

Shrinking Dartboard, which achieves low regret for online buffering

I Similar regret bound also possible for Follow the Perturbed Leader [Kalai,
Vempala, 2005]

Weighted Fractional achieves low regret also against adaptive adversary

The regret bounds of the algorithms are tight

Thank you for your attention!
Any questions?
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