Examples of maths problems for Science of Music IL016

Wavelength of a sound wave λ is speed of its propagation divided by the vibration frequency: $\lambda = v/f$. Find the frequency *f* if the speed of sound is 350m/s and wavelength is 7m. (Answer 50Hz)

Frequency of string = $\frac{0.5}{\text{length}} \sqrt{\frac{\text{tension on string}}{\text{line density}}}$

Find tension that is needed to put on a piano string with length of 80cm and line density of 0.0059 kg/m, so it produces frequency 262Hz (middle C). (Answer 1036 N – this is equivalent to putting an over 100kg weight to stretch it!)

Bit depth refers to the number of binary (0 or 1) bits used to record sound waveforms. For a bit depth of *n* each sampled amplitude is mapped on to one of 2^n possible values. How many amplitude levels can be distinguished by an 8 bit system? (Answer $2^8 = 256$)