Examples of maths problems for Science of Music ILO16

Wavelength of a sound wave λ is speed of its propagation divided by the vibration frequency: $\lambda=v / f$. Find the frequency f if the speed of sound is $350 \mathrm{~m} / \mathrm{s}$ and wavelength is 7 m . (Answer 50Hz)

Frequency of string $=\frac{0.5}{\text { length }} \sqrt{\frac{\text { tension on string }}{\text { line density }}}$
Find tension that is needed to put on a piano string with length of 80 cm and line density of $0.0059 \mathrm{~kg} / \mathrm{m}$, so it produces frequency 262 Hz (middle C). (Answer 1036 N - this is equivalent to putting an over 100kg weight to stretch it!)

Bit depth refers to the number of binary (0 or 1) bits used to record sound waveforms. For a bit depth of n each sampled amplitude is mapped on to one of 2^{n} possible values. How many amplitude levels can be distinguished by an 8 bit system? $\left(\right.$ Answer $\left.2^{8}=256\right)$

