

The University of Manchester Sustainable Consumption Institute

Reframing climate change: from long-term targets to short-term action

Dr Alice Bows Lecturer in Energy & Climate Change Sustainable Consumption Institute & Tyndall Centre Challenges in the Transition to a low-carbon society, Warwick, July 2009

Talk outline

What is dangerous climate change?

Reframing the debate - cumulative emissions

Global greenhouse gas emission pathways

Implications for policy

What is dangerous climate change?

UK & EU define this as 2°C

□ Links to total quantity of CO₂e in atmosphere

- measured in parts-per-million by volume (ppmv)

Currently 386ppmv (CO₂ alone) & increasing ~2ppmv each year

- 280ppmv before industrial revolution

MANCHESTER 1824 The University of Manchester Sustainable Consumption Institute

What are likely impacts at 2°C?

- Destruction of the vast majority of coral reefs
- Hundreds of millions of people exposed to increased water stress
- 30% of species at increasing risk of extinction
- Land moves to become a carbon source
- Cereal productivity to starts to cease in low latitudes
- Millions more people experience coastal flooding
- Tipping points?

(IPCC Fourth Assessment Report, 2008. 'Impacts, adaptation & vulnerability')

Emission-reduction targets for 2°C

UK, EU & Global - long term reduction targets

- UK's **80%** reduction in CO_2e by 2050
- EU 60%-80% reduction in CO₂e by 2050
- Bali **50%** global reduction in CO₂e by 2050

□ But CO₂ stays in atmosphere for approx. 100years

 Hence, today's emissions add to yesterdays & will be added to by tomorrows

□ Focus on long-term targets is very misleading

Put bluntly ...

the final % reduction in carbon has little relevance to avoiding dangerous climate change (e.g. $2^{\circ}C$)

What is important are the **cumulative** emissions of carbon & other greenhouse gases (*i.e. the carbon budget*)

Linking science to policy

How do global temperatures link to global and national carbon budgets & from there to emission-reduction pathways?

Sustainable Consumption Institute

Global emission scenarios (CO₂e)

- What are the latest CO₂ emission trends?
- What are implications of factoring in:
 - land-use & forestry?
 - non-CO₂ greenhouse gas emissions?
- When will global CO₂e emissions peak?
- How much 'CO₂ space' left for energy & process emissions?

The latest global **CO**₂ emission trends

Fossil Fuel Emissions: Actual vs. IPCC Scenarios

Raupach et al 2007, PNAS; Global Carbon Project 2009

Emissions of CO₂ from land-use change

- Characterised by high uncertainty (principally driven by deforestation)
- Represents 12%-25% of total global greenhouse gas emissions in 2000
- Two Tyndall scenarios with different carbon-stock levels remaining: 70% & 80%
- Optimistic compared with Forest Resource Assessment

The University of Manchester

Sustainable Consumption Institute

Emissions of non-CO₂ greenhouse gases

- Short-term EPA estimates
- Characterised by considerable tail due to emissions associated with food production
- Represents ~20-23% of total global greenhouse gas emissions in 2000
- Three scenarios with different peak dates

14 Emissions of non-CO₂ ghg (GtCO₂e) 12 10 8 6 4 Early action Mid action 2 Late action $\mathbf{0}$ 2000 2020 2040 2060 2080 2100

Year

The University of Manchester Sustainable Consumption Institute

Suggested CO₂e emissions peak

Bush - USA	-	2025
------------	---	------

Stern – Global aim - 2015

Tyndall - 2015, 2020, 2025

450ppmv

greenhouse gas emission pathways

Sustainable Consumption Institute

450ppmv CO₂e budget

We know from the science how much CO₂e we can emit between 2000-2100 (the emission budget)

The University of Manchester Sustainable Consumption Institute

Global budget

For a 50% (450ppmvCO₂e) chance of "avoiding dangerous climate change"

the global budget is

~ 490 billion tonnes of carbon equivalent between 2000-2100

Total greenhouse gas emission pathways

Anderson, K., and Bows, A., 2008, Philosphical Transactions of the Royal Society A, 366, 3863-3882

Tyndall[°]Centre for Climate Change Research

What does all this imply for a 450ppmvCO₂e future?

Year

Emission-space remaining for energy CO₂

Emission-space remaining for energy CO₂

For 450ppmv CO₂e (50:50 of 2°C)

Only possible with IPCC upper cumulative emission estimate

70-80% of current forestry carbon stock must remain

Peak in GHG emissions in 2015

- 4% reduction p.a. in CO_2e
- 7% reduction in CO₂ from energy
- Halving carbon intensity of food production between 2015 & 2050

550 & 650 ppmv

greenhouse gas emission pathways

The University of Manchester Sustainable Consumption Institute

Suggested CO₂e emissions peak?

Bush - USA	-	2025
------------	---	------

Stern – Global aim - 2015

Tyndall - 2015, **2020**, 2025

550 & 650 ppmv

For 550ppmv CO_2e with emissions peaking by 2020:

- 6% annual reductions in CO₂e
- 9% annual reductions in CO₂ from energy

For 650ppmv CO_2e with emissions peaking by 2020:

- 3% annual reductions in CO₂e
- 3.5% annual reductions in CO₂ from energy

What are the precedents for such reductions? Annual reductions of greater than 1% p.a. have only *"been associated with economic recession or upheaval"...* Stern 2006

 UK gas & French 40x nuclear ~1% p.a. reductions (ex. aviation & shipping)

Collapse Soviet Union economy ~5% p.a. reductions

So where does this leave us?

Even assuming:

... an unprecedented step change in mitigating emissions

... stabilising at 650ppmv CO₂e appears increasingly to be the best we can expect

i.e. human-induced climate change of ~4°C or more

Reframe the debate

We need to urgently reframe the climate change debate:

For mitigation

2°C should remain the driver of policy

For adaptation

4°C should become the driver of policy

Where does this leave us?

Where does this leave us?

... carbon reductions from reducing demand could dwarf reductions from low-carbon supply in all but the long term!

Conclusions

Can not afford for emissions to remain high

Must seek solutions that deliver radical emission reductions in the short-term

Not currently on track to avoid 'dangerous climate change'

UK Climate Change Act put is a welcome a starting point

