The causal impact of climate change policy on Business

by Ralf Martin

based on work with Ulrich Wagner (Carlos III) and Laure de Preux (CEP)

Prepared for the "Challenges in the Transition to a Low Carbon Society" Workshop; Warwick, July 14, 2009

Background The challenge: 80% reduction by 2050

But which policies will deliver this?

Economists: Strong price signal is key

[...] Setting a price for carbon [..] is politically difficult, and may not in practice be sufficient, or quick enough [.. to create the conditions for environmental innovation] (CEMEP)

"[The] Head of Environmental Affairs at the CBI, told UK Environment News that the proposed climate change levy poses a serious threat to British competitiveness."

So what does climate change policy do to firms?

Strategy in this study

- Look at past policies
- UK Climate Change Levy
- First firm level evaluation
- Good for causal identification

Focus

- Effect on energy consumption?
- Effect on employment?
- Can price instruments trigger an innovation response?

Summary of Results

The CCL has

- significantly reduced energy consumption and thereby GHG emissions
- not had a negative effect on employment or productivity
- had a positive effect on innovation (patenting)

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

The CCL

Tax on energy consumption for business Introduced in 2001

Table 1: Taxation of energy and implicit carbon by fuel type

fuel type	tax rate [<u>p</u>	fuel price ence Wh	implicit carbon tax $\left[\frac{f}{tC}\right]$
electricity	0.43	4.25	31
coal	0.15	2.46	16
gas	0.15	0.91	30
LPG	0.07	0.85	22

On Average:

15% tax rate £20 per tonne of carbon

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

Identification of CCL effect

- Some firms were exempt from CCL.
- Climate Change Agreements (CCA): 80%
 CCL reduction in exchange for compliance with energy (efficiency) target set by government
- About 6000 CCAs

Climate Change Agreements (CCAs) Issue 1 – CCA Targets

Climate Change Agreements (CCAs)

Issue 2 – Selection into CCA Targets

$$\Delta y_{it} = \alpha \Delta CCA_{it} + x'_{it}\beta + \xi_t + \eta_i + \varepsilon_{it}.$$

Rather than CCA, look at IPPC firms Assumption: Post 2001 shocks to IPPC firms don't determine IPPC coverage

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

Data

Production data and energy expenditure

Annual Respondents Database (ARD) from ONS ≈10.000 firms for 1999-2004

Energy consumption data (kWh, tonnes etc.)

Quarterly Fuels Inquiry (ARD) from ONS ≈1.000 firms for 1997-2004

CCA participation data; ≈5.000 agreements Online from DEFRA & HMRC Webpages

PPC coverage

via European Pollution and Emissions Register (EPER) Online available

Patent data:

European Patent Office (EPO) database ≈60,000 patents in 10,000 UK firms

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

Descriptive Stats for 2000

Data set	ARD					
Variables	CCA=0	CCA=1	diff test			
Age	13.55	17.53	***			
Employment (L)	151.49	536.44	***			
Gross Output (GO)	19.08	86.08	***			
Energy Expenditures (EE)	0.22	1.95	***			
Variable Costs (Vcost)	15.99	75.14	***			
Capital Stock (K)	9.64	58.17	***			
umber of Plants	8,282	1,050				

Graphical Summary of regression results

Values indicate **CCL** effect

Results: Time profile

CCL effect on electricity

Implied energy price elasticity: 1.7

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

- The CCL
- Identification Strategy
- Data
- Regressions results
- Discussion & Conclusion

Summary

- CCL covered firms reduce energy consumption by significantly more
- CCL firms patent significantly more
- CCL firms do not perform worse r in terms of employment or productivity
- Climate Change Levy gives covered firms incentive to reduce energy consumption and innovate.
- CCL had no negative effect on employment

Implications

- Moderate unilateral energy/carbon taxes can have a strong effect on energy usage and emissions without harming the economy
- What's the point if nobody else does it? Innovations!
- Highlights difficulty for governments of negotiating targets with industry
- Should we have taxes/carbon prices now in the recession? Use revenue to cut wage taxes.
- For the UK: scrap CCAs there is no negative employment effect

Future work

- Examine things by sector
- Variations in target stringency
- Similar work for EUETS

Thank u

<u>r.martin@lse.ac.uk</u>

Extra Slides

Regression results: Energy

			Reduced					
			Form		Fixed	Reduced	Fixed	Obs./
DepVar	ExpVar	OLS	(OLS)	IV	Effects	Form (FE)	Effects IV	Plants
Energy exp. over								
gross output	CCA/EPER	0.026**	0.086***	0.220***	0.025	0.111***	0.231***	14,336
$\Delta \ln(EE/GO)$		(0.013)	(0.028)	(0.072)	(0.019)	(0.040)	(0.084)	4,209
Energy exp. over								
variable costs	CCA/EPER	0.026**	0.104***	0.266***	0.015	0.137***	0.285***	14,336
$\Delta \ln(EE/VCost)$		(0.012)	(0.026)	(0.069)	(0.018)	(0.037)	(0.080)	4,209
Energy exp.	CCA/EPER	0.019	0.033	0.085	0.036**	0.075**	0.156**	14,336
$\Delta \ln(EE)$		(0.012)	(0.024)	(0.061)	(0.017)	(0.029)	(0.061)	4,209
Total kWh	CCA/EPER	0.068**	-0.000	-0.001	0.079**	-0.004	-0.007	4,452
$\Delta \ln(kWh)$		(0.027)	(0.049)	(0.115)	(0.035)	(0.068)	(0.135)	928
Electricity	CCA/EPER	0.026	0.085*	0.206*	0.028	0.128**	0.258**	4,452
$\Delta \ln(El)$		(0.021)	(0.046)	(0.118)	(0.024)	(0.058)	(0.127)	926
Gas	CCA/EPER	0.016	0.014	0.036	0.012	-0.035	-0.066	3,602
$\Delta \ln(Gas)$		(0.037)	(0.052)	(0.127)	(0.047)	(0.080)	(0.151)	764
Share of gas over								
gas & elec. cons.	CCA/EPER	0.018**	-0.044	-0.107	0.022**	-0.048	-0.097	4,435
$\Delta(Gas/(Gas+El))$		(0.008)	(0.031)	(0.078)	(0.009)	(0.039)	(0.084)	926

Other robustness tests

- Common support
- Singletons
- Should do: exit, for different types of industries/kinds of firms

First stage regressions

	(1)	(2)	(3)	(4)	(5)			
Dep.Variable					CCA par			
Sample	ARD sample							
Time period	2001	2001	2000-2004	2000-2004	2001			
Method	OLS	Probit	OLS	FE	Probit			
EPER	0.411***	0.383***	0.391***	0.480***				
	(0.030)	(0.044)	(0.033)	(0.040)				
lnGO(t-1)					-0.014***			
					(0.004)			
lnK(t-1)					0.016***			
					(0.003)			
lnEE(t-1)					0.020***			
					(0.003)			
lnL(t-1)					0.011***			
					(0.003)			
age controls	yes	yes	yes	yes	yes			
sector controls	yes	yes	yes	no	yes			
region X year controls	yes	yes	yes	yes	yes			
plant fixed effects	no	no	no	yes	no			
obs	9175	8506	17040	17040	8456			

Notes: Probit results report the marginal effects on the probability of being in a CCA. Standard error

Regression results for patents

		(1)	(2)	(3)	(4)	(5)	
	Model	Logit	Poisson	Clogit	FE Poisson	FE	Observation
Patent type	Policy Variable	I(Patent)	Patent Count	I(Patent)	Patent Count	Share in total Patents	firms
All patents	CCA	0.069***	1.382***	-0.109***	-0.510**		134320
		(0.017)	(0.295)	(0.035)	(0.243)		8395
	EPER	0.055***	1.326***	-0.161***	-0.585***		
		(0.021)	(0.376)	(0.048)	(0.186)		
CCR Patents All	CCA	0.024	0.506**	-0.135	-0.531	-0.004	8832
		(0.024)	(0.228)	(0.087)	(0.388)	(0.009)	552
	EPER	0.033	0.474	-0.140*	-0.432	0.032	
		(0.029)	(0.317)	(0.082)	(0.359)	(0.021)	
CCR Patents Popp	ı CCA	0.021	0.491*	-0.138	-0.513	-0.009	8576
		(0.024)	(0.269)	(0.088)	(0.371)	(0.008)	536
	EPER	0.026	0.436	-0.172**	-0.528**	0.016	
		(0.029)	(0.304)	(0.076)	(0.221)	(0.015)	
Non Popp Patents	s CCA	0.070***	1.375***	-0.106***	-0.510**	0.021	134224
		(0.017)	(0.236)	(0.035)	(0.220)	(0.019)	8389
	EPER	0.056***	1.328***	-0.167***	-0.586**	-0.012	_
		(0.022)	(0.375)	(0.048)	(0.277)	(0.025)	

Time profile for patent impact

	(1)	(2)	(3)	(4)
Model	Logit	Poisson	Clogit	FE Poisson
Policy Variable	I(Patent)	Patents	I(Patent)	Patents
EPERX1998	0.194***	1.915***	0.076	-0.022
	(0.040)	(0.259)	(0.048)	(0.159)
EPERX1999	0.145***	1.932***	0.010	-0.005
	(0.037)	(0.275)	(0.058)	(0.186)
EPERX2000	0.113***	1.756***	-0.034	-0.181
	(0.035)	(0.314)	(0.059)	(0.235)
EPERX2001	0.083***	1.540***	-0.086	-0.397
	(0.032)	(0.342)	(0.065)	(0.293)
EPERX2002	0.036	1.063***	-0.207***	-0.874**
	(0.029)	(0.384)	(0.072)	(0.350)
EPERX2003	0.052*	1.471***	-0.150**	-0.465
	(0.029)	(0.421)	(0.073)	(0.307)
EPERX2004	0.056*	1.180***	-0.161**	-0.757**
	(0.031)	(0.367)	(0.077)	(0.361)
EPERX2005	0.049	1.241***	-0.182**	-0.696**
	(0.031)	(0.352)	(0.083)	(0.312)

Econometric model

Basic equation:
$$\Delta y_{it} = \alpha \Delta CCA_{it} + x'_{it}\beta + \xi_t + \eta_i + \varepsilon_{it}$$
.

First stage IV: $\Delta CCA_{it} = \tilde{\alpha} \Delta EPER_{it} + x'_{it}\tilde{\beta} + \tilde{\eta}_i + \tilde{\varepsilon}_{it}$

Second stage IV: $\Delta y_{it} = \alpha \Delta \widehat{CCA}_{it} + x'_{it}\beta + \eta_i + \varepsilon_{it}$

Reduced form:

$$\Delta y_{it} = \alpha \Delta E P E R_{it} + x'_{it} \beta + \eta_i + \varepsilon_{it}$$

CCAs across Umbrella Agreements

Total number of aggreements: 7904

Data (cont.)

Technology type	US Sub Class	IPC Sub Class	IPC Group	US Class
Heat Exchange	165	4 - 5	F23L	15/02/09

Overall: 1100 CCR patents in 650 firms

Data (cont.)

• Patent data:

European Patent Office (EPO) database ≈60,000 patents in 10,000 UK firms

- Climate Change related (CCR) patents:
 - Abstract searches: "Energy efficiency"
 - Patent Classes; e.g.

Technology type	US Sub Class	IPC Sub Class	IPC Group	US Class
Heat Exchange	165	4 - 5	F23L	15/02/09

Overall: 1100 CCR patents in 650 firms

listorical CO2 concentration

Temperature record

Econometric Strategy for patent data

2 types of model

CCA Participation

Binary (clogit): $\Pr \{ \mathbb{I}(Patents_{it} > 0) = 1 \} = f \left(\beta_D D_{it} + x'_{it} \beta_X + \alpha_i \right)$

Count data (Poisson): $\mathbb{E}[Patents_{it}] = \exp(\beta_D D_{it} + \mathbf{X}_{it}\beta_X)\exp(\alpha_i)$

Controlling for selection

- I. Fixed effects
- 2. Instrumenting CCA participation with CAA eligibility: Firms covered by PPC regulation (EPER)

Descriptive stats: Patents

Patents type	Sample	mean	firms	patents	p25	p75	p90
All	non CCA	5.92	9816	58111	1	3	7
	CCA	31.11 ***	269	8368	1	10	45
	non EPER	5.37	9931	53288	1	3	7
	EPER	85.66 ***	154	13191	1	9	73
	Totals		10085	66479			
CCR	non CCA	1.72	612	1051	1	1	2
	CCA	3.54 **	41	145	1	4	8
	non EPER	1.56	623	972	1	1	2
	EPER	7.47 ***	30	224	1	4	17
	Totals		653	1196			

Notes: The table reports descriptive statistics on the total number of patent applications that are filed by the firms in our UK sample for the period 1980 to 2005. It distinguishes by patent type as well as by which environmental policy a firm holding the patent was subject to.

Relation to previous studies

 Agnolucci et al: no CCL announcement effect in manufacturing, announcement effect in services.

We find manufacturing effect

 Ekins & Etheridge, Barker et al.: yes, targets were easily achieved, but there was still a big CCA effect. (based on long run trends)

Maybe, but CCL effect was even stronger

 Implied energy price elasticities are high compared to others: I to 2.5

Roy et al.: 0.8-1.25

EPO CCR Patents

CCR Patent Share across countries

Robustness: Placebo Regressions

Restricting to pre 2001 sample Pretend CCL was introduced in 1995

		(1)	(2)	(3)	(4)	(5)
	Model	Logit	Poisson	Clogit	FE Poisson	Observations/
Patent type	Policy Variable	I(Patent)	Patent Count	I(Patent)	Patent Count	firms
All patents	Placebo CCA	0.129***	1.682***	0.019	-0.045	61622
		(0.021)	(0.172)	(0.040)	(0.336)	5602
	Placebo EPER	0.155***	1.746***	0.081	0.086	-
		(0.030)	(0.319)	(0.052)	(0.184)	

Climate Change Agreements (CCAs)

Issue 2 – Self Selection

- CCA participation voluntary
- Higher incentives for
 - Energy intensive firms
 - Firms that reduce energy consumption anyways
- To control:
 - Allow for fixed differences in levels and trends of firms
 - Instrument based on eligibility: Coverage by PPC.
 - Key assumption: Firms are not selecting into PPC because of post 2001 shock to outcome variables

Michael Roberts, the CBI's director of business environment, said: "Many companies will find these costs hard to take when manufacturing is under so much pressure and there are fears of a slowdown in the global economy." (<u>http://www.independent.co.uk/news/business/news/climate-change-levy-to-cost-business-pound100m-engineering-industry-claims-702144.html</u>)