Calorimetric Principles and TAM III

TAM Courses

t	time	[sec]
Ρ	Heat production rate or Thermal power	[W = J s ⁻¹]
Φ (dq/dt)	Heat flow	[W = J s ⁻¹]
Q	heat	[J]
ΔH	Enthalpy change	[J mol ⁻¹ , J g ⁻¹]

Thermal Analysis

"Thermal analysis refers to a group of <u>techniques</u> in which a physical property of a substance is measured as a function of temperature whilst the substance is subjected to an <u>imposed</u> temperature alteration"

Examples: DTA, DSC, TGA, TAM in non-isothermal mode

Calorimetry

"Calorimetry refers to those measuring techniques that are used for direct determination of <u>rate of heat production</u>, <u>heat</u>, <u>and heat capacity</u> as function of temperature and time" Examples: DTA, DSC and TAM

TAM Courses

Calorimetry

- All kinds of processes; Chemical, Physical and Biological
- Non-specific
- Non-destructive
- Not dependent on the physical shape of the sample
- No need for sample preparation
- · Direct and continous
- ТАМ

TAM is a non-specific technique

 TAM is sensitive to <u>all</u> physical and chemical processes associated with a heat flow. Thus, the monitored heat flow may contain <u>contributions</u> from several processes.
 Individual contributions may be distinguished by varying the experimental conditions.

ТАМ

Minicalorimeter

- Reference permanent and below the sample ampoule
- All type of 4 mL ampoules can be used
- Contains all necessary electronics for connecting to TAM III

ТАМ

Courses

attached to its computer interface

Twin System

• Twin Calorimeter (identical)

- Sample (A-side)
- Reference (B-side) should be inert
- TAM measure the difference in heat flow between the sample and the reference:

$$P = P_S - P_R$$

Positive heat flow values \Leftrightarrow Exothermic reactions

Definitions		
 Rate of heat production The rate of heat produced (exothermic) or absorbed (endothermic) by the sample 		
 Rate of heat exchange or heat flow The rate of heat flow between the sample and the surrounding 		
<i>Note</i> : During Steady State or "near steady state" conditions these properties are equal.		
TAM		

Calibration of TAM III

Courses

Purpose of calibration

- To ensure that the displayed heat flow corresponds to the true heat flow caused by the sample;
 - Conversion of measured voltage to heat flow
 Account for heat losses i.e. heat not passing the detectors
- Calibration of TAM is performed using inbuilt calibration heaters.
- The inbuilt calibration can be validated using external calibration heaters or chemical test reactions.

TAM

Calibration of TAM III

- The calorimeters of TAM III has been calibrated at Thermometric at 4 different temperatures so as to diminish the influence of temperature on the users calibration results.
- When the user makes a calibration, the results is compared with that obtained from the "factory calibration" and deviation is calculated.
- The deviation is represented by a unit-less calibration constant (called the gain constant in TAM Assistant) and should be close to unity (normally 0.95-1.06).

TAM

A new calibration should be performed whenever;

- · TAM has been switched off
- · Measuring temperature has been changed
- Whenever a new ampoule type is going to be used
- Routinely at regular intervals due to ageing of the semi-conductor thermopiles (e.g. ones every third month)

Two types of calibrations

- Heat flow calibration for 'slow' processes
- Dynamic calibration for 'fast' processes

TAM Courses

Calibration Conditions

Ampoule experiments

 empty ampoule lifters (or empty ampoules) should be in position in both sample and reference side

ТАМ

Heat flow Calibration

-General procedure

- Ensure that the baseline is stable
- <u>Apply settings</u>: steady state calibration (2-3h) or pulse and integration (20 min) and power to the calibration heaters (Calorimeter device / settings ..).
- <u>Start the calibration in TAM Assistant</u> (Calorimeter device / control tab / perform calibration)

Thermal inertia ⇔ Time delay

- Due to the thermal inertia of a calorimetric unit the true response in heat flow by a sample will differ somewhat from the heat flow monitored by the heat detectors)
- For <u>fast</u> processes, i.e. response time < 10-15min dynamic calibration should be used to give true process rates

Dynamic Correction function in TAM Assistant

- The TAM Assistant software contains functions for considering the effects of the thermal inertia, *i.e.* it calculates a property close to the true thermal power.
- TAM Assistant uses *two* time constants rather than one to get a better precision in the correction (*cf.* Taylor expansion). In this case the fitting parameters has no relevant physical interpretation

TAM Courses

Effect of Dynamic calibration

- Heat flow data will <u>not</u> reflect the true response of the sample for reactions with response times less than 10 min.
- Dynamically corrected data represents the true data of the sample and has been calculated from Heat flow data using the information about time constants obtained from Dynamic calibration.

$$P = \phi + (\tau_1 + \tau_2) \frac{d\phi}{dt} + \tau_1 \cdot \tau_2 \frac{d^2\phi}{dt^2}$$

ТАМ

Heat flow and "corrected" data

- If only a static calibration has been performed only heat flow data, φ, (data monitored by the heat detector) can be displayed
- If a dynamic calibration has been performed dynamically corrected data (data representing the true response of the sample) can be displayed

ТАМ

Sample preparation and experimental considerations

TAM

Designing an experiment

- Choice of sample handling system
- · Handling of ampoules
- · Sample considerations
- · What to use as reference

Sample Handling Systems

- Closed or sealed (static) Ampoules
- Open ampoules Micro Reaction System
- Micro Solution Ampoule

TAM Courses

Static Ampoules

- Disposable Glass Ampoules
- · Heat seal ampoules
- Stainless Steel Ampoules with Threaded Cap
- Stainless Steel Ampoules
 with Circlip Cap
- Glass Ampoules with Circlip Caps

TAM

Heat seal ampoules

- · Completely sealed
- · Heat seal ampoules of glass
- Special ampoule lifters

Note: precautions should be taken to protect the sample towards the heat during the sealing procedure

ТАМ Courses

Threaded Cap Ampoules

- · Stainless steel
 - resistance towards corrosion
 should not be used for solvent with pH < 4
- · Hastelloy Improved resistance towards corrosion and acids
 - excellent for use with organic solvents
- · The cap is sealed with a disposable Teflon disc (inert) and o-ring
- Stable for most applications
- · Stands pressures up to at least 2 bar

ТАМ Сог

- Stainless steel

 resistance towards corrosion
 should not be used for solvent with pH < 4
- Hastelloy
 Improved resistance towards corrosion
 and acids
 excellent for use with organic solvents
- Glass
- O-sealing made in Nitril, EPDM, Viton or Kalrez (most inert)
- Stands 8 bar pressure (precautions must be made) •
- ТАМ

TAM

Equilibrium

- Thermal equilibrium
 - Within 60 min after loading
- Physical equilibrium
 - Depends on the sample and the pre-history
 Might depend on the ampoule itself
- · Chemical equilibrium
 - Slow/fast reactions

Pre-history of the sample

- The sample should be stored under controlled conditions for at least 24 hours before a measurement
 - relative humidity
 - temperature
 - atmosphere (e.g. nitrogen, air, oxygen)
- The time to reach physical equilibrium must be considered

TAM Courses

Sample geometry

- Powder (small particle size)
 - Chemical processes will occur homogeneously in the sample
- Bulk samples (large particle size)

 May show a heterogeneous response
 - May show a neterogeneous
 diffusion limited oxidation
 - pressure build-up by volatiles formed

The influence of geometry can be studied using different particle size with the same amount of sample. If the specific heat flow $(\mu W/g)$ is the same for two different sizes, this effect is not important. Otherwise it must be considered.

Kinetic evaluation

- Be sure the response in heat flow reflects the kinetics of the process of interest
- In many case the first 5-10 hours should be excluded because of a non physical equilibrium (other process contributes to the monitored heat flow)

Courses

Choice of Reference Materials

- A reference material is used to balance the heat capacity of the sample and the reference ampoule.
- With a good balance in heat capacity the short-term noise will be reduced. However, if the system is not wellbalanced the average heat flow values is not affected.
 A proper balancing of the amoules is needed when the
- A proper balancing of the ampoules is needed when the response in heat flow is low, e.g. during titration experiments.
- Example of reference materials: sand, glass pearls, water

ТАМ

Balancing sample and reference

- · Calculate from heat capacity
- · Calculate from time contants
 - Measure τ of an empty ampoule
 - Measure τ of ampoule with different amount of e.g. water